
Diagnosis Using Ilierarchical Design Models

Michael R. Genesereth
Stanford University

Stan ford, California 94305

Abstract: This paper presents a new algorithm for the
diagnosis of computer hardware faults. The ?l(yorithrn
uses a general inference procedure to compute &spect
components and generate discriminatory tests from
information about the design of the device being
diagnosed. In the current implementation this
procedure is linear-input resolution, guided by explicit
meta-level control rules. The algorithm exploits the
hierarchy inherent in most computer system designs to
diagnose systems a level at a time. In this way the
number of parts under consideration at any one time is
kept small, and the cost of test generation remains
manageable.

1. Introduction

Being physical devices, computer components are
subject to failure; and, given current design practices,
the hilure of one component can lead to the
malfunction of an entire computer system. This paper
describes an automated diagnostician for computer
hardware faults. ‘T’he program accepts a statement of a
system malfunction iii a formal language, suggests tests
and accepts the results, and ultinlatcly pinpoinLs the
components responsible for the failure. In recognition
of its jntendcd role as an assistant for humam field
engineers, the program is called DAI<‘I‘ for 1)iagnostic -
\ssistance Reference 1001.

The DAILEY program was developed in the context of
moderately successful work on medical diagnosis, as
excmplificcl by such programs as CASNI-X [Weiss,
Kulikowski], IN'I IIRNIS'l [I’ople 1975] [I’ople 19771, and
MYCIN [Shortliffe]. However, there’s a difference. The
medical diagnosis programs all utilize “rules” that
associate symptoms with possible diseases. The DAKI’
program contains no information aboilt how computers
fail. Instead, it works directly from i!lformation about
itl/etldt’d structure (a machine’s parts and their
interconnections) and c,~,~cclcd behavior (equations.
rules, or procedures that rclnte inputs :md outputs).

An important advantage of this approach is that it
greatly simplifies the task of building diagrloslicians for
new device?. Jf a designer uses a modern computer-
aided design system, then when he is done his design
will be online. The structural and behavioral
information in this model can then be passed as data to
This work was done with the cuppori ant! collaboration of the palo
Alto Scientific Ccntcr and the Ficltl hginccrq IXvision of IfM.

the DAIU program to diagnose its faults. Similarly, the
design information could be passed to a program to
generate manufacturing instructions and to anotller
program to generate testing codes.

The idea of using design information in automated
diagnosis is hardly a new one. Over [he years a number
of test generation algorithms have been proposed, the
moyt well-knowr: of which is the d-algorithm [Roth et
al]. Lts primary disadvantage is its runtimc. While the
cost of executing a test is usually small s:nd the number
of tests needed to pinpoint a fault is at worst linear in
the number of components [Gocl], the cost of generating
appropriate tests grows polynomially or exponend:~lly.
(In fact, the problem is NP-complete [Sahni and Ibarra].)
Since the d-algorithm works only at the gntc level, it is
impractical for circuits the size of current COtilpLilCr
systems.

The D/\KI’ program meets this difficulty by exploiting
the hierarchy inhcrcnt in most computer system designs.
(See lignre 1.) The program first diagl:oscs the system
at a high level of abstraction to cletelmille the major
sabcomponcnt in which the fault, lies (e.g. the acicli:r A :).
It Llicrl focusses its atlcntion on the next lower level (e.g.
finding the full-adder F2) and then repeals until it can
identify a replaceable part (e.g. the xor gate ~3). In this
way, the number of components under cor!sidcration at
any one time is kept small, and the cost of test
generation remains manageable.

Within each level DAII’~ LECS a dcductivc prccedure to
coniptitc suspects and gcncrate tests. AlI !~)‘I?l~~tOfnS are
expressed as violations of expected bch:llV,ior. star-t i r1g
with a symptom of this sort, DART rcasoris backwards
from the expected behavior to discover why it was
expected and in so doing produces a justification for its
conclusions. Since the expected behavior was not
observed, all of the parts mentioned in this .justification
are suspect. The next step is to gcncratc a test to
discriminate amung thcsc suspects. D/II<I’ starts with a
behavioral rttlc for one of the suspects and works
fijrward to observable outputs altld backward5 to
modifiable inpuLs. The result of this step is an
expectation for certain outputs whcrl certain inputs are
applied. If &he o~~tputs do not have the values expcctcd,
then 011~ of the parts mentioned in th: derivation of the
test must be broken.

