
GLISP: A High-Level Language for A.I. Programming

Gordon S. Novak Jr.

Heuristic Programming Project

Computer Scicncc Department

Stanford University

ABSTRACT

GLISP is a high-level LISP-based language which is compiled into

LISP using a knowledge base of object descriptions. l.isp objects and

objects in AI. rcprcscntation languages arc treated uniformly; this

makcc program code independent of the data representation used, and

permits changes of representation without changing code. GI,lSP’s

object description language provides a powerful abstract datatype

facility which allows the structures and properties of objects to be

dcscribcd. Reference to objects is permitted in an English-like syntax,

including dcfinitc rcfcrencc rclativc to the current context of the

computation. Object-ccntcrcd programming is supported. When

interfaced to a hierarchical rcprescntation language, GLISP can

perform inheritance at compile time, resulting in substantial

performance improvements. In addition, a LISP structure can be

specified as the way of implcmcnting a class of objects in the

rcprcscntntion language, making simple objects cfficicnt in both time

and storage.

1. Introduction

Progress in Al. is limited by our ability to manage the complexity

inhcrcnt in A.I. problems; in particular, such problems often involve

large numbers of aiffcrent types of objects, whose properties and

interactions must bc modcllcd by a program. The need to manage a

large number of object types has led to the dcvclopmcnt of a number of

~1. reprcscntation languages; howcycr, these languages have gcncrally

suffcrcd from two problems. First, while the languages provide

benefits for storage of data and inheritance of proccdurcs, access to

objects must often be performed by low-lcvcl functions; in addition, the

lyj)e of the data rctrievcd must often be remcmbcrcd by the

programmer. These factors make programs difficult to change after

their initial implcmcntation. Second, hierarchical reprcscntation

languages have achicvcd power in data rcprcsentntion at the cost of

performing data access interpretively at runtime; this has a high cost in

execution time.

GLISP solves these problems, as well as being a powerful

programming language in its own right. Data objects are described

separately from code which refercnccs the objects, making code largely

rcprcscntation-indcpcndcnt, as well as shorter and more

understandable. Type inference is pcrformcd when features of an

object arc acccsscd, and type information is propagated by the compiler

during compilation. A change in rcprcscntation, made in only one

place, is rcflectcd throughout the program upon rccompilntion. GLISP

compiles efficient code for access to object propel-r&. By performing

lookup of inhcritcd properties at compile time, expanding definitions of

property access methods into open code, and using Lisp structures to

implcmcnt instances of objects dcscribcd in an A.I. rcprcscntation

Ianguagc, GI.ISP can greatly increase the execution cfficicncy of

programs using such a language.

‘The following example function illustrates some of the fcaturcs of

GLISP:

(GIVE-RAISE (GLAMBDA ({A COMPANY))
(FOR EACH ELECTRICIAN WHO IS NOT A TRAINEE

DO (SALARY ++ (IF SENIORITY > 2
THEN 2.50 ELSE 1.50))

(PRINT THE NAME OF THE ELECTRICIAN)
(PRINT THE PRETTYFORM OF DATE-HIRED)
(PRINT MONTHLY-SALARY))))

The G1,AMBDA in the function definition causes the IN’I’IXIXP

intcrprcter to call the GLISP compiler to incrcmcntally compile the

fitnction the first time it is rcfcrcnccd. In this example, onlp the fyye of

the function’s argument, (A COMPANY), is spccificd; this argument

provides an initial Conlexf of computation. Since GLlSP allows

definite refcrcnccs to features of objects which are in Context, it is not

always ncccssary to give variable names to objects. With a COMPANY

in Context, the dcfinitc reference to the t31,1KZTRICIANs can bc

understood by the compiler as the ELK’~RlClANs of that

COMPANY. Within the FOR loop, the current I%XIRlCIAN is in

Context, permitting rcfcrences to SALARY, SENIORITY, etc. to bc

resolved.

