
Route Finding in Street Maps by Computers and People 

R. J. Elliott 

M. E. Lesk 

Bell Laboratories 
Murray Hill, New Jersey 07974 

Abstract 

We wrote a computer program which gives driving directions in 
northern New Jersey. Its data base combines a street map and a tele- 
phone book, so requests like “give directions from the Lackawanna 
Diner to the nearest dry cleaner’* (properly specified) can be 
answered. 

This problem involves both human factors and algorithmic 
problems. From the human factors standpoint, what kind of route is 
best: shortest distance, most concise directions, fewest turns, or some 
combination of these? And from the algorithmic standard, what is a 
good shortest-path algorithm: breadth-first search, depth-first search, 
pre-storing important routes, divide and conquer, or keep a hierarchy 
of maps with progressively fewer streets? 

We implemented breadth-first and depth-first search both 
single-ended and double-ended. Double-ended search was faster in 
14 of 16 examples and produced shorter or equal length routes in 13 
of 16. Depth-first search was always faster than breadth-first, and 
produced shorter routes half the time. 

We also asked eight subjects for directions on 4 maps. The 32 
tries at 4 problems produced 22 different routes. People’s strategies 
typically include finding main roads, and applying divide-and- 
conquer as well as depth-first search. But it is difficult to character- 
ize the experimental subjects, since different problems caused them 
to try different search algorithms. 

Figure 1. 

Downtown Chatham, NJ 

Introduction. 

British studies show that 4% of all driving is wasted, done by 
people who are either completely lost or just not following the best 
r0ute.l Experimentation with routefinding is both a practical and an 
interesting heuristic problem. We have a street map of Morris and 
Essex counties in New Jersey,2 a telephone book covering parts of 
the area, and a program to give driving directions. A sample map of 
Chatham, NJ is shown in Figure I; a map of part of Madison, NJ 
including some business names is shown in Figure 2. We can find 
routes between two places where the starting place is identified as: 
(a) a street number and name; (b) the intersection of two streets; or 
(c) the name of a business listed in our Yellow Pages with an identif- 
iable address; and the ending place is identified in any of these ways 
or as (d) “nearest X” where X is the name of a Yellow Pages 
category. Directions can be printed, or a map showing the route 
drawn. The large and accurate data base eliminates the need to han- 
dle “fuzzy” positions as considered by McDermott3 but instead forces 
us to worry about the implementation of the routefinder. 

At first, we actually found the shortest route. However, people 
shown minimum-distance routes often recoiled in horror; they had 
far too many turns. In our area, on a trip of any length, the pro- 
gram would usually make turns at least every mile, having found 
some way to save a few yards. We introduced a criterion that each 
right turn cost l/8 mile and each left turn cost 114 mile. With these 
extra penalties, minimum-distance routes look reasonable to users. 

Figure 2. 

Downtown Madison, NJ 

258 

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved. 



Some sample routes, with drawn maps, are shown in Figures 3 
and 4. In Figure 4, note that the program has gone an extra block 
NW on South Street in order to avoid making the double turn on 
Maple St, which saves less than the 3/8 mile it would be charged. In 
addition to handling distance minimization, the program also has 
facilities for handling one-way streets and limited access highways. 
We are currently extending the cost algorithm to include assumption 
of different rates of speed on different streets. 

Computer algorithms. 

Mathematically, this problem is familiar as the shortest-path 
prob]ems4,5v6J+8,9 1 n the substantial literature, a nondirectional 
breadth-first search is normally recommended. The reason is that 
most of the mathematicians are trying to minimize the worst-case 
time, and the worst case includes non-planar graphs with short edges 
between random points in the graph. In such a case, there is not 
much advantage to “directional” searching, even when directions can 
be defined. Furthermore, many of the graphs being used in these 
papers have few nodes and many edges. 

Our graphs, however, are quite different. Street maps are 
nearly always planar (some parts of San Francisco being exceptions), 
and have Euclidean distances and other nice properties like triangle 
inequalities. More important, there are a great many nodes while 
edges are sparse. In our Morris and Essex street map, there are 
40,000 nodes and 65,000 edges; of these 39,000 nodes and 51,000 
edges involve streets (rather than rivers, town boundaries, railroads 
and the like). (To compare with something more familiar to people, 
Manhattan has 5000 nodes and 8000 edges; 4000 nodes and 7000 
edges involve streets.) As a result, algorithms which touch almost 
every street node are too slow in our case. Even considering all the 
street nodes that lie in between the source and destination would 
prevent rapid response. (Although we retain the railroad and river 
information so that important landmarks are presented in directions 
or on drawn maps, they are not searched in route-finding). 