Section 2 presents a simplified version of the design
description language used by DAI<Y, and section 3

278

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

describes the diagnostic procedure itself. Note that,
although the examples in this paper are all time-
independent, the language is eq~laliy versatile at
describing time-dependent behavior, and the DAK’L’
algorithm generalizes as well. Section 4 offers an
analysis of the completeness and efticiency of the
algorithm anti pinpoints some of its shortcomings. The
conclLlsion discLlsses the state of implementation and
testing and sLmmarizes the key points of the paper.
This paper is an abridged version of an earlier paper
[Genesereth].

D74

I 1

Ml
- D r

A 11 Al
G

B I M2 -‘E

C I A2
H

F -
M3

Al

r

F4 F3 F2 . Fl

I I I

2. Design

F2 --

Figure 1 - A Hierarchical Design

Models

The DART procedLlre expects as data a full description
of the strucLLlre and behavior of the circuit to be
diagnosed. This information must be in the form of
data base assertions in a design description 1angLlage
called SUIYII E. This language has the advantage of
being eqLlaliy expressive at all levels of description; and,
importantly, it is adeqLlate for encoding tests and
assumptions aboLlt the circuit, e.g. the single faLlit
assLmiption or nonintermiltency.

The syntax of Sufj’I’I_E is that same as that of predicate
calcut~~s, and the ~LIICS should be apparent alter a few
examples. The vocabulary is described in the fo!iowing
sections. Three syntactic conventions are used in this
paper to simplify the examples. IJpper cast itltters are
Llsed exclusively for constants, fLInctions, and rctations,
while lower case letters are Lrsed for variables. Prefis
universal quantifiers are dropped, and ail free variables

can bc assumed to be LmiverSaiiy quantified. I+3nally, fol
the sake of brevily underlining is used to denote
negation.

2.1 StructLlrai Vocabulary

The struct.LIrc of a device is specified by describing its
parts and their interconnections. ‘The strwturc of each
part can in turn be described Llntii one reaches one’s
“primitive” components (which are Llsualiy characterized
behaviorally).

Tn SUK~I.F~ each part is designated by an atomic name
(e.g. Al), The type of each part is deciarcd Losing type
relations. The following assertions declare the types of
the toplcvei components of the circuit in figure 1: MI, M2,

and M3 are multipliers; ~1 and ~2 are adders.

MULT(M1)
MULT(M2)
MULT(M3)
ADDER(A1)
ADDER(AZ)

Every device in SUIKIX has zero or more inputs and
outpL~ts, and these “ports” are designated Losing the
firnctions INi and OUTi. i-‘or cxampie, IN2(Ml) woLrlc1
designate the second input of MI, and ou-r2(FAN) would
designate the second outpLrt of FAN. lf a device has only
one input or oL\tput, the trailing digit is omitted.
Connections are made between the ports of devices.
The next 4 assertions specify the wiring diagram for D74.
For esample, the first assertion states that the output of
Ml is connected to the first inpLit of Al.

CONN(OUT(Ml), INl(A1))
CON~J(OUT(M2), IN2(Al))
CONN(OUr(M2), INl(A2))
CONN(OUT(M3), IN2(A2))

2.2 Behavioral Vocabulary

The behavior of a circuit can r~s~~aiiy be expressed in
terms of the signal values at the circllit’s inputs and
0Litputs. In SUITI‘I,II, the signal at an inpirt or oulpLlt at a
given time is specified by superscripting the inpLlt or
oL?tpLlt fLlnction and eqLlating it to its value. For
example, the first assertion below skates that at time I,
the second iripLlt of Al is 3. The second assertion states
ttl:ll the outplit of Ml is aiways 1.

