
RABBIT: An Xntelligent Database Assistant
Frederich N. Tou

Michael D. Williams
Richard Fikes

Austin Henderson
Thomas Malone

Cognitive and Instructional Sciences Group
Xerox Palo Alto Research Center

Abstract

We have designed and implemented an intelligent
database assistant to aid the user in formulating a query.
The system, named RABBIT, relies upon a new paradigm
for retrieval, retrieval by reformulation, based on a
psychological theory of human remembering. To make a
query, the user interactively constructs a description of his
target item(s) by criticizing successive example (and
counterexample) instances. One of the key innovations in
RABBIT is that instances from the database are presented
to the user from a well-defined perspective inferred from
the user’s query description and the structure of the
knowledge base. Among other things, this constructed
perspective prevents the user from creating semantically
improper query descriptions. RABBIT particularily
facilitates users who approach a database with only a
vague idea of what it is that they want and who thus, need
to be guided in the (re)formulation of their queries.
RABBIT is also of substantial value to casual users who
have limited knowledge of a given database or who must
deal with a multitude of databases.

1. Introduction

RABBIT is an information retrieval interface which
takes a new approach to information retrieval. The design
of RABBIT began with an examination of ideas borrowed
from cognitive science and knowledge representation.
From those ideas, a new paradigm for information
retneval, retrieval by reformulation, has been developed,
and a small experimental system based on that paradigm
has been implemented in the Smalltalk programming
language [Ingalls, 19781 on the Xerox Dolphin and
Dorado personal computers [Lampson and Pier, 19801 and
runs over a set of sample databases represented in
KloneTalk [Fikes, 19811.

The motivation for designing a new kind of database
interface was the unsuitability of existing database
interfaces for casual users. Some database interfaces (e.g.,
SQUARE [Boyce et al, 19751 and SQL [Chamberlin et al,
19761) require many hours of instruction to learn; others
have a syntax which users find difficult to use and
understand (e.g., the boolean expressions of DIALOG
[Lockheed, 19791). Interfaces based on the relational data
model [Codd, 19701 usually require the user to know in
advance which tables and attributes he will be needin
while users of network databases (such as

,
20 6

[Robertson et. al., 19811) frequently get lost during the
course of their search.

RABBIT was designed to solve four problems which
we conjecture to be major sources of difficulty for casual
users attempting to retrieve information: (1) the user has

incomplete knowledge about the descriptive terms needed
to create a query, (2) the user’s own intention is only
pamly articulated, (3) a considerable amount of
mformation is known in the database about any given
item, and hence, the presentation of that infomlation
needs to be limited or structured in some way, and (4) the
structure of the database(s) is heterogeneous with the
result that the ‘shape’ of the database changes depending
upon where one is within the database.
Two techniques of human remembering which RABBIT
mcorporates are descriptive retrieval and retrieval by
instantiation. The basic tenet of descriptive retrieval is
that people retrieve information from (their own) memory
by iteratively constructing partial descriptions of the
desired target item [Bobrow and Norman, 1975; Norman
and Bobrow, 1979;
Williams, 19811.

Williams and Hollan, 1981;
Retrieval by instantiation postulates that

the information retrieved each iteration of the retrieval
process is in the form of an instantiation, i.e., an example
item suggested (e.g., analqgically or metaphorically) by
the partial description [Williams, 19811.

2. Retrieval by Reformulation

The basic principle underlying RABBIT is a new
paradigm for information reb‘ieval elaborated from the
notion of retrieval by
reformulation.

instantiation-retrieval by
The user makes a query by incrementally

constructing a partial description of the item(s) in the
database for which he is searching. RABB [T provides a
description of an example instance, an instance in the
database which matches the user’s parlial description.
The function of this example is to aid the user in
articulating his tacit knowledge. The user can select the
various descriptors from the example and incorporate
those descriptors, or variations of those descriptors, into
his partial description, thus, reformulating his initial
query. This query-building process is iterative in that the
user can at any time request the interface to retrieve a
new example instance, one which matches the iatest
version of his (partial) description, and then use the
descriptors of that new image to build up his query
description further. As the user builds his query RABBtT
is constructing (from the partial description) a perspective
from which to present the next instance.

