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Abstract 

The parsing of natural language is the product of dense 
interactions among various comprehension processes. We 
believe that traditional models have greatly underestimated 
the richness of these interactions. We propose a model for 
low-level parsing which is massively parallel, highly 
distributed, and highly connected. The model suggests a 
solution to the problem of word sense disambiguation 
which is psychologically plausible and computationally 
feasible. The paper outlines the general connectionist 
paradigm followed by a brief description of a three-level 
network to do parsing. Finally we trace through an 
example to illustrate the functioning of the model. 

introduction 

The parsing of natural language must be studied in the 
full context of all other comprehension processes that 
depend or are depended upon by the parsing process. 
While the study of these different processes has led to 
interesting and valuable results, we believe that the 
interactions among them are not as low in bandwidth as 
traditional models would imply. Our work involves trying 
to model the high connectedness of these aspects. The 
interpretation of metaphor and indirect speech acts, for 
example, and the processes of word sense disambiguation 
and anaphoric reference seem to require a significant 
application of general memory skills (i.e., “non-linguistic 
knowledge”) in order to carry out. Further, it seems that 
any strictly serial decoupling of associated subtasks, i.e., 
one major subtask and then the next and so on, does not 
permit enough interdependence of function to explain 
adequately reasoning tasks that people find quite easy and 
natural to perform. 

In this paper we sketch a model of natural language 
understanding which deals with the problem of word sense 
disambiguation in what we believe to be a psychologically 
plausible manner. Word sense ambiguity is an interesting 
problem because people do it easily, and the task requires 
knowledge from many sources. Small [l], for example, lists 
57 different senses for the word “take,” which depend on 
the local context of the following words. This is not an 
isolated phenomenon. In an informal study, Gentner [2] 
found that the 20 most frequent nouns have an average of 
7.3 senses each; the 20 most frequent verbs have an 
average of 12.4 senses each. We believe that a model 
which tries to emulate how people understand language 
must have at its core a clean and efficient disambiguation 

mechanism. Previous work in this area by Wilks [3], 
Riesbeck and Schank [4], and Small and Rieger [5] have 
been adequate as high-level models, but we emphasize a 
processing structure which is closer to the neuronal 
hardware, as we believe these models will exhibit 
consequences not found in sequential, symbol-passing 
models. (For more discussion of this, see [6, 7, 8, 9, and 
lo].) Our model will use a uniform processing framework, 
be able to maintain multiple hypotheses in parallel, and 
switch interpretations easily based on subsequent context. 

We base our model in part on recent studies in lexical 
access by Swinney [ll] and Seidenberg et al. [12], which 
demonstrate that when people hear an ambiguous word, at 
least two senses of the word are initially active, but by 200 
msec later, only the one appropriate to the context is still 
active. A cornerstone of our model is parallel access of all 
meanings followed by an interaction of these meanings 
with the context of the rest of the sentence. This will result 
in only one meaning remaining highly active. 

Connectionist Models 

We have in mind a particular new approach to the 
study of natural language comprehension. These are the 
massively parallel models of the sort currently under 
development by Feldman and Ballard [7], which they call 
connectionist models. 

The basic element of the connectionist model is the 
computing unit. A unit is characterized by a continuous 
valued potential (or confidence) between -1 and 1, a vector 
of inputs, a small set of states, and a single output, which is 
an arbitrary (preferably simple) function of the inputs. 
Thus the firing of a unit may be based on logical 
combinations of input values. The connection pattern is 
prewired; only the weights on connections may change. 
Connections may be inhibitory or excitatory, giving the 
model much flexibility. A coalition of connected units 
which are mutually reinforcing corresponds to a percept; a 
stable coalition is one in which the overall excitation 
exceeds the overall inhibition. The fundamental premise of 
the connectionist framework is that individual units do not 
transmit large amounts of symbolic information, but 
compute by being appropriately connected to large 
numbers of similar units. 

The technique used to encode information in the 
network is called the unit/value principle. That is, a unit 
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represents a value of a parameter. A unit receives input, 
from other units which provide positive or negative 
“evidence” for the value the unit represents. If it gets 
enough positive input, it will “fire.” The output is a 
confidence measure which is transmitted to all connected 
units. 

We posit an exploded case representation; that is, we use a 
large number of case roles that are more specific than 
AGENT, OBJECT, etc., but fall into those classes. These 
nodes thus represent some typing information ‘on case 
roles for predicates. A predicate at the word sense level 
excites its case nodes at this level, with a sequencing 
mechanism increasing the activitv of unfilled case nodes as 

Connectionist Parsing others are filled (this setting ;p expectations). 

We propose a three-level network to represent the 
parsing system, shown in Figure 1. 

One central goal of our research is to construct an 
experimentally testable theory of the organization of these 
levels. In general, the design principles of these spreading 
activation networks must evolve through the data of 
psychological experimentation and computational 
simulation. We acknowledge that the networks illustrated 
in the next section are at an early stage in this evolution. 

A Simple Example Analysis 

/“jT. 
input from phoneme 
perception network 

Let us now work through the analysis of an example 
sentence, showing how the final interpretation comes to be 
decided upon despite a sequence of (wrong) intermediate 
hypotheses. Consider the following sentences: 

Figure 1. Proposed Parsing Network. 