IN2l(Al)=3
OUTt(M1)=l

The simplest form of behavioral specification is a set of
rules relating a circLlit’s inpLlts and outputs. For
eumpie, the behavior of an adder can bc captured by
the fdiowing rules. OK(p) is intended to m&m that p is
operational, i.c. not broken.

ADDER(r) A OK(r)
A INlt(r)=x A INZt(r)=y + OUTlt(r)=x+y

ADDER(r) A OK(r)
A INlt(r)=x A OUTlt(r)=z -+ IN2t(r)=z-x

ADDER(r) A OK(r)
A OUTlt(r)=z A IN2t(r)=y -+ INlt(r)=Z-y

279

As with structural information, behavioral descriptions
are frequently hierarchical, with signals being
characterized differently at one level of the structural
hierarchy than at another. Tn order for DART to
diagnose a circuit, it must have a formal statement of the
relationship between the signals at these different levels.
A good way of encoding this information is in the form
of propositions relating the inputs and outputs of a
device at one level with their counterparts at the next
lower level. For example, the followjng pi-opositions
capture the mapping between the integers manipulated
by an adder and the bits manipulated by its subparts.

INlt(Al) = INlt(F4)*8 + INlt(F3)*4
+ INlt(F2)*2 + INlt(Fl)*l

IN2t(Al) = IN2t(F4)*8 + IN2t(F3)‘4

+ IN2’(F2)“2 + IN2t(F1)*1
OIJTt(A1) = OUTlt(F4)*8 + OUTlt(F3)*4

+ OUT2t(F2)“2 + OUT2t(Fl)*l

Finally, there is a set of behavioral rules for
connections. The following proposition states that, if
two terminals are connected, they always bear the same
signal.

CONN(OUT(r) , I?l(s)) --+ OIJTt(r)=INt(s)

2.3 Fault Assumptions

Two assumptions that are important to the efficiency
and power of test generation procedures are the single
fault assumption and nonintermitlcncy. Nei thcr is
essential Ibr the operation of the DART algorithm.
Ho\+ever, by adding formal statements of these
assumptions to DAR~L”S global data base, one can get the
algorithm to take advantage of them,

The single fault assumption states that at most one
compone!it in a circuit is faulty. This idea can be
ti,rmalized by stating tint the non-funclionnlity of any
component implies the functionality of all t!~ rest. For
the top-level parts of the clcviie in figure 1, this would
lead to the following propositions.

OK(M11 + OK(B12) A OK(M3) A OK(A1) A OK(A2)

OK(M21 --, OK(M1) A OK(M3) A OK(A1) A OK(A2)
OK(M3) -+ OK(M1) A OK(M2) A OK(A1) A OK(A2)
OK(A1) --> OK(M1) A OK(M2) A OK(M3) A OK(A2)

OK(A2) + OK(Ml) A OK(M2) A OK(M3) A OK(A1)

The nonintermittency assumption states that all devices
behave consistently over time. This is patently false in
general, for it implies that no part can ever fail.
However, it is often a reasonable assumption to make for
the duration of a diagnosis, and it is essential in the
derivation of some powerful tests. The proposition
belob encodes the assumption formally. It states that, if
a device with sepcific inputs has a specific output at one
time, then given the same inputs it will have the same
output at any other time.

INIS(t-)=x A IN2S(r)=y A OUTS(r)=z

A INt(r-)=x A IN2t(r)=y -+ OUTt(r)=z

3. The DART Algorithm

The DART procedure begins with the design description
for the device under test and .a set of observed
symptoms. It produces as output the minimal set of
replaceable parts that will correct the error. Especially
uscfLl1 to the procedure are the assumptions that the
fault occurs within a single replaceable part and is not
intermittent. While neither assumption is logically
necessary, the performance of the algorithm degrades
without them.

