
Diagnosis Using Ilierarchical Design Models 

Michael R. Genesereth 
Stanford University 

Stan ford, California 94305 

Abstract: This paper presents a new algorithm for the 
diagnosis of computer hardware faults. The ?l(yorithrn 
uses a general inference procedure to compute &spect 
components and generate discriminatory tests from 
information about the design of the device being 
diagnosed. In the current implementation this 
procedure is linear-input resolution, guided by explicit 
meta-level control rules. The algorithm exploits the 
hierarchy inherent in most computer system designs to 
diagnose systems a level at a time. In this way the 
number of parts under consideration at any one time is 
kept small, and the cost of test generation remains 
manageable. 

1. Introduction 

Being physical devices, computer components are 
subject to failure; and, given current design practices, 
the hilure of one component can lead to the 
malfunction of an entire computer system. This paper 
describes an automated diagnostician for computer 
hardware faults. ‘T’he program accepts a statement of a 
system malfunction iii a formal language, suggests tests 
and accepts the results, and ultinlatcly pinpoinLs the 
components responsible for the failure. In recognition 
of its jntendcd role as an assistant for humam field 
engineers, the program is called DAI<‘I‘ for 1)iagnostic - 
\ssistance Reference 1001. 

The DAILEY program was developed in the context of 
moderately successful work on medical diagnosis, as 
excmplificcl by such programs as CASNI-X [Weiss, 
Kulikowski], IN'I IIRNIS'l [I’ople 1975] [I’ople 19771, and 
MYCIN [Shortliffe]. However, there’s a difference. The 
medical diagnosis programs all utilize “rules” that 
associate symptoms with possible diseases. The DAKI’ 
program contains no information aboilt how computers 
fail. Instead, it works directly from i!lformation about 
itl/etldt’d structure (a machine’s parts and their 
interconnections) and c,~,~cclcd behavior (equations. 
rules, or procedures that rclnte inputs :md outputs). 

An important advantage of this approach is that it 
greatly simplifies the task of building diagrloslicians for 
new device?. Jf a designer uses a modern computer- 
aided design system, then when he is done his design 
will be online. The structural and behavioral 
information in this model can then be passed as data to 
This work was done with the cuppori ant! collaboration of the palo 
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the DAIU program to diagnose its faults. Similarly, the 
design information could be passed to a program to 
generate manufacturing instructions and to anotller 
program to generate testing codes. 

The idea of using design information in automated 
diagnosis is hardly a new one. Over [he years a number 
of test generation algorithms have been proposed, the 
moyt well-knowr: of which is the d-algorithm [Roth et 
al]. Lts primary disadvantage is its runtimc. While the 
cost of executing a test is usually small s:nd the number 
of tests needed to pinpoint a fault is at worst linear in 
the number of components [Gocl], the cost of generating 
appropriate tests grows polynomially or exponend:~lly. 
(In fact, the problem is NP-complete [Sahni and Ibarra].) 
Since the d-algorithm works only at the gntc level, it is 
impractical for circuits the size of current COtilpLilCr 
systems. 

The D/\KI’ program meets this difficulty by exploiting 
the hierarchy inhcrcnt in most computer system designs. 
(See lignre 1.) The program first diagl:oscs the system 
at a high level of abstraction to cletelmille the major 
sabcomponcnt in which the fault, lies (e.g. the acicli:r A :). 
It Llicrl focusses its atlcntion on the next lower level (e.g. 
finding the full-adder F2) and then repeals until it can 
identify a replaceable part (e.g. the xor gate ~3). In this 
way, the number of components under cor!sidcration at 
any one time is kept small, and the cost of test 
generation remains manageable. 

Within each level DAII’~ LECS a dcductivc prccedure to 
coniptitc suspects and gcncrate tests. AlI !~)‘I?l~~tOfnS are 
expressed as violations of expected bch:llV,ior. star-t i r1g 
with a symptom of this sort, DART rcasoris backwards 
from the expected behavior to discover why it was 
expected and in so doing produces a justification for its 
conclusions. Since the expected behavior was not 
observed, all of the parts mentioned in this .justification 
are suspect. The next step is to gcncratc a test to 
discriminate amung thcsc suspects. D/II<I’ starts with a 
behavioral rttlc for one of the suspects and works 
fijrward to observable outputs altld backward5 to 
modifiable inpuLs. The result of this step is an 
expectation for certain outputs whcrl certain inputs are 
applied. If &he o~~tputs do not have the values expcctcd, 
then 011~ of the parts mentioned in th: derivation of the 
test must be broken. 

