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Abstract: This paper presents a new algorithm for the
diagnosis of computer hardware faults. The algorithm
uses a general inference procedure to compute suspect
components and gencrate discriminatory tests from
information about the design of the device being
diagnosed. In the current implementation this
procedure is linear-input resolution, guided by explicit
meta-level control rules. 'The algorithm exploits the
hierarchy inherent in most computer system designs to
diagnose systems a level at a time. In this way the
number of parts under consideration at any one time is
kept small, and the cost of test generation remains
manageable.

1. Introduction

Being physical devices, computer components are
subject to failure; and, given current design practices,
the failure of one component can lead to the
malfunction of an entire computer system. This paper
describes an automated diagnostician for computer
hardware faults. The program accepts a statement of a
system maifunction in a formal language, suggests tests
and accepts the results, and ultimatcly pinpoints the
componeats responsible for the failure. In recognition
of its intended role as an assistant for humam field
engineers, the program is called DART for Diagnostic
Assistance Reference Tool.

The DART program was developed in the context of
moderately successful work on medical diagnosis, as
exemplifiecd by such programs as CASNEl [Weiss,
Kulikowski], INTERNIST [Pople 1975] [Pople 1977], and
MYCIN [Shortliffe]. However, there’s a difference. The
medical diagnosis programs all utilize "rules” that
associate symptoms with possible discases. The DART
program contains no information about how computers
fail. Instead, it works dircctly from information about
intended structure (a  machine’s parts and their
interconnections) and expected behavior (cquations.
rules, or procedures that relate inputs and outputs).

An important advantage of this approach is that it
greatly simplifies the task of building diagnosticians for
new devices. If a designer uses a modern computer-
aided design system, then when he is done his design
will be online, The structural and behavioral
information in this model can then be passed as data to
This work was done with the support and collaboration of the Palo
Alto Scientific Center and the Field Engincering Division of IBM.
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the DART program to diagnose its faults. Similarly, the
design information could be passed to a program to
generate manufacturing instructions and to another
program to gencrate testing codes.

The idea of using design information in automated
diagnosis is hardly a new one. Over the years a number
of test generation algorithms have been proposed, the
most well-knownr of which is the d-algorithm [Roth et
al]. [ts primary disadvantage is its runtime. While the
cost of executing a test is usually small and the number
of tests needed to pinpoint a fault is at worst linear in
the number of components [Gocl, the cost of generating
appropriate tests grows polynomially or exponentially.
(In fact, the problem is NP-complete [Sahni and [barra].)
Since the d-algorithm works only at the gate level, it is
impractical for circuits the size of current computer
systems.

The DART program meets this difficulty by exploiting
the hierarchy inherent in most computer system designs.
(See figure 1.) The program first diagnoscs the system
at a high level of abstraction to determine the major
subcomponent in which the fault lies (e.g. the adder A1),
It then focusses its attention on the next lower level (e.g.
finding the full-addcr F2) and then repeats until it can
identify a replaccable part {c.g. the xor gate r3). In this
way, the number of components under consideration at
any one time is kept small, and thc cost of test
generation remains manageable.

Within each level DART uses a deductive procedure to
compute suspeets and gencrate tests.  All symptoms are
expressed as violations of expected behavior.  Starting
with a symptom of this sort, DART reasons backwards
from the expected behavior to discover why. it was
expected and in so doing produces a justification for its
conclusions.  Since the expected behavior was not
observed, all of the parts mentioned in this justification
are suspect.  The next step is to generate a test to
discriminate among these suspects. DART starts with a
behavioral rule for one of the suspects and works
forward to observabic outputs and backwards to
modifiable inputs.  The result of this step is an
expectation for certain outputs when certain inputs are
applied. [f the outputs do not have the values expected,
then one of the parts mentioned in the derivation of the
test must be broken.

Section 2 presents a simplified version of the design
description language used by DART, and section 3



describes the diagnostic procedure itself. Note that,
although the examples in this paper are all time-
independent, the language is equally versatile at
describing  time-dependent behavior, and the DART
algorithm generalizes as well.  Scction 4 offers an
analysis of the completeness and efficiency of the
algorithm and pinpoints some of its shortcomings. The
conclusion discusses the state of implementation and
testing and summarizes the key points of the paper.
This paper is an abridged version of an earlier paper
[Genesereth].
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Figure 1 - A Hicrarchical Design
2. Design Models

The DART procedure expects as data a full description
of the structure and behavior of the circuit to be
diagnosed. This information must be in the form of
data base assertions in a design description language
called SuptiE. This language has the advantage of
being equally expressive at all levels of description; and,
importantly, it is adequate for encoding tests and
assumptions about the circuit, e.g. the single fault
assumption or nonintermittency.