Figure 1 shows RABBIT in the midst of a retrieval
interaction. The interface consists of four primary
window panes. The ‘Description’ pane specifies an
implicitly defined boolean expression which appears to
the user as a. partial description of the item(s) he is
seeking. The Example’ pane contains an example item
which matches the partial description as of the last user
initiated retrieval cycle from the RABBIT defined
perspective. More precisely, it contains a descriotion,
called the image, of an instance from some well-defined

314

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

perspective (e.g., - ~“The Little Hsi Nan Restaurant” can be
viewed from the perspectives of “a place which serves
food,” “an investment,” and “a business.“). The
‘Matching Examples’ pane lists instances which satisfyg;
partial description as of the last retrieval cycle.
Previous Description’ pane contains the description used
on the last retrieval cycle which determines the
perspective for presentation of the example and the list of
matching examples. The example pane comm‘and pop-up
menu is also displayed.

The example instance mentioned above is a central
element of the interface. It serves several purposes: it
functions as a tern@ate, it permits czccess to additional
descriptors, it provrdes semantic resolution of potentrally
ambiguous terms, and it frequently serves as a
cow tei-example. The example instance is a template in
the sense that its presentation (the image) provides a
pattern for making a query via the descriptors comprising
the instance’s image. It permits access to new descriptive
terms through the alternatives and describe commands

Figure 1. RABBIT Screen Display

315

elaborated below. It also provides semantic resolution in
that the context of a term such as the role name
‘manufacturer’ establishes and refines the term’s meaning.
The role name ‘manufacturer:’ could refer to a person or
a nation or a corporation. The statement ‘manufacturer:
Xerox’ in the context of a description of a camp;;:
product resolves a host of potential meanings.
example instance is also a counterexample to the user’s
intentions since it is unlikely that the first instance
retrieved will be exactly what the user is looking for.
Kather than simply permitting the user to express his
displeasure with the counterexample and have RABBIT
try to guess what is wrong with it, the system tries to
encourage the user to articulate what is wrong with the
instance presented. The counterexample’s simple presence
serves to remind the user that his query description is
incomplete or wrong and, in addition, point out the
particular parts of his description which need correction
or modification. Finally, since the amount of information
known about the retrieved instance could be considerable,
the information actually presented in the image is limited
to be only that information which is known from a given
perspective inferred from the query description which was
the basis for retrieving that example instance. (E.g.,
information concerning the dinner menu or house
specialty of a given restaurant would be av;lilable from the
perspective of “a place which serves food” but not from
the perspective of “a business.” So if the user had begun
his qrlcry with the descriptor ‘Business’, then the image of
the retrieved instance, even if it is a restaurant, would not,
initially, include information about its dinner menu.)

The current implementation of RABBIT supports a
small set (5) of basic operations for creating a query
description given the descriptors provided in the image of
the example instance. These operations, shown in figure
1, are require and prol-ribit (which specify that the given
descriptor is or is not to be a descriptor of the retrieved
instance, respectively), alternatives (which presents the
user with a popup menu of alternative descriptors to the
given one), specialize (which shows the specializations of
the given descriptor), and describe (which allows the user
to examine a description of a given descriptor or to
describe recursive1 7
(rrou, 19821 and i

what that descriptor should be.
Tou, Williams, Malone, Fikes, and

Henderson 19821 contain a more complete discussion of
the paradigm of retrieval by reformulation and the user
interface to RABBIT,)

This paradigm of retrieval by reformulation, in effect,
defines a form of interaction by which RABBIT can ‘assist
casual users in formulating queries. Much of the
intelligence of RABBIT comes from control of this
interaction by appealing to the conceptual structure of the
database.