Section 2 presents a simplified version of the design 
description language used by DAI<Y, and section 3 
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describes the diagnostic procedure itself. Note that, 
although the examples in this paper are all time- 
independent, the language is eq~laliy versatile at 
describing time-dependent behavior, and the DAK’L’ 
algorithm generalizes as well. Section 4 offers an 
analysis of the completeness and efticiency of the 
algorithm anti pinpoints some of its shortcomings. The 
conclLlsion discLlsses the state of implementation and 
testing and sLmmarizes the key points of the paper. 
This paper is an abridged version of an earlier paper 
[Genesereth]. 
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Models 

The DART procedLlre expects as data a full description 
of the strucLLlre and behavior of the circuit to be 
diagnosed. This information must be in the form of 
data base assertions in a design description 1angLlage 
called SUIYII E. This language has the advantage of 
being eqLlaliy expressive at all levels of description; and, 
importantly, it is adeqLlate for encoding tests and 
assumptions aboLlt the circuit, e.g. the single faLlit 
assLmiption or nonintermiltency. 

The syntax of Sufj’I’I_E is that same as that of predicate 
calcut~~s, and the ~LIICS should be apparent alter a few 
examples. The vocabulary is described in the fo!iowing 
sections. Three syntactic conventions are used in this 
paper to simplify the examples. IJpper cast itltters are 
Llsed exclusively for constants, fLInctions, and rctations, 
while lower case letters are Lrsed for variables. Prefis 
universal quantifiers are dropped, and ail free variables 

can bc assumed to be LmiverSaiiy quantified. I+3nally, fol 
the sake of brevily underlining is used to denote 
negation. 

2.1 StructLlrai Vocabulary 

The struct.LIrc of a device is specified by describing its 
parts and their interconnections. ‘The strwturc of each 
part can in turn be described Llntii one reaches one’s 
“primitive” components (which are Llsualiy characterized 
behaviorally). 

Tn SUK~I.F~ each part is designated by an atomic name 
(e.g. Al), The type of each part is deciarcd Losing type 
relations. The following assertions declare the types of 
the toplcvei components of the circuit in figure 1: MI, M2, 

and M3 are multipliers; ~1 and ~2 are adders. 

MULT(M1) 
MULT(M2) 
MULT( M3) 
ADDER(A1) 
ADDER( AZ) 

Every device in SUIKIX has zero or more inputs and 
outpL~ts, and these “ports” are designated Losing the 
firnctions INi and OUTi. i-‘or cxampie, IN2(Ml) woLrlc1 
designate the second input of MI, and ou-r2( FAN) would 
designate the second outpLrt of FAN. lf a device has only 
one input or oL\tput, the trailing digit is omitted. 
Connections are made between the ports of devices. 
The next 4 assertions specify the wiring diagram for D74. 
For esample, the first assertion states that the output of 
Ml is connected to the first inpLit of Al. 

CONN(OUT(Ml), INl(A1)) 
CON~J(OUT(M2), IN2(Al)) 
CONN(OUr(M2), INl(A2)) 
CONN(OUT(M3), IN2(A2)) 

2.2 Behavioral Vocabulary 

The behavior of a circuit can r~s~~aiiy be expressed in 
terms of the signal values at the circllit’s inputs and 
0Litputs. In SUITI‘I,II, the signal at an inpirt or oulpLlt at a 
given time is specified by superscripting the inpLlt or 
oL?tpLlt fLlnction and eqLlating it to its value. For 
example, the first assertion below skates that at time I, 
the second iripLlt of Al is 3. The second assertion states 
ttl:ll the outplit of Ml is aiways 1. 

IN2l(Al)=3 
OUTt(M1)=l 

The simplest form of behavioral specification is a set of 
rules relating a circLlit’s inpLlts and outputs. For 
eumpie, the behavior of an adder can bc captured by 
the fdiowing rules. OK(p) is intended to m&m that p is 
operational, i.c. not broken. 

