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ABSTRACT 

GLISP is a high-level LISP-based language which is compiled into 

LISP using a knowledge base of object descriptions. l.isp objects and 

objects in AI. rcprcscntation languages arc treated uniformly; this 

makcc program code independent of the data representation used, and 

permits changes of representation without changing code. GI,lSP’s 

object description language provides a powerful abstract datatype 

facility which allows the structures and properties of objects to be 

dcscribcd. Reference to objects is permitted in an English-like syntax, 

including dcfinitc rcfcrencc rclativc to the current context of the 

computation. Object-ccntcrcd programming is supported. When 

interfaced to a hierarchical rcprescntation language, GLISP can 

perform inheritance at compile time, resulting in substantial 

performance improvements. In addition, a LISP structure can be 

specified as the way of implcmcnting a class of objects in the 

rcprcscntntion language, making simple objects cfficicnt in both time 

and storage. 

1. Introduction 

Progress in Al. is limited by our ability to manage the complexity 

inhcrcnt in A.I. problems; in particular, such problems often involve 

large numbers of aiffcrent types of objects, whose properties and 

interactions must bc modcllcd by a program. The need to manage a 

large number of object types has led to the dcvclopmcnt of a number of 

~1. reprcscntation languages; howcycr, these languages have gcncrally 

suffcrcd from two problems. First, while the languages provide 

benefits for storage of data and inheritance of proccdurcs, access to 

objects must often be performed by low-lcvcl functions; in addition, the 

lyj)e of the data rctrievcd must often be remcmbcrcd by the 

programmer. These factors make programs difficult to change after 

their initial implcmcntation. Second, hierarchical reprcscntation 

languages have achicvcd power in data rcprcsentntion at the cost of 

performing data access interpretively at runtime; this has a high cost in 

execution time. 

GLISP solves these problems, as well as being a powerful 

programming language in its own right. Data objects are described 

separately from code which refercnccs the objects, making code largely 

rcprcscntation-indcpcndcnt, as well as shorter and more 

understandable. Type inference is pcrformcd when features of an 

object arc acccsscd, and type information is propagated by the compiler 

during compilation. A change in rcprcscntation, made in only one 

place, is rcflectcd throughout the program upon rccompilntion. GLISP 

compiles efficient code for access to object propel-r&. By performing 

lookup of inhcritcd properties at compile time, expanding definitions of 

property access methods into open code, and using Lisp structures to 

implcmcnt instances of objects dcscribcd in an A.I. rcprcscntation 

Ianguagc, GI.ISP can greatly increase the execution cfficicncy of 

programs using such a language. 

‘The following example function illustrates some of the fcaturcs of 

GLISP: 

(GIVE-RAISE (GLAMBDA ( {A COMPANY) ) 
(FOR EACH ELECTRICIAN WHO IS NOT A TRAINEE 

DO (SALARY ++ (IF SENIORITY > 2 
THEN 2.50 ELSE 1.50)) 

(PRINT THE NAME OF THE ELECTRICIAN) 
(PRINT THE PRETTYFORM OF DATE-HIRED) 
(PRINT MONTHLY-SALARY) ) )) 

The G1,AMBDA in the function definition causes the IN’I’IXIXP 

intcrprcter to call the GLISP compiler to incrcmcntally compile the 

fitnction the first time it is rcfcrcnccd. In this example, onlp the fyye of 

the function’s argument, (A COMPANY), is spccificd; this argument 

provides an initial Conlexf of computation. Since GLlSP allows 

definite refcrcnccs to features of objects which are in Context, it is not 

always ncccssary to give variable names to objects. With a COMPANY 

in Context, the dcfinitc reference to the t31,1KZTRICIANs can bc 

understood by the compiler as the ELK’~RlClANs of that 

COMPANY. Within the FOR loop, the current I%XIRlCIAN is in 

Context, permitting rcfcrences to SALARY, SENIORITY, etc. to bc 

resolved. 
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Such a function is compiled relafive fo a knowledge base of object 