3. The KL-ONE Database

The K L-ONE epistemology for representing
knowledge [Brachman, 1979] has had a major influence
on the development of RABBIT. The experimental
database which RABBlT accesses is a KL-ONE network.
Our long term vision is to have RABBIT as a query
assistant in a local machine with a local KL-ONE
conceptual structure transforming the user’s queries into
acceptable forms to que;y remote databases. In a sense,
what are now KL-ONE Instances will be the data objects
of these remote databases.

The descriptions which the user creates (the partial
query description) and critiques (the instance descriptions,
or images) are composed of two types of descriptors:
instance classes and attribute-value pairs. Instance classes
(showninboldface-%theGt of this paper) denote
general classes of instances (e.g., ‘Business’, ‘City’, and
‘Entity’ are all instance classes), whereas attribute-value
pairs specify the properties of a specific instance, and in
particular, the relationships between that instance and
other instances (e.g., the instance ‘The-L,i ttle-Hsi-Nan’ has
attribute-value pair ‘location: PaloAlto’). As was
mentioned earlier, instances are the items in the database.

The correspondence between U-ONE concepts and
RABBIT descriptions is as follows. The instance classes
comprising RABBIT descriptions are represented by KL-
ONE generic concepts, while instances correspond to
individual concepts. Attribute-value pairs are
implemented as KL-ONE role-value pairs, and constraints
(in the query description) on what values should be filling
a attribute (called a xilue constraint) correspond to a
value restriction on the correspondxcrole. In general, a
query description in RABBlT corresponds to a (possibly
new) generic concept which subsutnes the (individual
concepts corresponding to the) instances matching that
query description.

The fact that KL-ONE is an inheritance network
allows heterogeneous data to be easily represented in a
structured format. So, for example, information common
to a set of individual concepts can be factored out and
associated with a generic concept subsuming those
individual concepts, whiJe the individual concepts retain
that information which distinguishes them from one
another.

In addition to the ability to construct perspectives,
described below, we have been able to use the KL-ONE
semantics to control the search for alternative descriptors
when the user issues the alternatives command. The
alternatives to a given instance class were originally those
generic concepts which were “brothers” of the generic
concept corresponding to the given instance class. But the
number of brothers could be quite numerous, especially
near the “top” of the heterarchy (i.e., close to the generic
‘Entity’). However, KloneTalk allows the builder of the
database to partition generics into decomposition;ucq for
example, subconcepts of ‘Restaurant’ as
‘ChineseRestaurant’, ‘FrenchRestaurant’, and
‘GermanRestaurant’
decomposition

can b;hjltrouped under fhe
‘cuisine’,

‘PaloAltoRestaurant’,
su bconcepts ltke

‘MountainVi’ewRestaurant’, and
‘LosAltosRestaurant’ can be grouped under the ‘location’
decomposition. Then if the user asks for alternatives to
‘FrenchRestaurant’, he is shown only those alternative
concepts which belong to the same decomposition as
‘FrenchRestaurant’.

4. Perspectives

One of the main uses of KL-ONE is the
implementation of perspectives. A perspective is simply a
way of describing an event or item from a particular
viewpoint [Bobrow and Norman, 1975, Bobrow and
Winograd, 1977, Goldstein and Bobrow, 1980, Goldstein,
19SO]. We introduce the notion of a dynamic perspective;
thus, the perspective from which the user views the
instances in the database changes depending on his partial

description and on where he is within the database. In
RABBIT a perspective specifies which descriptors
(instance classes and attribute-value pairs) should be
included in the image of any instance presented to the
user.