238

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

Such a function is compiled relafive fo a knowledge base of object

descriptions; the GLISP code itself is indepcndcnt of the actual data

representations used. Separation of object descriptions from code

permits substantial changes to object structures with no changes to the

code. SENIORITY, for example, might be stored directly as part of an

EMPLOYEE object, or it might be computed from other properties;

for example, SENIORITY could be defined as

((THE YEAR OF (CURRENTDATE))
- (THE YEAR OF DATE-HIRED))

where (CURRENTDATE) is a function which returns the current date

and DATE-HIRED is a substructure of an l<MPI,OYEE. Uniform

trcatmcnt of stored and computed properties facilitates hiding the

distinction between properties which are actually stored and those

which are computed as needed. The compiled IJSP code produced by

GLISP is nearly as cfficicnt as hand-coded 1 .ISP; the user must pay for

compilation, but dots not incur a substantial runtime penalty.

Ordinary LISP is a subset of GIJSP; normal IJSP code is simply

passed through by the GLISP compiler without change.

(VECTOR

(LIST (X INTEGER) (Y INTEGER))

PROP ((MAGNITUDE ((SQRT Xr2 + Yr2))))

ADJ ((ZERO (X IS ZERO
AND Y IS ZERO))

(NORMALIZED (MAGNITUDE = 1.0)))

MSG ((+ VECTORPLUS
(-

OPEN T)

(PRINI
VECTORDIFFERENCE OPEN T)
((PRINl ‘I(“)

(PRINl X)
(PRINl “, “)
(PRINl Y)
(PRINl ")")))

(PRINT ((Send self PRINl)

1
(TERPW) > 1

The actual structure of the object is a IJST of two INTEGERS, X

and Y. The language of Structure Descriptions allows the standard

LISP structures to bc specified. Objects may be dcfincd in terms of

other objects, and can inherit the features and behavior of component

objects. The rest of the Object Description defines Properties,

hdjcctivcs, and Mcssagcs for the object. ‘I’hc MAGNITUDE is dcfincd

in terms of a LISP function, SQRT, whose argument is an cxprcssion

involving definite refcrcnccs to the X and Y components of the

VECTOR. Adjectives are used in predtcatc cxprcssions on objects, e.g.,

(IF THE VECTOR IS NOT NORMALIZED THEN . ..). The

adjcctivc NORMAI~IZED is easily dcfincd using dcfmitc rcfcrcnce to

the property MAGNI’I‘UDF,, which in turn is dcfincd in terms of other

propcrtics.

3. Definite Reference and English-Like

Programming

GLISP permits English-like stimmcnts, including dcfinitc rcfercnce

to objects which arc in the current computational Cojzlext. The

Context, a compile-time construct which initially contains the

arguments of a function, is propagated ,through the program along

control flow paths by the compiler. Newly referenced objects are

added to Context, so that their fcaturcs may then bc rcfcrenccd directly.

A variable may be referenced by its name (“X”) or its type ("The

ELECTRICIAN”). A substructure or Property of an object may be

rcfcrcnccd in English-like forms ("The SALARY of X" or "The

SALARY" or "SALARY") or in PASCAL,-like syntax ("X :SALARY").

The forms "The ELECTRICIAN", "The SALARY" and "SALARY"

are dcfinitc rcfcrences, since the source object is unspecified; such

rcfcrcnces are resolved by finding an object in the Context which is of

the specified type or has the specified property. Definite reference to

the member(s) of a group which satisfy a spccificd condition is also

allowcd,asin (The Slot with SlotName -1 NAME)or

(Those Faculty-Members who are Tenured).

Definite reference allows programs to be shorter and more readable,

allows easy definition of object properties in terms of other propcrtics,

and makes programs easier to modify. Definite refcrencc is potentially

ambiguous (i.e., there could be multiple objects in the Context with a

specified property); however, in practice this has not proved to bc a

problem. The ordering of the Context search by the compiler and the

user’s skill in use of dcfinitc rcfcrcncc as a spcakcr of natural language

gcncrally prcvcnt inadvcrtcnt rcfcrcnccs; a rcfcrcncc can always be

made unambiguous by specifying the source object.