descriptions; the GLISP code itself is indepcndcnt of the actual data 

representations used. Separation of object descriptions from code 

permits substantial changes to object structures with no changes to the 

code. SENIORITY, for example, might be stored directly as part of an 

EMPLOYEE object, or it might be computed from other properties; 

for example, SENIORITY could be defined as 

( (THE YEAR OF (CURRENTDATE)) 
- (THE YEAR OF DATE-HIRED) ) 

where (CURRENTDATE) is a function which returns the current date 

and DATE-HIRED is a substructure of an l<MPI,OYEE. Uniform 

trcatmcnt of stored and computed properties facilitates hiding the 

distinction between properties which are actually stored and those 

which are computed as needed. The compiled IJSP code produced by 

GLISP is nearly as cfficicnt as hand-coded 1 .ISP; the user must pay for 

compilation, but dots not incur a substantial runtime penalty. 

Ordinary LISP is a subset of GIJSP; normal IJSP code is simply 

passed through by the GLISP compiler without change. 

(VECTOR 

(LIST (X INTEGER) (Y INTEGER)) 

PROP ( (MAGNITUDE ((SQRT Xr2 + Yr2)) ) ) 

ADJ ( (ZERO (X IS ZERO 
AND Y IS ZERO)) 

(NORMALIZED (MAGNITUDE = 1.0)) ) 

MSG ( (+ VECTORPLUS 
(- 

OPEN T) 

(PRINI 
VECTORDIFFERENCE OPEN T) 
((PRINl ‘I(“) 

(PRINl X) 
(PRINl “, “) 
(PRINl Y) 
(PRINl ")"))) 

(PRINT ((Send self PRINl) 

1 
(TERPW) > 1 

The actual structure of the object is a IJST of two INTEGERS, X 

and Y. The language of Structure Descriptions allows the standard 

LISP structures to bc specified. Objects may be dcfincd in terms of 

other objects, and can inherit the features and behavior of component 

objects. The rest of the Object Description defines Properties, 

hdjcctivcs, and Mcssagcs for the object. ‘I’hc MAGNITUDE is dcfincd 

in terms of a LISP function, SQRT, whose argument is an cxprcssion 

involving definite refcrcnccs to the X and Y components of the 

VECTOR. Adjectives are used in predtcatc cxprcssions on objects, e.g., 

(IF THE VECTOR IS NOT NORMALIZED THEN . ..). The 

adjcctivc NORMAI~IZED is easily dcfincd using dcfmitc rcfcrcnce to 

the property MAGNI’I‘UDF,, which in turn is dcfincd in terms of other 

propcrtics. 

3. Definite Reference and English-Like 

Programming 

GLISP permits English-like stimmcnts, including dcfinitc rcfercnce 

to objects which arc in the current computational Cojzlext. The 

Context, a compile-time construct which initially contains the 

arguments of a function, is propagated ,through the program along 

control flow paths by the compiler. Newly referenced objects are 

added to Context, so that their fcaturcs may then bc rcfcrenccd directly. 

A variable may be referenced by its name (“X”) or its type ("The 

ELECTRICIAN”). A substructure or Property of an object may be 

rcfcrcnccd in English-like forms ("The SALARY of X" or "The 

SALARY" or "SALARY") or in PASCAL,-like syntax ("X :SALARY"). 

The forms "The ELECTRICIAN", "The SALARY" and "SALARY" 

are dcfinitc rcfcrences, since the source object is unspecified; such 

rcfcrcnces are resolved by finding an object in the Context which is of 

the specified type or has the specified property. Definite reference to 

the member(s) of a group which satisfy a spccificd condition is also 

allowcd,asin (The Slot with SlotName -1 NAME)or 

(Those Faculty-Members who are Tenured). 

Definite reference allows programs to be shorter and more readable, 

allows easy definition of object properties in terms of other propcrtics, 

and makes programs easier to modify. Definite refcrencc is potentially 

ambiguous (i.e., there could be multiple objects in the Context with a 

specified property); however, in practice this has not proved to bc a 

problem. The ordering of the Context search by the compiler and the 

user’s skill in use of dcfinitc rcfcrcncc as a spcakcr of natural language 

gcncrally prcvcnt inadvcrtcnt rcfcrcnccs; a rcfcrcncc can always be 

made unambiguous by specifying the source object. 