lhere are two distinct mechanisms RABBIT uses to
construct a perspective. First it filters the attributes to be
presented to a user by including only attributes implicitly
acknowledged by the user. Since the partial description is
a representation of the user’s intent to the computer, that
description should be the basis for determining what
information should be included in the image of the
example instance. In RABBIT the attributes included in
the image are exactly those attributes which belong to the
instance classes occurring in the partial description, while
the instance classes in the image are the specializations of
the instance classes in the partial description. Thus, if one
were to see the computer descibed in fi

B
ure 1 retrieved

under the partial description ‘Product’ i.e. without the
descriptor Computer’) then only the attributes ‘name’,
‘manufacturer’, and ‘cost’ would be presented. Once the
user refines the partial description to specify that he is
seeking a computer, additional roles (e.g. ‘disk,’ ‘CPU,’ . ..)
would appear. A second mechanism for creating
perspectives actually extends the perspective of any given
instance beyond attributes directly held by the ob’ect.
Note in figure 1 that because the user has create d an
embedded description about the disk of the computer
sought, aspsects of the disk that the user considers
important (e.g. capacity) have been compressed into the
image of the computer presented.

Perspectives serve four main functions in the RABBIT
interface:

Perspectives are used to control the amount of
information presented to the user. As we mentioned
earlier, the amount of information known about any given
instance in the database could be substantial. In some
databases we have considered it runs to the hundreds.
The presentation of that information must be limited in
some fashion.

Perspectives arc also useful for facilitating the user’s
understanding of instances since the information provided
in the image is with respect to a well-defined perspective
(determined by the partial description). The set of
attributes shown in the image should provide a fairly
coherent and cohesive view of the example instance since
that set arises from the definition of (a generic concept
corresponding to) an instance class, which presumably has
semantic integrity. We sometimes refer to this effect as
semantic resolution. The name of an attribute standing
alone might be ,a.mbiguous, but since an attribute
commonly appears with other, related, attributes within
some context (the perspective), the user may be able to
infer the meaning of an unknown attribute from its
context.

A Third function of perspectives is to enforce a certain
class of semantic consistency. As we said earlier, instances
are always being viewed from some perspective inferred
from the partial description. Consequently, the user does
not have access to a particular at,tribute llnless he has first
made the instance class owning that attribute a required
descriptor of his partial description. Thus, only attributes

which are “appropriate” ol- “relevant” to his partial
description are available to the user for inclusion in the
partial description. For example, if ‘Book’ and ‘Science-
Fit tion’ are instance classes in the user’s partial
description, then there would be no way ,for the user to
add the attributes ‘employees: ’ or ‘CPU: , which are not
attributes of either ‘Book’ or ‘Science-Fiction’, to his
partial description. This notion extends even further in
the use of embedded descriptions. For example, suppose
the user sees the attribute-value pair ‘disk: Xerox-lo’ in
the image of the example instance Star-8011, but does not
know what the Xerox-10 disk is. One option the user has
is to examine the description of the Xerox-10 using the
describe command and then create a description of the
disk he desires for his computer. But the description of
what value should fill the attribute ‘disk: ’ can not be any
description, such as the description of a restaurant, but
rather, the description of an object which can be the disk
of a computer. The interface enforces that constraint by
imposing the constraint that the description of the disk
which the user creates must include as part of its
descriptors the instance class(es) corresponding to the
generic concept(s) which are the value rtstrictions. Of the
role corresponding to the attribute ‘disk: . In addltlon to
limiting what kind of description can be created, those
instance classes also provide a set of attributes which
indicate to the user some of the ways in which he can
describe the object, in this case, a disk for a computer.

Finally, perspectives can be used to manage a non-
uniformly structured database. If a database is non-
uniform, then it should change as the user moves around
within the database with the consequence that the kind
and amount of information should also change. So as the
user refines or modifies his p‘artial description by adding
or removing new instance classes, he is also changing the
perspective for viewing exampie instances, and hence, the
attributes which appear in the image. In particular,
adding new instance classes has the effect of adding new
attributes to the image of the next example instance
retrieved. Consequently, the user does not need to
concern himself with the shape of the database as
expressed in the attributes of instance classes; all he must
do is decide on the conceptual shape (e.g., is the user
looking for a business, a product, or something else), and
the corresponding attributes are made available to him
automatically.