Figure 2 presents an overall flowchart. The first step is
to diagnose the fault at the highest level in the structural
hierarchy. This may result in more than one part jf the
problem is not diagnosable at that level. If the
implicated parts are replaceable, the diagnosis is
complete. Otherwise, DART examines them at the next
lower level of detail.

Diagnose at Current

Level (see figure 3)

Figure 2 - Overall View of DART Algorithm

The algorithm treats each level of the hierarchy in the
same way. Figure 3 presents a’ flowchart for the
diagnostic component. The algorilhm first uses
information about the symptoms to compute a list of
suspect parts. *If this list contains only a single element,
the dmgnosls is complete. Otherwise, the next step is to
devise a test to discriminate the suspects. The test is
then executed, and the process repeats. If no fin-ther
discriminatory tests can be found, the problem is
undiagnosable and a list of the remaining suspects is
returned as value.

The workhorse of the DART algorithm is a general
inference procedure. In the current implementation this
procedure is linear-input resolution, guided by a set of
explicit meta-level control rules.

280

I

4 Compute Suspects
I

yes

no

lf

Generate Tests

Execute Test

Figure 3 - DAW Algorithm

3.1 Computing Suspects

1 Eat 1 Level

The goal of suspect computation is a proposition of the
following form, where each pi is a statement about the
StI-LlCtLlIX Of the CirCLiit, e.g. OK(A1) or CONid(OUT(Ml),
INl(A1)).

Pl v , . . v Pn - -

In generating suspects DAW starts with a symptom, i.e.
the negation of an expectation, and resolves it with the
rules in the device’s design model until it produces a
proposition of this form.

As an example, consider the circuit shown in figure 1.
Assume that for inputs A=l, B=l, and C=3 the device
produces 2 as the value of output G instead of the correct
result 4. Since G=4 and ADDER(Al), DART can conclude
(EL! v ~=3 v OK). The only way that E could be
true is if (~=l v & v OK(Ml)), and the only way that
E=l could be true is if (A=1 v c=3 v OK(A1)). Since the - -

inputs A, B, and c are known, the system can conclude
Ihe following suspect preposition.

OK(Pd1) v OK(M2) v OK(A11

One thing to note about this technique is that it is
equivalent to proving the expcctcd value and then
looking at the dependencies fc)r all propositions of the
form otq p) or CofW(x ,y).

Another thing to note is that suspect computaiion is not
simply a matter of tracing the circllit diagram backwards
from a faulty output. On the one hand, this can lead to
too many suspects. For example, if the outpul of a
multiplier is expected to bc zero because its second input
is zero, then in computing suspects for a nonzcro output,
it isn’t necessary to look at the predcccssors 01‘ the first
Input. On the other hand, simply tracing b:lckwards can
also lead to too few suspects. For example, it would rule
out the possibility that components elscwherc in the
circuit could have any bearing on the syrnplom and so
would make it impossible to diagnose short circuits.

3.2 Generating Tests

The goal of DAR’~“s test generation procedure is a
proposition of the following form, where each of the pi
is a modifiab!c input, each of the pi is an immediate
subcomponent of the device being diagnosed and o is an
observable output. In order to have discriminatory
power, the pi should not include all of the current
SLlspccts.

OK(p1) & . . & OK(pn) & 11 & . . . & In => 0

In generating tests, DAR?’ starts with a behavioral rule
for one of the suspects and generates conclusions using
the rules from the device’s .design model until a
proposition of the appropriate Folm is generated.

As an example, consider the generation of a test to
discriminate the suspects in lhe example introduced in
the last section. Starting with a rule for the multiplier
M2, L3AR’r is able to produce a test with the same inputs.

OK(M2) & OK(M3) & OK(A2) => I(=6

If B., then the fault must lie in one of M2, ~3, or ~2. ~3

and A2 are not mentioned in the previous suspect list;
and so, under a single fault assumption, they are
exonerated; and the fault must lie in M2. Jf t1=6, ~2 can
be exonerated by a little deduction. If 142 is responsible
i’or the erroneous value on output G, it must be because
its ouput is wrong. Therefore, if M3 and A2 are okay, H

must also be wrong. Since ~=6 as expected, ~2 must be
okay.