We have compared the basic breadth-first and depth-first 
search algorithms, using both double-ended and single-ended search- 
ing. In breadth-first search, we do not spread out omnidirectionally; 
instead the search is biased in the right direction by penalizing points 
based on their distance from the destination. In depth-first search. 
we follow streets as long as the distance on this street is decreasing. 
The single-ended searches go from the starting point to the destina- 
tion; the double-ended searches advance from both points until a 
meeting point in the middle is found. 

Table 1 shows the rough results, averaged over ten trips in 
New Jersey and California. 

Table 1. 

Computer Routing 

Method Single-end Double-end 
Nodes Distance Nodes Distance 

Touched (miles) Touched (miles) 

Breadth-first 904 7.65 784 7.66 

Depth-first 509 8.55 450 7.88 

As can be seen, depth first search touches substantially fewer nodes 
(which means that it runs on average 45% faster) and yet finds, in 
the two-way case, almost as good routes. Double-ended searching is 
better than single-ended for either algorithm. 

Other algorithms that might be considered: (a) Divide and con- 
quer. It is faster to find a route from A to B and then from B to C 
than to find a route from A to C. Thus, a strategy of identifying 
points likely to be in the middle of a route would substantially sim- 
plify searching. Divide and conquer would also be effective at deal- 
ing with obstacles, such as rivers or railroads. Unfortunately the 
obvious algorithm for picking intermediate points (identifying street 

’ hainfield AG $ iamond Hill Rd 

Figure 3. 

Route from Lawrence Drive, Berkeley 

Heights, to Hall Road, Chatham 

Figure 4. 

Route from the Lackawana Diner to Oak St. 

and MacCulloch Avenue, Morristown. 

259 



Junctions roughly midway between the endpoints) is horrible on rec- 
tangular street grids; it would follow a staircase with many turns. 
(b) Pre-stored routes. In familiar areas, it is clear that people 
remember particular trips and find new routes by relating them to 
existing trips. Although such an “expert” system could probably be 
built it seems unnecessary, since people can find routes in areas 
they’ve never seen before. (c) Hierarchical search. This is probably 
the right answer: first go to important streets, then travel on a back- 
bone map of important streets until you get to the destination, and 
then stop. As will be seen, this shares many elements with what 
people do, and is reasonably compatible with computer requirements. 

Human algorithms. 

Since the mathematical literature was not enough to solve the 
problem, we tried looking at what people do. Two experiments were 
run; in a preliminary task 15 staff members were presented with an 
unfamiliar routing problem; then in a more systematic protocol 8 
staff members each got the same 4 problems. All problems were in 
unfamiliar areas (Pasadena, Dallas, San Mateo, and England). As 
mentioned, people varied quite widely in the routes they selected. 
The subjects were not specifically urged to find either the shortest or 
the fastest or the simplest route, but to do whatever they would do 
normally if asked for information. Table 2 shows some statistics on 
human route finding. 

Problem 

Pasadena 

Dallas 

San Mateo 

England 

Table 2 

Variations in Human Solutions 

No. solutions 
(8 subjects) 

6 

8 

4 

4 

Route lengths 
(miles) 

4.2-6.2 

7.8-9.6 

3.5-4.5 

18.5-20.6 

Solution times 
(seconds) 

30-432 

32-183 

32-l 17 

17-73 

The total time taken by the subjects to solve all four route problems 
ranged from 133 seconds to 678 seconds, with a mean of 302 
seconds. 

In general, the longer routes represent greater use of high- 
speed roads, even if not going in the same direction. We riote that in 
Dallas, where using Interstate 35 added 18% to the trip length, two 
people used it. In Pasadena, two people used the Foothills Freeway, 
with a cost of 23%. In San Mateo, the Bayshore Freeway could have 
been used at an added trip cost of 27%; no one did so. 