4. Messages 

Object-Ccntcrcd Programming, inspired by SIMU1.A [l] and 

SMAI.I~I‘AlK [2] [3], has bccomc increasingly popular; it \icws objects 

as active cntitics which communicate by exchanging filessnges. A 

Message specifics the destination object, a Seleclor which identifies the 

message type, and optional Argumenls. When a mcssagc is received, 

the receiving object looks up the Selector to find a corresponding 

proccdurc to respond to the message and cxecutcs it. Typically, objects 
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are organized in a Class hierarchy, so that the procedure which is used 

to execute a message to an object is inherited from the object’s Class. 

GLTSP permits optimized compilation of Messages. An Object 

Description contains the Selector and associated Response for each 

message the object can receive. The Response may be either GLJSP 

code, which is recursively compiled in-line, or a function name, in 

which cast a direct call to the function (or open code) is compiled. 

Properties and Aa’jeclives are compiled as if they were messages without 

arguments. Rccausc the Response to a message can bc GLJSP code 

which is compiled recursively in the context of the object in question, 

and which can use definite rcfercncc to access substructures and 

propel-tics of the object, it is easy to dcfinc properties in terms of other 

propertics. If arithmetic operators arc defined as message Selectors for 

a class of objects, arithmetic expressions involving objects of that type 

will be compiled as calls to the corresponding Response ftlnctions, as 

illustrated in the VECTOR example above; open compilation of the 

Response for operators allows the resulting code to bc efficient. 

5. GLISP and Knowledge Representation 

Languages 

An intcrfacc is provided to allow GIJSP to be used with a knowledge 

representation language of the user’s choice: each Class of objects in the 

representation language becomes a valid type for GLISP. Use of a 

reprcscntation language gives GLISP additional power, since properties 

and mcssagcs can be inherited through the language’s hierarchies. In 

addition, G LISP can significantly improve runtime pcrformancc by 

doing procedural inheritance at compile time and compiling a direct 

call to an inherited procedure; for simple functions, open compilation 

avoids the function call as well. Messages which cannot be resolved at 

compile time are interpreted at runtime, as usual. Messages which in 

fact specify data access can be rccognizcd as such and can bc compiled 

to perform the data access directly. Rcprescntation languages often 

involve structural overhead which is costly in terms of storage and 

access time; the overhead encourages users of such a language to have a 

mixed representation, with complex objects represented in the language 

and simple objects represented as LISP structures which are 

manipulated directly. GLISP allows the user to have the best of both 

worlds. A LISP structure can be specified as the way of implementing a 

Class of objects. While such an object appears the same as other objects 

in the representation language in terms of its definition and access 

language, direct LISP code is compiled for all accesses to its data values. 

In this way, all objects appear uniform, but simple objects are 

represented efficiently. 

Recursive compilation of object properties can be used to achieve a 

certain amount of automatic programming. For example, a knowledge 

base can define the property DENSITY as MASS/VOLUME at a high 

level, for all physical objects. If a function references the DENSITY of 

a PLANET object, this definition of density will be inherited and 

compiled recursively in the cotrtext of the origitlal object, namely a 

PLANET. If PLANET has SPHERE as one of its parent classes, the 

definition for VOIUME can be inherited from SPHERE. The result of 

such recursive compilation is that different in-line code is compiled for 

different kinds of objects from the same high-level definition of 

DENSITY. 

6. Discussion 

GLISP provides several novel and valuable language features: 

1. Object Descriptions provide a powerful abstract datatype 
facility, including Properties, Adjcctivcs, Mcssagcs, and 
operator overloading for user dntatypcs. Objects may be 
composed from other objects, inheriting their propcrtics. 