The syntax of SUBTLE is that same as that of predicate
calculus, and the rules should be apparent after a few
examples. The vocabulary is described in the following
sections. 'Three syntactic conventions are used in this
paper to simplify the examples. Upper case letters are
used exclusively for constants, functions, and rclations,
while lower case letters are used for variables. Prefix
universal quantifiers are dropped, and all free variables
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can be assumed to be universally quantified. Finally, for
the sake of brevity underlining is used to denote
negation.

2.1 Structural Vocabulary

The structure of a device is specilicd by describing its
parts and their interconnections. The structure of each
part can in turn be described until one reaches one's
"primitive” components (which are usually characterized
behaviorally).

In SUBTLE each part is designated by an atomic name
(e.g. A1). The type of each part is declared using type
relations. The following assertions declare the types of
the toplevel components of the circuit in figure 1: M1, M2,
and M3 are multipliers; A1 and A2 arc adders.

MULT (M1)
MULT (M2)
MULT (M3)
ADDER(A1)
ADDER(A2)

Every device in SUBTLE has zero or more inputs and
outputs, and these "ports” are designated using the
functions INi and ouTi. For cxample, 1N2(M1) would
designate the second input of M1, and out2(Fa1) would
designate the second output of Fa1. 1f a device has only
one input or output, the trailing digit is omitted.
Connections are made between the ports of devices.
The next 4 assertions specify the wiring diagram for p7a.
For example, the first assertion states that the output of
M1 is connected to the first input of At.

CONN(OUT(M1),
CONN(OUT (M2},
CONN(OUT(M2),
CONN(OUT(M3),

IN1(A1))
IN2(A1))
IN1(A2))
IN2(A2))

2.2 Behavioral Vocabulary

The behavior of a circuit can usually be expressed in
terms of the signal values at the circuit’s inputs and
outputs. In SUBTLE, the signal at an input or output ata
given time is specified by superscripting the input or
output function and equating it to its value. For
example, the first assertion below states that at time 1,
the sccond input of A1 is 3. The second asscrtion states
that the output of M1 is always 1.

N2l(A1)=3
ouTt(M1)=1

The simplest form of behavioral specification is a set of
rules relating a circuit’s inputs and outputs.  For
example, the behavior of an adder can be captured by
the following rufes. oK(p) is intended to mean that p is
operational, i.c. not broken.

ADDER(r) A OK(r)

A INTE(r)=x A IN2Y(r)=y — OUT1Y(r)=x+y
ADDER(r) A OK(r)

A INLE(r)=x A 0UT1E(r)=z - IN2Y(r)=2-x
ADDER(r) A OK(r)

A ouT1t(r)=z A IN2Y(r)=y - IN1Y(r)=z-y



As with structural information, behavioral descriptions
are frequently hierarchical, with signals being
characterized differently at one level of the structural
hierarchy than at another. 1In order for DART to
diagnose a circuit, it must have a formal statement of the
relationship between the signals at these different levels.
A good way of encoding this information is in the form
of propositions relating the inputs and outputs of a
device at onc level with their counterparts at the next
lower level. For example, the following propositions
capture the mapping between the integers manipulated
by an adder and the bits manipulated by its subparts.

mit(at) = 1n1b(Fay=8 + 1M1Y(F3)*4

+ INIY(F2)*2 + In1t(r1)*1
IN2 (A1) = IN2Y(F4)*8 + IN2V(F3)*a
IN2Y(F2)*2 + IN2Y(F1)*1
out1t(Fa)y+s + outT1t(F3)*4
outT2t(r2)*2 + out2t(r1)=*1

+

outt(a1)

+

a set of behavioral rules for
states that, if

Finally, there is
connections.  The following proposition

two terminals are connected, they always bear the same
signal.

CONN{OUT(r),IN(s)) — ouTt(r)=1nt(s)
2.3 Fault Assumptions

Two assumptions that are important to the efficiency
and power of test gencration procedures are the single
fault assumption and nonintermittency.  Neither is
essential for the operation of the DART algorithm.
However, by adding formal statements of these
assumptions to DART’s global data base, one can get the
algorithm to take advantage of them.

The single fault assumption states that at most one
component in a circuit is faulty. This idea can be
formalized by stating that the non-functionality of any
component implies the functionality of all the rest. For
the top-level parts of the device in figure 1, this would
lead to the following propositions.

— OK(M2) A OK(M3) A OK(A1l)
— OK(M1) A OK(M3) A OK(A1)
— OK(M1) A OK(M2) A OK(A1)
OK(M1) A OK(M2) A OK(M3)
OK(M1) A OK(M2) A OK(M3)

A OK(A2)
A OK(A2)
A OK(A2)
A OK(A2)
A OK(A1)

OK(M1)
0K (M2)
OK(M3)
OK(A1)
OK(A2)

hrd

—

The nonintermittency assumption states that all devices
behave consistently over time. This is patently false in
general, for it implies that no part can ever fail.
However, it is often a reasonable assumption to make for
the duration of a diagnosis, and it is essential in the
derivation of some powerful tests. The proposition
below encodes the assumption formally. It states that, if
a device with sepcific inputs has a specific output at one
time, then given the same inputs it will have the same
output at any other time.