ADDER(r) A OK(r) 
A INlt( r)=x A INZt( r)=y + OUTlt( r)=x+y 

ADDER(r) A OK(r) 
A INlt( r)=x A OUTlt( r)=z -+ IN2t( r)=z-x 

ADDER(r) A OK(r) 
A OUTlt( r)=z A IN2t( r)=y -+ INlt(r)=Z-y 
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As with structural information, behavioral descriptions 
are frequently hierarchical, with signals being 
characterized differently at one level of the structural 
hierarchy than at another. Tn order for DART to 
diagnose a circuit, it must have a formal statement of the 
relationship between the signals at these different levels. 
A good way of encoding this information is in the form 
of propositions relating the inputs and outputs of a 
device at one level with their counterparts at the next 
lower level. For example, the followjng pi-opositions 
capture the mapping between the integers manipulated 
by an adder and the bits manipulated by its subparts. 

INlt(Al) = INlt( F4)*8 + INlt(F3)*4 
+ INlt(F2)*2 + INlt( Fl)*l 

IN2t(Al) = IN2t(F4)*8 + IN2t(F3)‘4 

+ IN2’(F2)“2 + IN2t(F1)*1 
OIJTt(A1) = OUTlt(F4)*8 + OUTlt(F3)*4 

+ OUT2t(F2)“2 + OUT2t(Fl)*l 

Finally, there is a set of behavioral rules for 
connections. The following proposition states that, if 
two terminals are connected, they always bear the same 
signal. 

CONN( OUT( r) , I?l( s)) --+ OIJTt( r)=INt( s) 

2.3 Fault Assumptions 

Two assumptions that are important to the efficiency 
and power of test generation procedures are the single 
fault assumption and nonintermitlcncy. Nei thcr is 
essential Ibr the operation of the DART algorithm. 
Ho\+ever, by adding formal statements of these 
assumptions to DAR~L”S global data base, one can get the 
algorithm to take advantage of them, 

The single fault assumption states that at most one 
compone!it in a circuit is faulty. This idea can be 
ti,rmalized by stating tint the non-funclionnlity of any 
component implies the functionality of all t!~ rest. For 
the top-level parts of the clcviie in figure 1, this would 
lead to the following propositions. 

OK(M11 + OK(B12) A OK(M3) A OK(A1) A OK(A2) 

OK(M21 --, OK(M1) A OK(M3) A OK(A1) A OK(A2) 
OK(M3) -+ OK(M1) A OK(M2) A OK(A1) A OK(A2) 
OK(A1) --> OK(M1) A OK(M2) A OK(M3) A OK(A2) 

OK(A2) + OK( Ml) A OK(M2) A OK(M3) A OK(A1) 

The nonintermittency assumption states that all devices 
behave consistently over time. This is patently false in 
general, for it implies that no part can ever fail. 
However, it is often a reasonable assumption to make for 
the duration of a diagnosis, and it is essential in the 
derivation of some powerful tests. The proposition 
belob encodes the assumption formally. It states that, if 
a device with sepcific inputs has a specific output at one 
time, then given the same inputs it will have the same 
output at any other time. 

INIS( t-)=x A IN2S( r)=y A OUTS(r)=z 

A INt( r-)=x A IN2t( r)=y -+ OUTt(r)=z 

3. The DART Algorithm 

The DART procedure begins with the design description 
for the device under test and .a set of observed 
symptoms. It produces as output the minimal set of 
replaceable parts that will correct the error. Especially 
uscfLl1 to the procedure are the assumptions that the 
fault occurs within a single replaceable part and is not 
intermittent. While neither assumption is logically 
necessary, the performance of the algorithm degrades 
without them. 

Figure 2 presents an overall flowchart. The first step is 
to diagnose the fault at the highest level in the structural 
hierarchy. This may result in more than one part jf the 
problem is not diagnosable at that level. If the 
implicated parts are replaceable, the diagnosis is 
complete. Otherwise, DART examines them at the next 
lower level of detail. 

Diagnose at Current 

Level (see figure 3) 

Figure 2 - Overall View of DART Algorithm 

The algorithm treats each level of the hierarchy in the 
same way. Figure 3 presents a’ flowchart for the 
diagnostic component. The algorilhm first uses 
information about the symptoms to compute a list of 
suspect parts. *If this list contains only a single element, 
the dmgnosls is complete. Otherwise, the next step is to 
devise a test to discriminate the suspects. The test is 
then executed, and the process repeats. If no fin-ther 
discriminatory tests can be found, the problem is 
undiagnosable and a list of the remaining suspects is 
returned as value. 