4. Messages

Object-Ccntcrcd Programming, inspired by SIMU1.A [l] and

SMAI.I~I‘AlK [2] [3], has bccomc increasingly popular; it \icws objects

as active cntitics which communicate by exchanging filessnges. A

Message specifics the destination object, a Seleclor which identifies the

message type, and optional Argumenls. When a mcssagc is received,

the receiving object looks up the Selector to find a corresponding

proccdurc to respond to the message and cxecutcs it. Typically, objects

239

are organized in a Class hierarchy, so that the procedure which is used

to execute a message to an object is inherited from the object’s Class.

GLTSP permits optimized compilation of Messages. An Object

Description contains the Selector and associated Response for each

message the object can receive. The Response may be either GLJSP

code, which is recursively compiled in-line, or a function name, in

which cast a direct call to the function (or open code) is compiled.

Properties and Aa’jeclives are compiled as if they were messages without

arguments. Rccausc the Response to a message can bc GLJSP code

which is compiled recursively in the context of the object in question,

and which can use definite rcfercncc to access substructures and

propel-tics of the object, it is easy to dcfinc properties in terms of other

propertics. If arithmetic operators arc defined as message Selectors for

a class of objects, arithmetic expressions involving objects of that type

will be compiled as calls to the corresponding Response ftlnctions, as

illustrated in the VECTOR example above; open compilation of the

Response for operators allows the resulting code to bc efficient.

5. GLISP and Knowledge Representation

Languages

An intcrfacc is provided to allow GIJSP to be used with a knowledge

representation language of the user’s choice: each Class of objects in the

representation language becomes a valid type for GLISP. Use of a

reprcscntation language gives GLISP additional power, since properties

and mcssagcs can be inherited through the language’s hierarchies. In

addition, G LISP can significantly improve runtime pcrformancc by

doing procedural inheritance at compile time and compiling a direct

call to an inherited procedure; for simple functions, open compilation

avoids the function call as well. Messages which cannot be resolved at

compile time are interpreted at runtime, as usual. Messages which in

fact specify data access can be rccognizcd as such and can bc compiled

to perform the data access directly. Rcprescntation languages often

involve structural overhead which is costly in terms of storage and

access time; the overhead encourages users of such a language to have a

mixed representation, with complex objects represented in the language

and simple objects represented as LISP structures which are

manipulated directly. GLISP allows the user to have the best of both

worlds. A LISP structure can be specified as the way of implementing a

Class of objects. While such an object appears the same as other objects

in the representation language in terms of its definition and access

language, direct LISP code is compiled for all accesses to its data values.

In this way, all objects appear uniform, but simple objects are

represented efficiently.

Recursive compilation of object properties can be used to achieve a

certain amount of automatic programming. For example, a knowledge

base can define the property DENSITY as MASS/VOLUME at a high

level, for all physical objects. If a function references the DENSITY of

a PLANET object, this definition of density will be inherited and

compiled recursively in the cotrtext of the origitlal object, namely a

PLANET. If PLANET has SPHERE as one of its parent classes, the

definition for VOIUME can be inherited from SPHERE. The result of

such recursive compilation is that different in-line code is compiled for

different kinds of objects from the same high-level definition of

DENSITY.

6. Discussion

GLISP provides several novel and valuable language features:

1. Object Descriptions provide a powerful abstract datatype
facility, including Properties, Adjcctivcs, Mcssagcs, and
operator overloading for user dntatypcs. Objects may be
composed from other objects, inheriting their propcrtics.

2. Objects in Knowlcdgc Representation I,anguages, as well as
LISP objects, can bc used in a uniform fashion.

3. English-like programming, including
rclativc to the Context, is allowed.

4. Optimized compilation is performed for
hierarchical representation languages.

definite reference

These capabilities arc integrated, and reinforce each other

synergistically. While other systems, e.g. CLISP [4] and Flavors [5]

provide some of the fcaturcs of GLJSP. none (to our knowledge) do so

in a way that is integrated and allows the user to choose the data

representation.

7. Implementation Status

GLISP [6], including all features described in this paper, is currently

running. To date, it has been interfaced to the GIRL representation

language, and to the object-ccntcred representation language LOOPS

[7]. GLISP was originally implemented within INTERLISP; it is

currently available for INTERLJSP, MACLISP, FRANZ LISP, and

UC1 LISP. GLISP thus provides a high-level Lisp-based language

which is transportable across the major dialects of Lisp.