INIS(r)=x A IN25(r)=y A OUTS(r)=z
A INY(r)y=x A IN2Y(r)=y — ouTl(r)=z

280

3. The DART Algorithm

The DART procedure begins with the design description
for the device under test and a set of observed
symptoms. It produces as output the minimal set of
replaceable parts that will correct the error. Especially
uscful to the procedure are the assumptions that the
fault occurs within a single replaceable part and is not
intermittent.  While neither assumption is logically
necessary, the performance of the algorithm degrades
without them.

Figure 2 presents an overall flowchart. The first step is
to diagnose the fault at the highest level in the structural
hierarchy. This may result in more than one part if the
problem is not diagnosable at that level. If the
implicated parts are replaceable, the diagnosis s
complete. Otherwise, DART examines them at the next
lower level of detail.

<0
[ ]
]

Diagnose at Current
Level (see figure 3)

Y

Replace
Parts

Map to
Next Level

Figure 2 - Overall View of DART Algorithm

The algorithm treats ecach level of the hicrarchy in the
same way. Figure 3 presents a flowchart for the
diagnostic component, The algorithm first uses
information about the symptoms to compute a list of
suspect parts.  If this list contains only a single element,
the diagnosis is complete. Otherwisc, the next step is to
devise a test to discriminate the suspects. The test is
then exccuted, and the process repeats. If no further
discriminatory tests can be found, the problem is
undiagnosable and a list of the remaining suspects is
returned as value,

The workhorse of the DART algorithm is a general
inference procedure. In the current implementation this
procedure is linear-input resolution, guided by a set of
explicit meta-level control rules.
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Figure 3 - DART Algorithm at Each Level

3.1 Computing Suspects

The goal of suspect computation is a proposition of the
following form, where each pi is a statement about the
structure of the circuit, e.g. OK(A1) Or CONN(OUT(M1),
IN1(A1)).

1 v

v Pn

In generating suspects DART starts with a symptom, i.e.
the negation of an expectation, and resolves it with the
rules in the device’s design model until it produces a
proposition of this form.

As an cxample, consider the circuit shown in figure 1.
Assume that for inputs A=1, B=1, and c=3 the device
produces 2 as the value of output 6 instead of the correct
result 4. Since G=4 and ADDER(A1), DART can conclude
(D=1 v E=3 v OK(A1)). The only way that b=1 could be
truc is if (A=1 v B=1 v 0K(M1)), and the only way that
E=1 could be true is if (A=1 v C=3 v OK(A1)). Since the
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inputs A, 8, and ¢ arc known, the system can conclude
the following suspect proposition,

OK(M1) v OK(M2) v OK(A1)

One thing to note about this technique is that it is
equivalent to proving the cxpected value and then
looking at the dependencies for all propositions of the
form OK(p) or CONN(x,y).

Another thing to note is that suspect computation is not
simply a matter of tracing the circuit diagram backwards
from a faulty output. On the one hand, this can lead to
too muany suspects. For example, if the output of a
miltiplicr is expected to be zero becaise its sccond input
is zero, then in computing suspects {or a nonzero output,
it isn’t necessary to look at the predecessors of the first
input. On the other hand, simply tracing backwards can
also lead to too few suspects. For example, it would rule
out the possibility that components elsewhere in the
circuit could have any bearing on the symptom and so
would make it impossible to diagnose short circuits.

3.2 Generating Tests

The goal of DART’s test generation procedure is a
proposition of the following form, where each of the 1
is a modifiable input, each of the pi is an immediate
subcomponent of the device being diagnosed and 0 is an
observable output. In order to have discriminatory
power, the pi should not include all of the current
suspects.
oK(p1) & . & OK(pn) & 11 & . . . & In => O
In generating tests, DART starts with a bchavioral rule
for one of the suspects and generates conclusions using
the rules from the device's «design model until a
proposition of the appropriate form is generated.

As an example, consider the generation of a test to
discriminate the suspects in the example introduced in
the last section. Starting with a rule for the multiplier
M2, DART is able to produce a test with the same inputs.

OK(M2) & OK(M3)} & OK(A2) => H=6

If H=6, then the fault must lie in one of M2, M3, or A2. M3
and A2 are not mentioned in the previous suspect list:
and so, under a single fault assumption, they are
exonerated; and the fault must lic in M2. If H=6, M2 can
be exonerated by a little deduction. I M2 is responsible
for the erroncous value on output G, it must be because
its ouput is wrong. Therefore, if M3 and A2 are okay, H
must also be wrong. Since H=6 as expected, M2 must be
okay.