As another example consider the problem of
discriminating the remaining two suspects MI and AI.

D/~I<.I. reasons as follows. I f the fault lies in ~1, then AI

is ok: and, for G to be 2, D must be -I. Therefore, if E is
changed to 4, G must change to 3. If it doesn’t, then Al
is broken, and ~1 can be exonerated. (Note that, fa4
appears as predicted, this does not exonerate Al.) Next
the program figures out that, in order to get a 4 on ine E

281

wlthout drsturbmg the inputs to ~1, input c must be
changed to 4. As a proposition this test can be
represented as follows.

OK(A1) & A=1 & B=l & C=4 => G=3

In this case suppose that G changes to 5. This is correct
but not the predicted result. In light of the previous
symptom, it demonstrates that ni is faulty.

3.3 Control

Each of the steps in the DAIU algorithm uses the
resolution rule to derive new conclusions until
appropriate termination criteria are met. For example,
in generating tests DAIU begins with a behavioral rule
and draws conclusions using the facts from the circuit’s
design model. From these conclusions, it draws other
conclusions and so on until a “test” is derived.

If the resolution rule were applied without guidance, it
would produce numerous useless propositions. To
mitigate this problem, DART draws only those
conclusions in which at least one of the resolvents is an
assertion in the design model. No resolutions are
performed between conclusions and other conclusions.
This restriction is often called the “linear input strategy”
[Nilsson] and is very effective in preventing an
undesirable proliferation of useless conclusions.

DAR-~ orders its deductions by the size of the
conclusion relative to the sizes of the resolvents, with the
smallest being processed first. 4 special case of this
occurs when one of the resolvents is an atomic
proposition, in which case the conclusion has one fewer
disjuncts than the other rcsolvent. This is often called
the “unit preference strategy” [Nilsson].

DART also postpones the instantiation of variables as
long as possible. This is equivalent to the constraint
propagation technique used in the revised d-algorithm
and described more recently in the Al literature
[Sussman, Steele] [SLcfik].

4. Analysis of the Algorithm

The two key factors in analyzing a diagnostic procedure
are its diagnostic completeness and computational
efficiency.

4.1 Completeness

The DAR’I algorithm is almost complete in that it is can
generate most tests of this form; and a slight variant
(ancestry-filtered resolution), though computationally
more expensive, is guaranteed to generate every test.
Even so, due to the limited vocabulary at a given level of
description, the set of tests so defined is sometimes
inadequate to localize every fault.

likely to be exponential in the number of subparts
involved. In the worst case, the DART algorithm is no
better than any other procedure. However, for many
circuits the cost of diagnosis as a function of the number
of components is approximately the same at each level
of description; and, when this is the case, hierarchical
diagnosis leads to substantial computational savings.

Assuming that at each level the cost of diagnosis is some
function Fi and the number of gates is Ni, the overall
cost of hierarchical diagnosis can be expressed as
follows, where t-f is the number of levels.

su”M Fi(Ni)

i=l

The computational advantage of hierarchical diagnosis is
most apparent when the number of gates and the cost
function are constant from level to level. Then, for a
device of H levels, with N gates at each level, the cost of
non-hierarchical diagnosis is WH), whereas for
hierarchical diagnosis, the cost is only H:~F(N). This
saving is of special importance when the cost function F

is non-linear, but even in the best case of a linear cost,
the hierarchical approach still offers a logarithmic
ad vantage.

5. Conclusions

The DART algorithm has been implemented and tested
on a variety of examples. The implementation was done
in COMMON List’ [Steele and Fahlman] with the help of
a data base and inference system called MRS
[Genescreth, Greiner, Smith]. The examples include
simple circuits like the one in the introduction as well as
complex systems like the teleprocessing facility of the
IBM 4331. In all cases the algorithm was able to
generate appropriate tests and diagnose the underlying
fault. Running on a VAX-11/780, the time to diagnose
each case w?s on the order of minutes. While this is not
particularly good for small circuits, it could be improved
significantly by more efficient programming style. And,
importantly, the program is able to diagnose large
circuits without significant slowdown.