The workhorse of the DART algorithm is a general 
inference procedure. In the current implementation this 
procedure is linear-input resolution, guided by a set of 
explicit meta-level control rules. 
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3.1 Computing Suspects 

1 Eat 1 Level 

The goal of suspect computation is a proposition of the 
following form, where each pi is a statement about the 
StI-LlCtLlIX Of the CirCLiit, e.g. OK(A1) or CONid(OUT(Ml), 
INl(A1)). 

Pl v , . . v Pn - - 

In generating suspects DAW starts with a symptom, i.e. 
the negation of an expectation, and resolves it with the 
rules in the device’s design model until it produces a 
proposition of this form. 

As an example, consider the circuit shown in figure 1. 
Assume that for inputs A=l, B=l, and C=3 the device 
produces 2 as the value of output G instead of the correct 
result 4. Since G=4 and ADDER( Al), DART can conclude 
(EL! v ~=3 v OK). The only way that E could be 
true is if (~=l v & v OK(Ml)), and the only way that 
E=l could be true is if (A=1 v c=3 v OK(A1)). Since the - - 

inputs A, B, and c are known, the system can conclude 
Ihe following suspect preposition. 

OK(Pd1) v OK(M2) v OK(A11 

One thing to note about this technique is that it is 
equivalent to proving the expcctcd value and then 
looking at the dependencies fc)r all propositions of the 
form otq p) or CofW( x ,y). 

Another thing to note is that suspect computaiion is not 
simply a matter of tracing the circllit diagram backwards 
from a faulty output. On the one hand, this can lead to 
too many suspects. For example, if the outpul of a 
multiplier is expected to bc zero because its second input 
is zero, then in computing suspects for a nonzcro output, 
it isn’t necessary to look at the predcccssors 01‘ the first 
Input. On the other hand, simply tracing b:lckwards can 
also lead to too few suspects. For example, it would rule 
out the possibility that components elscwherc in the 
circuit could have any bearing on the syrnplom and so 
would make it impossible to diagnose short circuits. 

3.2 Generating Tests 

The goal of DAR’~“s test generation procedure is a 
proposition of the following form, where each of the pi 
is a modifiab!c input, each of the pi is an immediate 
subcomponent of the device being diagnosed and o is an 
observable output. In order to have discriminatory 
power, the pi should not include all of the current 
SLlspccts. 

OK(p1) & . . & OK(pn) & 11 & . . . & In => 0 

In generating tests, DAR?’ starts with a behavioral rule 
for one of the suspects and generates conclusions using 
the rules from the device’s .design model until a 
proposition of the appropriate Folm is generated. 

As an example, consider the generation of a test to 
discriminate the suspects in lhe example introduced in 
the last section. Starting with a rule for the multiplier 
M2, L3AR’r is able to produce a test with the same inputs. 

OK(M2) & OK(M3) & OK(A2) => I(=6 

If B., then the fault must lie in one of M2, ~3, or ~2. ~3 

and A2 are not mentioned in the previous suspect list; 
and so, under a single fault assumption, they are 
exonerated; and the fault must lie in M2. Jf t1=6, ~2 can 
be exonerated by a little deduction. If 142 is responsible 
i’or the erroneous value on output G, it must be because 
its ouput is wrong. Therefore, if M3 and A2 are okay, H 

must also be wrong. Since ~=6 as expected, ~2 must be 
okay. 

As another example consider the problem of 
discriminating the remaining two suspects MI and AI. 

D/~I<.I. reasons as follows. I f the fault lies in ~1, then AI 

is ok: and, for G to be 2, D must be -I. Therefore, if E is 
changed to 4, G must change to 3. If it doesn’t, then Al 
is broken, and ~1 can be exonerated. (Note that, fa4 
appears as predicted, this does not exonerate Al.) Next 
the program figures out that, in order to get a 4 on ine E 
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wlthout drsturbmg the inputs to ~1, input c must be 
changed to 4. As a proposition this test can be 
represented as follows. 

OK(A1) & A=1 & B=l & C=4 => G=3 

In this case suppose that G changes to 5. This is correct 
but not the predicted result. In light of the previous 
symptom, it demonstrates that ni is faulty. 