2. Objects in Knowlcdgc Representation I,anguages, as well as 
LISP objects, can bc used in a uniform fashion. 

3. English-like programming, including 
rclativc to the Context, is allowed. 

4. Optimized compilation is performed for 
hierarchical representation languages. 

definite reference 

These capabilities arc integrated, and reinforce each other 

synergistically. While other systems, e.g. CLISP [4] and Flavors [5] 

provide some of the fcaturcs of GLJSP. none (to our knowledge) do so 

in a way that is integrated and allows the user to choose the data 

representation. 

7. Implementation Status 

GLISP [6], including all features described in this paper, is currently 

running. To date, it has been interfaced to the GIRL representation 

language, and to the object-ccntcred representation language LOOPS 

[7]. GLISP was originally implemented within INTERLISP; it is 

currently available for INTERLJSP, MACLISP, FRANZ LISP, and 

UC1 LISP. GLISP thus provides a high-level Lisp-based language 

which is transportable across the major dialects of Lisp. 
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8. Example 

This section illustrates how the example function discussed earlier is 

compiled for a particular choice of data structures. The compiler 

optimizes the iteration to avoid explicit construction of the set of 

ELECTRICIANS. 

(GIVE-RAISE (GLAMBDA ((A COMPANY)) 
(FOR EACH ELECTRICIAN WHO IS NOT A TRAINEE 

DO (SALARY *+(IF SENIORITY > 2 
THEN 2.5 ELSE 1.5)) 

(PRINT THE NAME OF THE ELECTRICIAN) 
(PRINT THE PRETTYFORM OF DATE-HIRED) 
(PRINT MONTHLY-SALARY)))) 

(GLISPOBJECTS 

(COMPANY (ATOM (PROPLIST 
(PRESIDENT (AN EMPLOYEE)) 
(EMPLOYEES (LISTOF EMPLOYEE)))) 

PROP ((ELECTRICIANS 
((THOSE EMPLOYEES WITH 

JOBTITLE=‘ELECTRICIAN))))) 

(EMPLOYEE (LIST (NAME STRING) 
(DATE-HIRED (A DATE)) 
(SALARY REAL) 
(JOBTITLE ATOM) 
(TRAINEE BOOLEAN)) 

PROP ((SENIORITY 
((THE YEAR OF (CURRENTDATE)) 
-(THE YEAR OF DATE-HIRED))) 

(MONTHLY-SALARY (SALARY * 174))) 1. 

With thcsc data structure definitions, the function GiVEi-RAISE is 

compiled (for INTl~RI,ISP) as follows: 

(GIVE-RAISE (LAMBDA (GLVARl) 
(MAPC (GETPROP GLVARl (QUOTE EMPLOYEES)) 

(FUNCTION (LAMBDA (GLVAR2) 
(AND (EQ (CADDDR GLVARE) 

(QUOTE ELECTRICIAN)) 
(COND 

((NOT (CAR (NTH GLVAR2 5))) 
[RPLACA (CDDR GLVAR2) 

(PLUS (CADDR GLVAR2) 
(COND 

((IGREATERP (IDIFFERENCE 
(CADDR (CURRENTDATE)) 
(CADDR (CADR GLVAR2))) 

2) 2.5) 
(T 1.5-J 

(PRINT (CAR GLVARSI)) 
[PRINT (PROG ((self (CADR GLVAR2))) 

(RETURN (LIST (CADR self) 
(CAR (NTH (QUOTE (January 

February March April May 
June July August September 
October November December)) 

(CAR self))) 
(CADDR self] 

(PRINT (TIMES (CADDR GLVAR2) 1741 

ADJ ((HIGH-PAID (MONTHLY-SALARY>2000))) 
2. 

ISA ((TRAINEE (TRAINEE))) 

MSG ((YOURE-FIRED (SALARY + 0))) ) 
3. 

(DATE (LIST (MONTH INTEGER) 
(DAY INTEGER) 
(YEAR INTEGER)) 

PROP ((MONTHNAME ((CAR (NTH ‘(January 
February March April May 
June July August September 
October November December) 

M0N-W))) 
(PRETTYFORM 

((LIST DAY MONTHNAME YEAR))) 
(SHORTYEAR (YEAR - 1900)))) 7. 
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