240

8. Example

This section illustrates how the example function discussed earlier is

compiled for a particular choice of data structures. The compiler

optimizes the iteration to avoid explicit construction of the set of

ELECTRICIANS.

(GIVE-RAISE (GLAMBDA ((A COMPANY))
(FOR EACH ELECTRICIAN WHO IS NOT A TRAINEE

DO (SALARY *+(IF SENIORITY > 2
THEN 2.5 ELSE 1.5))

(PRINT THE NAME OF THE ELECTRICIAN)
(PRINT THE PRETTYFORM OF DATE-HIRED)
(PRINT MONTHLY-SALARY))))

(GLISPOBJECTS

(COMPANY (ATOM (PROPLIST
(PRESIDENT (AN EMPLOYEE))
(EMPLOYEES (LISTOF EMPLOYEE))))

PROP ((ELECTRICIANS
((THOSE EMPLOYEES WITH

JOBTITLE=‘ELECTRICIAN)))))

(EMPLOYEE (LIST (NAME STRING)
(DATE-HIRED (A DATE))
(SALARY REAL)
(JOBTITLE ATOM)
(TRAINEE BOOLEAN))

PROP ((SENIORITY
((THE YEAR OF (CURRENTDATE))
-(THE YEAR OF DATE-HIRED)))

(MONTHLY-SALARY (SALARY * 174))) 1.

With thcsc data structure definitions, the function GiVEi-RAISE is

compiled (for INTl~RI,ISP) as follows:

(GIVE-RAISE (LAMBDA (GLVARl)
(MAPC (GETPROP GLVARl (QUOTE EMPLOYEES))

(FUNCTION (LAMBDA (GLVAR2)
(AND (EQ (CADDDR GLVARE)

(QUOTE ELECTRICIAN))
(COND

((NOT (CAR (NTH GLVAR2 5)))
[RPLACA (CDDR GLVAR2)

(PLUS (CADDR GLVAR2)
(COND

((IGREATERP (IDIFFERENCE
(CADDR (CURRENTDATE))
(CADDR (CADR GLVAR2)))

2) 2.5)
(T 1.5-J

(PRINT (CAR GLVARSI))
[PRINT (PROG ((self (CADR GLVAR2)))

(RETURN (LIST (CADR self)
(CAR (NTH (QUOTE (January

February March April May
June July August September
October November December))

(CAR self)))
(CADDR self]

(PRINT (TIMES (CADDR GLVAR2) 1741

ADJ ((HIGH-PAID (MONTHLY-SALARY>2000)))
2.

ISA ((TRAINEE (TRAINEE)))

MSG ((YOURE-FIRED (SALARY + 0))))
3.

(DATE (LIST (MONTH INTEGER)
(DAY INTEGER)
(YEAR INTEGER))

PROP ((MONTHNAME ((CAR (NTH ‘(January
February March April May
June July August September
October November December)

M0N-W)))
(PRETTYFORM

((LIST DAY MONTHNAME YEAR)))
(SHORTYEAR (YEAR - 1900)))) 7.

References

Birtwistle, Dahl, Myhrhaug, and Nygnard, S’ZnlULn BZ%ZN,
Auerbach, Philadelphia, PA, 1973.

Ingalls, D., “The Smailtalk-76 Programming System: Design and
Implementation,” 5th ACM Symposium 011 Pritzciples of
Programming Latrgunges, ACM, 1978, pp. 9-16.

Goldberg, A., et al., BYTE h4agazine, Special Issue on
Smalhlk., August, 1981 .

Teitclman, W.Xcrox Palo
Reference Manual, 1978.

Alto Research Ccntcr, INTER LISP

Cannon. Howard I., “Flavors: A Non-Hierarchical Approach to
Object-Oriented t’rogramming,” Tech. report (unnumbered),
M.I.T. A.I. Lab, Oct. 1981.

Novak, Gordon S., “Gl-ISP Reference Manual,” Tech.
report STAN-CS-895, Computer Science Dept., Stanford Univ.,
Jan. 1982.

Bobrow, D.G. and Stcfik, M., “The L,OOPS Manual,” Tech.
report K B-VLSI-81-13, Xerox Palo Alto Research Center. 1981.

241

