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Abstract‘ 
The power law of practice states that performance on a task 

improves as a power-law function of the number of times the task 
has been performed. In this article we describe recent work on a 
model of this effect. The model, called the chunking theory of 

/earning, is based on the notion of chunhing. A limited version of 
this model has been implemented within the XapsP production 
system architecture. When it is applied to a 1023choice 
reaction-time task (encoded as a set of productions), task 
performance is improved (measured in terms of the number of 
production system cycles). Moreover, the practice curves are 
power law in form. 

I. Introduction 
Learning has long been a major topic in Artificial Intelligence. 

These efforts, however, have primarily focussed on the early 
stages of learning; that is, on how an initial correct method is 
learned. Once such a method is acquired. learning stops. With 
people at least, it is clear that practice continues to improve 
performance long after the task can be completed “perfectly”. 

The general rule for these improvements is that the time to 
perform a task decreases as a power-law function of the number 
of times the task has been performed: T = BNsa. This basic law 
__ known as the power law of practice or the log-log linear 
learning law** -- has been known since Snoddy (1926) [7]. It has 
recently become clear that it holds over the full range of human 
tasks [4]. 

The ubiquity of the power law of practice argues for the 
presence of a single common underlying mechanism. The 
chunking theory of learning [4] proposes that chunking [2] -- a 
concept already implicated in many aspects of human behavior 
_- is this common mechanism [l]. Currently, the chunking theory 
of learning is only a macro theory; it postulates the general 
character of a learning mechanism, and predicts the general 
course of learning. This paper reports on recent efforts to fill in 
the micro-structure of this model. The approach we take is to 
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. . 
Power laws plot as straight lines on log-log paper: 

log(T) = log(B) + (-a)log(fV). 

implement a production-system model [3] of the chunking theory 
in the context of a specific task -- a 1023choice reaction-time 
task [6]*. This type of task may seem somewhat trivial (and 
foreign) to Al researchers, but it is well within the mainstream of 
psychological tasks. It has a rich, yet straightforward, underlying 
structure in which the application of chunking can be 
investigated, with results extrapolatable to more complex tasks. 

II. The Chunking Theory of Learning 
Informally, the chunking theory of learning proposes that task 

performance is based on knowledge of patterns that occur in the 
task, while practice consists of the acquisition of these patterns 
from tasks already performed. The theory thus starts from the 
chunking hypothesis: 

A human acquires and organizes knowledge of the 
environment by ,,,forming and storing expressions, 
called chunks, which are structured collections of the 
chunks existing at the time of learning. 

The existence of chunks implies that memory is hierarchically 
structured as a lattice (tangled hierarchy, acyclic directed graph, 
etc.). A given chunk can be accessed in a top-down fashion, by 
decoding a chunk of which it is a part, or in a bottom-up fashion, 
by encoding from the parts of the chunk. Encoding is a 
recognition or parsing process. 

This hypothesis is converted into a performance model by 
adding an assumption relating the presence of chunks to task 
performance. A 

Performance Assumption: The performance program 
of the system is coded in terms of high-level chunks, 
with the time to process a chunk being less than the 
time to process its constituent chunks. 

This assumption reveals that chunks are effective because they 
assist in overcoming a bottleneck. This places a strong 
constraint on the architecture within which chunking is 
implemented. There must be a bottleneck (perhaps a serial one), 
and there must be a parallel component. 

The performance assumption implies that performance can be 
improved by acquiring higher-level chunks. A second 
assumption is needed to tie down this acquisition process: 

Learning Assumption: Chunks are learned at a 
constant rate on average from the relevant patterns of 
stimuli and responses that occur in the specific 
environments experienced. 

*Rosenbloom and Newell [5] will contain a more complete description of this 

work. 
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The final assumption made by the chunking theory of learning 
ties performance to the structure of the task environment. 

Task Structure Assumption: The probability of 
recurrence of an environmental pattern decreases as 
the pattern size increases. 

This assumption is trivially true for the typical combinatorial task 
environment, composed of a set of objects that can vary along a 
set of dimensions. As the pattern size grows (in terms of the 
number of dimensions specified), the number of possibilities 
grows exponentially. Any particular large pattern will therefore 
be experienced less often than any particular small pattern. 

III. The Task 
The task that we employ is Seibel’s 1023-choice reaction-time 

task [6]. The environment for this task consists of a roughly 
linear (horizontally) stimulus array of ten lights, and a response 
array of ten buttons (in a highly compatible one-one 
correspondence with the lights). On each trial, some of the lights 
are On, and some are Off. The subject’s task is to respond by 
pressing the buttons corresponding to the lights that are On. Ten 
lights. with two possible states for each light, yields 2” or 1024 
possibilities (a combinatorial task environment). The 
configuration with no lights on was not used, leaving 1023 
choices. This task has been shdwn to produce power-law 
practice curves over more than 75,000 trials (Figure 1) [6]. 