In summary, the key contributions of this research are
(1) its demonstration of the value of hierarchical design
models in diagnostic test generation and (2) the design
of the DAI<~ algorithm. DAKY utilizes the hierarchy
inherent in most computer systems to keep the number
of parts under consideration small and thereby reaps
substantial computational savings. Furthermore, since
the method works directly with design models, rules
associating symptoms with specific failures are
unnecessary. For these reasons, the algorithm appears to
be a promising way of coping with the increasing
complexity of modern computer system designs.

4.2 Efficiency

The problem of test generation has been shown to be
NP-complete [Ibarra and Sahni], and so in the worst case
the runtime of a complete test generation procedure is

282

References

J. S. Bennett and C. R. Hollandcr, Dart, Proceedings of the 7th
International Joint Conference on Artificial Intelligence, August
1981.

M. A. Brcuer, M. Abramovici: “Fault Diagnosis Based on Effect-
Cause Analysis”, 17th Design Automation Conference Proceedings,
June 1980.

M. R. Genesereth, R. Greinet, D. E. Smith: “MRS Manual”,
HPP-81-6, Stanford University Heuristic Programming Project,,
December 1981.

M. R. Genesercth, M. Grinberg, J. Lark”, HPP-81-11, Stanford
University Heuristic Programming Project, September 1981.

M. R. Genesereth: “The USC of ITierarchical Design Models in the
Automated Diagnosis of Computer IIardware Faults”, HPP-S l-20,
Stanford University Heuristic Programming Project, December
1981.

P. Gocl: “Test Generation Cost Analysis and Projections”, 17th
Design Automation Conference Proceedings, June 1980.

0. H. Ibarra and S. Sahni: “Polynomially Complete Fault
Detection Problems”, IEEE Trans. on Computers, Vol C-24 No 3,
March 1976, pp 242-250.

N. Nilsson: Princiyles of Artt$cial Itllelli~ence, Tioga Press, 1980.

H. Pople: “7’hc Dialog Model of Diagnos.tic T>ogic and Its Use in
lntcrnal Medicine”, Proceedings of the Fourth International Joint
Conference on Arti!icial Intelligence, 1975.

H. Pople: ” The Formation of Composite Hypotheses in
Diagnostic Problem Solving - An Exercise in Synthetic
Reasoning”, Proceedings of the Fifth international Joint
Conference on Artificial Intclligcncc, 1977, pp 1030-1037.

J. A. Robinson: “A Machine-Oriented L ogic Based on the
Resolution Principle”, Journal of the Association for Computing
Machinery, Val. 12 No. 1, 1965, pp 23-41.

J. P. Roth, W. G. Bouricius, P. R. Schneider: “Programmed
Algorithm to COI?ipUtC ‘I’csts to I)ctcct and IXstinguisli l:aults in
I.ogic Circuits”, 1111X ‘I’ra!lsactions on tllcctronic Computers, Vol
t:C-16 No 5. October 1967.

E. Shortiiffe: AIYCIN: Compuler-Based Medical Consullation,
American Elscvicr. 1976.

G. J. Sussman, G. I,. Steele: “Constraints - A Language for
llxpressing Altllost-I-Iicrarchical Descriptions” Arlif;cid itilelligettce
Vol 14, 1980, pp l-39.

G. I,. Steele, S. 1’. Fahlman: “COMMON I&F Manual”, SPlCE
Projccl, Carnegie-Mellon University, Spctcmbcr 1981.

M. Stcfik: “Planning with Constraints”, AtT$cial It~lelligctrce Vol
16, 1981, pp 111-140.

S. W&s, C. Kulikowski, A. Safir: “A Model-Based Consultation
System for the Long-l’crm Management of Glaucoma, Proceedings
of the Fifth International Joint Conference on Artificial
Intelligence, 1977, pp 826-832.

283