5. Future Work

We currently have a running implementation of
RABBIT accessing a database of approximately 200
individual concepts and 50 generic concepts. With respect
to further utilization of KL-ONE, we anticipate that KL-
ONE structural descriptions are a means for supporting
general constraints within query descriptions, but there
are problems which need to be solved such as the
operation and appearance of the user interface for
creating and editing constraints. A more general issue is
the question of how perspectives are created. In the
current implementation, each instance class defines a
perspective for viewing instances of that class. But this
tight coupling between perspectives and instances seems
to be too restrictive. It may be that the organization of
perspectives should really be orthogonal to the
organization of inslance classes.

317

A broader area requiring further work is implementing
RABBIT for a “real” database, by which we mean a
moderately sized database (with thousands of items)
which is changing. The current version of RABBIT can
not be used to modify the database, but we feel that the
ideas underlyin, 0 KABBlT could be easily adapted for
inserting and deleting data. And finally, RABBIT needs
to be tested on actual users to determine its strengths and
weaknesses-which ideas are useful and which should be
modified or even discarded.

6. Summary

This paper has described an intelligent database
assistant named RABBIT which relies on a new paradigm
for information retrieval, retrieval b,v wforrnulution, based
on a psychological theory of human remembering. The
four main ideas underlying this paradigm are:

1 retrieval by constructed descriptions
2 interactive construction of queries
3 critique of example instances
4 dynamic perspectives.

The first three of these ideas had their origins in
human psychology, but the development of the fourth
idea above--dynamic perspectives-was motivated and
influenced strongly by the KL-ONE knowledge
representation language. One of the key ideas m
RABBIT is the use of user interaction and structure of the
database to construct a perspective from which to present
any given instance. In RABBIT we have used
perspectives as a mechanism for:
The first three of these ideas had their origins in huvan
psychology, but the development of the fourth t.e;
above-dynamic perspectives-was motivated
influenced strongly by the K-ONE knowledge
representation language. One of the key ideas in
RABBIT is the use of user interaction and structure of the
database to construct a perspective from which to present
any given instance. In RABBIT we have used
perspectives as a mechanism for:

--controlling the type and amount of information
presented
--facilitating the user’s understanding of in+nces
--enforcing certain kinds of semantic consistency
--organizing and managing heterogeneous data.

Our experimental implementation of RABBIT looks very
promising, but only usage by real users can determm? the
effectiveness and usefulness of the paradigm of retrieval
by reformulation.

Our experimental implementation of RABBIT looks
very promising, but only usage by real users can
determine the effectiveness and usefulness of the
paradigm of retrieval by reformulation.

Acknowledgements

A portion of this work was carried out by the principal author
under the auspices of the MIT intern program at Xerox PARC and
is based on a thesis submitted ‘in partial fulfillment of the
requirements of the degrees of Bachelor of Science and Master of
Science in the department of Electrical Engineering and Computer
Science at the Massachusetts Institute of Technolqgy in June, 1982.
l’hc authors would also like to acknowledge the onginal stimulus for
this work steming from an exciting conference on artificial

intclligcnce and human-computer interfaces sponsercd by the Army
Research Institute. In particular, we would like Stan Halpern, Janet
Kolodncr, and Albert Badre to know a part of what came from their
efforts. We would also like to thank John Secly Brown, Tom
Moran, Rick Cattcll, Laura Gould, and Richard Burton for their
patient discussions and guidance. Each contributed crucial pieces of
the puzzle we arc still putting together. Finally, we would like to
thank the other members of the Cognitive and Instructional Sciences
Group at Xerox PARC for their continuing support and critique
throughout the development of RABBIT.