3.3 Control 

Each of the steps in the DAIU algorithm uses the 
resolution rule to derive new conclusions until 
appropriate termination criteria are met. For example, 
in generating tests DAIU begins with a behavioral rule 
and draws conclusions using the facts from the circuit’s 
design model. From these conclusions, it draws other 
conclusions and so on until a “test” is derived. 

If the resolution rule were applied without guidance, it 
would produce numerous useless propositions. To 
mitigate this problem, DART draws only those 
conclusions in which at least one of the resolvents is an 
assertion in the design model. No resolutions are 
performed between conclusions and other conclusions. 
This restriction is often called the “linear input strategy” 
[Nilsson] and is very effective in preventing an 
undesirable proliferation of useless conclusions. 

DAR-~ orders its deductions by the size of the 
conclusion relative to the sizes of the resolvents, with the 
smallest being processed first. 4 special case of this 
occurs when one of the resolvents is an atomic 
proposition, in which case the conclusion has one fewer 
disjuncts than the other rcsolvent. This is often called 
the “unit preference strategy” [Nilsson]. 

DART also postpones the instantiation of variables as 
long as possible. This is equivalent to the constraint 
propagation technique used in the revised d-algorithm 
and described more recently in the Al literature 
[Sussman, Steele] [SLcfik]. 

4. Analysis of the Algorithm 

The two key factors in analyzing a diagnostic procedure 
are its diagnostic completeness and computational 
efficiency. 

4.1 Completeness 

The DAR’I algorithm is almost complete in that it is can 
generate most tests of this form; and a slight variant 
(ancestry-filtered resolution), though computationally 
more expensive, is guaranteed to generate every test. 
Even so, due to the limited vocabulary at a given level of 
description, the set of tests so defined is sometimes 
inadequate to localize every fault. 

likely to be exponential in the number of subparts 
involved. In the worst case, the DART algorithm is no 
better than any other procedure. However, for many 
circuits the cost of diagnosis as a function of the number 
of components is approximately the same at each level 
of description; and, when this is the case, hierarchical 
diagnosis leads to substantial computational savings. 

Assuming that at each level the cost of diagnosis is some 
function Fi and the number of gates is Ni, the overall 
cost of hierarchical diagnosis can be expressed as 
follows, where t-f is the number of levels. 

su”M Fi(Ni) 

i=l 

The computational advantage of hierarchical diagnosis is 
most apparent when the number of gates and the cost 
function are constant from level to level. Then, for a 
device of H levels, with N gates at each level, the cost of 
non-hierarchical diagnosis is WH), whereas for 
hierarchical diagnosis, the cost is only H:~F( N). This 
saving is of special importance when the cost function F 

is non-linear, but even in the best case of a linear cost, 
the hierarchical approach still offers a logarithmic 
ad vantage. 

5. Conclusions 

The DART algorithm has been implemented and tested 
on a variety of examples. The implementation was done 
in COMMON List’ [Steele and Fahlman] with the help of 
a data base and inference system called MRS 
[Genescreth, Greiner, Smith]. The examples include 
simple circuits like the one in the introduction as well as 
complex systems like the teleprocessing facility of the 
IBM 4331. In all cases the algorithm was able to 
generate appropriate tests and diagnose the underlying 
fault. Running on a VAX-11/780, the time to diagnose 
each case w?s on the order of minutes. While this is not 
particularly good for small circuits, it could be improved 
significantly by more efficient programming style. And, 
importantly, the program is able to diagnose large 
circuits without significant slowdown. 

In summary, the key contributions of this research are 
(1) its demonstration of the value of hierarchical design 
models in diagnostic test generation and (2) the design 
of the DAI<~ algorithm. DAKY utilizes the hierarchy 
inherent in most computer systems to keep the number 
of parts under consideration small and thereby reaps 
substantial computational savings. Furthermore, since 
the method works directly with design models, rules 
associating symptoms with specific failures are 
unnecessary. For these reasons, the algorithm appears to 
be a promising way of coping with the increasing 
complexity of modern computer system designs. 

4.2 Efficiency 

The problem of test generation has been shown to be 
NP-complete [Ibarra and Sahni], and so in the worst case 
the runtime of a complete test generation procedure is 
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