There has been no attempt to model method acquisition in this 
task, so the model must be initialized with a method for its 
performance. The control structure of this method can be 
summarized by the following algorithm. 
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Figure 1: Data for 76,725 trials [6] 

initially the patterns refer to individual lights and buttons. With 
chunking, the scope of these patterns increase to include 
multiple lights and buttons. These chunks decrease 

performance time by allowing more to be done within each 
iteration of the While loop (the serial bottleneck). The 
production system architecture facilitates this by allowing a 
degree of parallelism within each iteration. 

IV. The Model 
A complete specification of the model must include a 

description of both the production system architecture (including 
the representation and acquisition of chunks) and the 
performance model for the task as implemented within the 
architecture. 

The production system architecture (Xaps2) combines both 
symbolic and activation based concepts in a highly parallel 
control structure. Working memory consists of a set of symbolic 
objects, each with a type, a name, and an optional set of 
attribute-value pairs. Each component of an object has an 
associated actrvation value (in [-1, 11). The activation values are 
used as a focus of attention mechanism (a form of conflict 
resolution). Positive, negative, and zero activation correspond to 
active, inhibited, and unattended respectively. On every cycle of 
the system, every production that is successfully matched to 
working memory fires its “best” instantiation, as computed from 
the activations of the working memory elements matched. The 
effects of these productlon firings are weighted by the activations 
of those working memory elements and merged together. 
Working memory is then modified according to this unified 
specification, yietding the working memory for the next cycle. 
Productions are free to execute repeatedly on successive cycles, 
because there is no refractory conflict resolution. 

The performance model for Seibel’s task is implemented within 
this architecture by representing both goals and patterns as 
objects in working memory. There are five goals in the control 
structure: (1) do the task; (2) do one trial of the task; (3) process 
one pattern; (4) Find the next stimulus pattern; and (5) execute a 
response pattern. The While loop is implemented by repeating 
goal (3) until there are no more lights to be processed. This 
yields a serial bottleneck at the level of strategic (goal oriented) 
processing because only one instance of each goal can be 
actively processed at any instant of time (recall that only the best 
instantiation of each production is fired on each cycle). 

Chunks describe how stimulus and response patterns are built 
up to higher-level patterns (with the primitive patterns defined by 
the interfaces to the perceptual and motor systems). These 
patterns are represented by working memory objects. The object 
describes the location of the pattern (in the stimulus or response 
field) and the configuration and type of its subparts. A chunk 
consists of three components: (1) an encoding production; (2) a 
mapping production; and (3) a decoding production. Encoding 
productions combine pairs of stimulus patterns (represented in 
working memory) into higher-level stimulus patterns. These 
productions are totally data-driven, firing in parallel. Goal (4) 
selects the next stimulus pattern by the location and activation 
(which is higher for larger, more well matched patterns) of these 
patterns. Goal (4) returns this pattern to goal (3) where the 
mapping production converts it into a response pattern. This 
response pattern is then passed to goal (5) where it is decoded 
and executed. The decoding productions are the inverse of the 
encoding productions, except that they work on response 
patterns rather than stimulus patterns. The parallel nature of the 
productions, combined with the hierarchical structure of chunks 
yields logarithmic encoding and decoding processes. This is the 
sublinear component of the architecture. 



In this model, learning consists solely of the acquisition of new 
chunks. This acquisition is automatic, and not under control of 
productions. Instead, there is an architectural component which 
monitors the selection and use of patterns by the performance 
system. Whenever it finds two successively fixated patterns 
(within a single trial), it combines them into a new chunk by 
creating the three productions that process the new pattern. 
This learning process occurs at nearly a constant rate. 

V. Results 
The main experimentation consisted of the sequence of 

attempts at .building a working model and their occasional 
debugging runs. The final version of the model has been run 
successfully on a sequence of nine trials for the left hand (five 
lights only). 

The model is too expensive to run it on a large number of trials, 
so a faster meta-model was implemented. The meta-model 
simulates the chunks that would be created by the model and the 
patterns that would be used during performance. It uses this 
information to estimate the number of cycles that the production 
system model would require. This estimate is based on a 
constant 13 cycles per trial, plus 31 cycles for every pattern used 
(derived from the model’s execution of the nine-trial sequence). 

Figure 2 shows a simulated practice curve for 72,633 trials. 
The linearity of this curve in the log-log coordinates in which it is 
plotted reveals its power-law nature. The model assumes that a 
chunk is learned whenever possible -- resulting in rapid learning. 
Within log,(lO) (between three and four) iterations through the 
task environment (at 1023 trials per iteration), the complete task 
environment should be learned perfectly. This problem was 
ameliorated in this simulation by assuming that a chunk is 
learned with a fixed probability of 0.01 when the opportunity to 
learn is there. 

- T = 233/1(‘.‘~ 
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Figure 2: A Simulation of 72,633 trials (Meta-Model) 

VI. Conclusion 
In this paper we have briefly outlined the second step in the 

development of the chunking theory of learning. By filling in 
missing details, and implementing the theory within the 
performance model of a reaction-time task, we have shown that 
the process of chunking can form the basis of the performance 

improvements that occur with practice. The model is built out of 
a production-system architecture, the chunking mechanism, and 
a task model consisting of a set of productions structured as a 
goal hierarchy. The results from this simulation verify that 
learning by chunking produces a practice curve that falls within 
the same power-law family as the curves of human subjects. 
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