We assume input to the lexical level comes from a word 
perception network such as that described in McClelland 
and Rumelhart [8]. Note that we do not have an explicit 
syntax level. Syntax information is embedded in every 
level of the network in various ways. An overview of the 
function of each level follows. More detail is given in [6]. 

The Lexical Level. This is the input level of our 
network. We do not try to account for phoneme effects at 
this stage of the research. The units at this level roughly 
represent morphemes, although we do not strictly follow 
the linguistic definition. Thus we represent hearing or 
reading a sentence such as “John loves Mary” by 
activating the “John,” “loves,” and “Mary” units 
sequentially, with a model-dependent delay between them. 

The Word Sense Level. Units on the lexical level are 
connected to units representing their different senses at 
this level. For example, “cart” at the lexical level is 
connected to WAGON (the noun sense) and 
TRANSPORT (the verb sense) at this level. We represent 
idioms by conjunctive connections; that is, “throw” and 
“up” would conjunctively connect to VOMIT--both would 
have to be active for the VOMIT node to become active. 
We conceive of this level as divided into three 
subnetworks, the noun phrase or “object reference” 
network, the predicate or “relational” network, and the 
function word network. We separate the first two for 
reasons given in [2], and because they play a separate role 
in connecting to the case logic level. The third subnetwork 
arises from the role of function words as linguistic 
operators, and the (controversial) evidence that particular 
lesions may impede their use. 

The Case Logic Level. This level expresses the possible 
relationships (bindings) between predicates and objects. 

(a) “A man threw up a ball.” 

(b) “A man threw up dinner.” 

We shall illustrate the analysis of sentence (a), while 
explicitly taking into consideration the possibility of 
interpretation (b) along the way. One thing that we shall 
not do in this section is to explain the role of context 
(other than intra-sentential) in the process; while the 
existing state of the connection network has activity 
corresponding to the analyses of previous perceptual 
inputs (including language), that will not come into play in 
this example. 

As the phrase “a man” is heard, the appropriate 
processing units become activated at the lexical level, 
causing the activation of unit SOMEMAN at the word 
sense level. Note that activation does not only flow from 
lower levels up, but that feedback activation flows down as 
well, forming a stable coalition among the units for “a”, 
“man”, and SOMEMAN. In addition, there is inhibition 
between SOMEMAN and SOMEWOMAN, representing 
the notion that a person cannot be both. 

Next, driven from below, the lexical unit for “threw” 
becomes active, exciting the units on the word sense level 
that represent its possible meanings. This includes the unit 
PROPEL in the predicate subnetwork, as shown in Figure 
2. The VOMIT node is not yet active, since both “threw” 
and “up” must be active for VOMIT to exceed threshold. 

Activation then spreads from the PROPEL unit to units 
that represent the conceptual cases of PROPEL, which we 
call PROPELAGT, PROPELOBJ, PROPELFROM, and 
PROPELTO, and in particular, a stable coalition forms 
including PROPEL, PROPELAGT, SOMEMAN, “man,” 
and “threw.” We ignore in this example the kinds of 
connections and auxiliary units required to make this 
work. Assume for the moment that we have managed to 
build the connection network in such a way that it 
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Connections are two-way. A o indicates 
an inhibitory connection. The + signs 
indicate relative levels of activation. 

Figure 2. Network Activation after “A man threw”. 

manifests the desired stable coalition of activity. 

The next piece of input forces the connection network 
to adjust to activity that has an inhibitory effect on the 
existing stable coalition. The activity of the node “up” 
causes the VOMIT and UP1 units to become active. The 
units of the model must readjust their potentials in the 
face of this new data--the continuous output values of the 
affected units cause a decrease in the confidence of 
PROPEI. and an increase in that for VOMIT. Since the 
phrase “threw up” most usually denotes vomiting, the 
VOMIT unit has a higher activation at this stage than does 
the one for PROPEI~ (see Figure 3). As before, associated 
case units VOMITAGT and VOMITOBJ also become 
active, and a new stable coalition dominates the local (i.e., 
language processing) network behavior. 

Finally, the listener perceives the phrase “a ball”, 
which reinforces the object case node PROPEL,OBJ and 
inhibits the analogous VOMITOBJ, resulting in a correct 

interpretation of the example sentence. This activity takes 
place through the SOMEBAL,l, node, which inhibits 
VOMITOBJ and excites PROPEL,OBJ. PROPEL thus gets 
more top-down reinforcement from its filled case nodes 
than VOMIT does. If the word “dinner” had been heard 
instead, this same behavior, mediated this time by the 
FOOD word sense node, would have excited the 
VOMlT0B.J case node and led to the other interpretation. 

conc1usi011 

We have constructed a simulator for connection 
networks and early results have guided the design 
presented here. We are building a network containing 20- 
30 polysemic words; our current goal involves making it 
respond appropriately to different combinations of them. 
We expect this to lead to the development of rules for 
generating connection patterns upon the introduction of 
new words into the network. Future research will 

‘l’he nodes for fhrew and up are 
connected to the VOMIT node 
by a conjunctive connection. 

Figure 3. Network Activation after “A man threw up”. 
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Figure 4. Network Activation after “A man threw up a ball”. 

investigate the problems of reference, focus of attention, 
word sense induction, and the structure of higher-level 
networks involving long-term storage. 
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