The typical strategy was: first scan quickly for important roads 
going in the right direction. Then do depth first search, single 
ended, going to and along the important roads. This combines 
divide-and-conquer and depth-first search on the sub-problems. The 
first part of the procedure resembles the use of intermediate goals by 
Kuipers’ subjects.lO In general a “first-hit” strategy was used: as 
soon as one route was found people reported success. In 4 cases of 
the 32, though, people tried again and found a second route. People 
seem to have some sense of how long a trip “ought” to take, and 
they search longer, back-up, or use more breadth-first searching 
when they think they have found an unacceptable result. Two people 
did one double-ended search. Breadth-first search was used in com- 
plex cases to find the way to the expressway. Typically, about half 
the time used in finding a route was spent looking for major roads 
and otherwise in “planning;” the other half was spent tracing out the 
route. 

The printing on the map affects the route. People depend on 
color and presentation, not labels, to find main streets. The English 
map was condemned as unfamiliar (and one person tried at first to 
go along a railway). The American street maps (all Rand McNally 
or Gousha) were criticized as not indicating expressway entrances 
clearly enough. People always began searching at the starting point. 
Thus, if the starting point was on a main road, people would always 
go along it first. A destination near a main road was less likely to 
cause people to use that road. 

On the Pasadena trip, the average human took 98 seconds to 
find a route 5.4 miles long, requiring 3.3 turns (even excluding one 
particularly slow human, the remaining seven subjects took an aver- 
age of 56 seconds). The computer, using two-ended depth-first 

search, took 12 seconds of VAX 111750 CPU time to find a route 4.2 
miles long, requiring 3 turns. Figures 5 and 6 show some human 
and computer routes, respectively. Thus, in this example (represent- 
ing people unfamiliar with an area), using computer routing produces 
a saving of 24% in gasoline and 10% in the chance of getting lost. 
However, we should note that a human expert (someone who went to 
graduate school in Pasadena) took 24 seconds to find a route of 4.5 
miles involving 3 turns; and a human grandmaster (born and brought 
up in Pasadena) found a similar trip without even looking at a map. 

Figure 5. 

Human routes in Pasadena. 

Routes 1 and 2 were each followed by two subjects; 
routes 3 through 6 were each chosen by one subject. 

260 



Conclusions. 

On one level, we have a route-finding program. Depth-first 
search seems to be most effective. Work continues on smoothing out 
the interface so a greater variety of requests can be handled (e.g. 
giving synonyms for category names) and speeding up the routing. 
But on another level, note that in this practical problem, an almost 
exact mathematical analogy turns out to have mostly unproductive 
literature solutions. Since these solutions are valuable in other kinds 
of shortest path problems, it emphasizes the importance of the prob- 
lem domain in picking algorithms. 

References 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Computetworld, p. 7 (Dec. 22, 1980). 

Geographic Base File GBFIDIME. 1980: Technical Documenta- 
tion, U. S. Department of Commerce, Data Users Services 
Division, Washington, D. C. (1980). 

D. McDermott, “A Theory of Metric Spatial Inference,” Proc. 
First National Al Conference, Stanford, California, pp. 246248 
(1980). 

R. W. Floyd, “Algorithm 97: Shortest Path,” Comm. Assoc. 
Comp. Mach. 5, p. 345 (1962). 

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and 
Analysis of Computer Algorithms, Addison-Wesley, Reading, 
Mass. (1974). pages 207-209 

D. B. Johnson, “Efficient Algorithms for Shortest Paths in 
Sparse Networks,” J. Assoc. Comp. Mach. 24(l), pp. I-13 
(1977). 

C. Witzgall, J. F. Gilsinn, and D. R. Shier, ‘Shortest paths in 
networks,” pp. 171-255 in Case Studies in Mathematical Model- 
ing, ed. W. E. Boyce, Pitman, Boston (1981). 

S. E. Dreyfus, “An Appraisal of Some Shortest-Path Algo- 
rithms,” Operations Research 17(3), pp. 395-412 (May-June 
1969). 

R. E. Tarjan, “Fast Algorithms for Solving Path Problems,” J. 
Assoc. Comp. Mach. 28(3), pp. 594-614 (1981). 

B. Kuipers, “Modeling Spatial Knowledge,” Cog. Sri. 2(2), 
pp. 129-153 (1978). 

Route I: Depth-first search. 
Route 2: Breadth-first search 

Figure 6. 

Computer routes in Pasadena. 

(3.9 miles). 

261 