As another cxample consider the problem of
discriminating the remaining two suspects M1 and At.
DART reasons as follows. If the fault lies in M1, then A1
is ok; and, for 6 to be 2, b must be -1. Therefore, if E is
changed to 4, 6 must change to 3. If it doesn’t, then A1
is broken, and M1 can be cxonerated. (Note that, if a 4
appears as predicted, this docs not exonerate A1) Next
the program figures out that, in order to get a 4 on line E



without disturbing the inputs to M1, input ¢ must be
changed to 4. As a proposition this test can be
represented as follows.

OK(Al) & A=1 & B=1 & C=4 => G=3
In this case supposc that G changes to 5. This is correct

but not the predicted result. In light of the previous
symptom, it demonstrates that A1 is faulty.

3.3 Control
Fach of the steps in the DART algorithm uses the
resolution rule to derive new conclusions until

appropriate termination criteria are met. For example,
in generating tests DART begins with a behavioral rule
and draws conclusions using the facts from the circuit’s
dcsign model. From these conclusions, it draws other
conclusions and so on until a "test” is derived.

[f the resolution rule were applied without guidance, it
would produce numerous useless propositions. To
mitigate problem, DART only those
conclusions in which at least one of the resolvents is an
assertion in the design model. No resolutions are
performed between conclusions and other conclusions.
This restriction is often called the "linear input strategy”
[Nilsson] and is very effective in preventing an
undesirable proliferation of useless conclusions.

thig
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DART orders its deductions by the size of the
conclusion relative to the sizes of the resolvents, with the
smallest being processed first. A special case of this
occurs when one of the resolvents is an atomic
proposition, in which case the conclusion has one fewer
disjuncts than the other resolvent. This is often called
the "unit preference strategy” [Nilsson].

DART also postpones the instantiation of variables as
long as possible. This is equivalent to the constraint
propagation technique used in the revised d-algorithm
and described more recently in the Al literature
[Sussman, Steele] [Stefik].

4. Analysis of the Algorithm

The two key factors in analyzing a diagnostic procedure
are its diagnostic completeness and computational
efficiency.

4.1 Completeness

The DART algorithm is almost complete in that it is can
generate most tests of this form; and a slight variant
(ancestry-filtered resolution), though computationally
more expensive, is guaranteed to generate every test.
Even so, due to the limited vocabulary at a given level of
description, the set of tests so defined is sometimes
inadequate to localize every fault,

4.2 Efficiency

The problem of test generation has been shown to be
NP-comiplete [Ibarra and Sahni], and so in the worst case
the runtime of a compiete test generation procedure is
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likely to be cxponential in the number of subparts
involved. In the worst case, the DART algorithm is no
better than any other procedure. However, for many
circuits the cost of diagnosis as a function of the number
of components is approximately the same at each level
of description; and, when this is the case, hierarchical
diagnosis leads to substantial computational savings.

Assuming that at each level the cost of diagnosis is some
function f; and the number of gates is N, the overall

cost of hierarchical diagnosis can be expressed as
follows, where H is the number of levels.

H
SUM Fi(N;)
i=1

The computational advantage of hierarchical diagnosis is
most apparent when the number of gates and the cost

N Ant Fi lavnl #4 Taual Tlhan e o
function are constant from level to level 110€n, 1o a

device of H levels, with N gates at each level, the cost of
non-hierarchical diagnosis is F(n"), whereas for
hicrarchical diagnosis, the cost is only H*F(N). This
saving is of special importance when the cost function F
is non-linear, but even in the best case of a linear cost,
the hierarchical approach still offers a logarithmic
advantage,

5. Conclusions

The DART algorithm has been implemented and tested
on a variety of examples. The implementation was done
in COMMON L1sp [Steele and Fahlman] with the help of
a data basc and inference system called MRS
[Genescreth, Greiner, Smith]. The examples include
simple circuits like the one in the introduction as well as
complex systems like the teleprocessing facility of the
IBM 4331. In all cases the algorithm was able to
generate appropriate tests and diagnose the underlying
fault. Running on a VAX-11/780, the time to diagnose
each case was on the order of minutes. While this is not
particularly good for small circuits, it could be improved
significantly by more efficient programming style. And,
importantly, the program is able to diagnose large
circuits without significant slowdown.

In summary, the key contributions of this research are
(1) its demonstration of the value of hierarchical design
models in diagnostic test generation and (2) the design
of the DART algorithm. DART utilizes the hierarchy
inherent in most computer systems to keep the number
of parts under consideration small and thereby reaps
substantial computational savings. Furthermore, since
the method works directly with design models, rules
associating symptoms with specific failures are
unnecessary. For these reasons, the algorithm appears to
be a promising way of coping with the increasing
complexity of modern computer system designs.
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