References
Bobrow, D.G., and Norman, D.A. “Some Princi lcs of Memory
Schemata,” in D.G. Bobrow and A.M. Collins (Eds. , P
and Understanding: Studies in Cogniirive Science.

Keg;r$z;F

Academic Press, 1975.

Bobrow, D.G., and Wino rad, ‘I’. “An Overview of KRL: A
Knowledge Representation % nguage,” Cognirive Science, 1, pp. 3-
46, 1977.

Boyce, R.F., Chamberlin, D.D., King, W.F., and Hammer, M.M.
“Spectfying Queries as Relational Expressions: The SQUARE Data
Sublanguage,” Comtnunica~ions of rhe ACM 18, 11 (Nov. 1975), pp.
621-628.

Brachman, R.J., Bobrow, R.J., Cohen, P.R., Klovstad, J.W., Wcbbcr,
B.L., Woods, W.A. “Research in Natural Language Understanding:
Annual Re

8
ort, I September 1978 to 31 August 1979,” BBN Report

No. 4274. ambridgc, MA: Bolt Beranek and Newman Inc., August,
1979.

Chambcrlin, D.D., Astrahan, M.M., Eswaran, K.P., Griffiths, P.P.,
Lorie, R.A., Mehl, J.W., Reisner. P., and Wade, B.W. “SEQUEL 2:
A Unified Aooroach to Data Definition. Maniuulation. and
Control,” IBM jburnal of Research and Developmenr 2’0 (Nov. -1976),
pp. 560-575.

Codd, E.F. “A Relational Model of Data for I.arge Shared Data
Bases,” Comtnunic~a~ions of the AChl 13, 6 (June 1970), pp. 377-397.

Fikes. R. “Highlights from KloncTaIk: Display-Based Editing and
Browsing. Decompositions, Qua Concepts, and Active Role-Value
Maps,” Procctdingings of the 1981 KI.-ONE Workshop, Jackson,
New Hampshire, October, 1981.

Goldstein, I.P. “PIE: A network-based personal infomlation
environincnt.” Proceedings of Ihe Office Setnan~ics Workshop,
Chatham, Mass., June, 1980.

Goldstein, I.P., & Bobrow, D. Descriptions for a programming
cnvironmcnt, Pt-cx’ecrlings oj‘ the b?t.:,t Annua/ l~atiottn! Conference
on Ar~ljiciai lnlclligence, Stanford, CA, August, 1980.

Ingalls, D.H. “The Smalltalk- Programming System: Design and
Implementation,” Conference Record af the F$h Annual ACM
Symposiutn on Principles of Programtning Languages, I’ucson, AZ:
January 1978, pp. 9-16.

Lockheed Information Systems,
Alto, CA, 1979.

Guide to DiALOG Searching, Palo

Norman, D.A., and Bobrow, D.G. “Descriptions: An Intermediate
T;7g;2F Memory Retrieval, ” Cognilive Psychology 11 (1979), pp.

Robertson, G., McCracken, D., and Newell, A. “The ZOG
A
/!

preach to Man-Machine Communication,” Inlernalional Journal
o Man-Machine Studies (1981) 14, pp. 461-488.

Tou, F. R ARBIT: A novel approach 10 infotmabon relrieval,
unnublished M.S. thesis. Massachusetts Institute of Technologv.

v- ,

Ca*mbridge, Mass., forthcoming.

Tou, F.N., Williams, M.D., Malone, T.W., Fikes, R.E., and
Henderson, A. RABBIT: an Intelligent Interface. Xerox Technical
Report, forthcoming, 1982.

Williams, M.D. “Instantiation: A Data Base 1,nterface for the
yOgV;Ice User,” Xerox Palo Alto Research Center Working Paper,

Williams, M.D., and Hollan, J.D. “The Process of Retrieval from
Very Long Term Memory,” Cognitive Science 5 (1981), pp. 87-119.

318

