
BUILDING EXPERT SYSTEMS FOR CONTROLLING 

COMPLEX PROGRAMS 

Sholom Weiss, Casimir Kulikowski, Chidanand Apt& Michael Uschold 
Department of Computer Science, Rutgers University 

Jay Patchett, Robert Brigham, Belynda Spitzer 
Amoco Production Research 

Abstract 

Production rule schemes have proven quite effective in 
concisely representing expert knowledge in several 
application areas. Yet, there are many problems for which 
one would like to take advantage of additional knowledge 
that may not be easily represented in these surface level 
models. One class of problems of particular practical 
interest are those in which we would like to have a 
computer-based system give interactive advice on how to 
control and interpret results from a set of complex and 
interrelated applications programs. The advice may refer to 
interpretations of current results, possible experiments that 
should be performed with the help of the applications 
programs, and indications of inconsistencies in specific 
analytical procedures and in problem solving sequences 
followed by the user. In the present paper we report on 
our experiences in designing an expert system (ELASI, of 
the type described above, for well log analysis in oil 
exploration and production. We have integrated a 
production rule advice model (using the EXPERT system) 
with existing Amoco software for well-log analysis and 
display. In doing so, the original system for well-log 
analysis was reorganized so that its use could be monitored 
and controlled, and its knowledge structured according to 
the types and sequences of methods used by expert 
analysts. By varying the assumptions and parameters used in 
the different individual analyses, our goal is to make 
available interactive interpretations of the alternative 
approaches that an expert might take to a complex problem 
of well-log analysis. 

I Introduction 

In a recent article [: 11, Hart describes several of the 
research issues arising in the design of multi-level expert 
systems. He contrasts surface level models with deep 
models of reasoning. By way of example, Hart describes a 
hypothetical system for advising petroleum engineers using 
a multi-level approach. The surface level model is of the 
production rule type, whereas the deep model is a purely 
mathematical description of an oil reservoir expressed as a 
set of partial differential equations. The latter is typically 
implemented as complex software tools, such as reservoir 
simulators. 

We have built a multi-level expert system called ELAS 
(Expert Log Analysis System) for carrying out well-log 
analysis. Well logs are the various electromagnetic, sonic 
and nuclear signals obtained from instruments placed down- 
hole in a well, which characterize the properties of the 
rock and fluid formations around the borehole. From a 
practical applications point of view, well log interpretation 
represents an important problem, since it permits an 
assessment of the likely presence of hydrocarbons and 
possible yields of the well during exploration and 
production. From the perspective of expert systems 

research, this application is proving very helpful in 
increasing our understanding of representation, 
communication and control processes in multi-level systems. 
And, from the more general software engineering point-of- 
view, we are learning how one might exploit existing 
software systems more fully by building a coordinating and 
advisory system that makes these programs easier to use 
by a wider variety of expert and non-expert users alike. 

In many problem areas, it is not unusual to find that 
valuable software has already been developed to aid the 
expert in data analysis, the design of experiments, and the 
interpretation of results. These programs are often quite 
complex packages, developed over several years and 
enhanced through extensive user experience. In designing 
an expert system, it is only natural that one should want to 
take advantage of such software. One of the first efforts 
in modeling expert advice on the use of a complex 
program was the SACON 121 project which developed an 
advisory model for the MARC structural analysis program. 
However, there was no interaction between the two 
programs: SACON was run before the MARC program, 
giving advice on its prospective use. In order to develop an 
expert system to its fullest potential, interaction is needed 
between the advising program and the application programs. 
In a sophisticated system, the interpretive program will be 
fully integrated with the application programs, so that they 
communicate their results to one another, and advice 
changes dynamically as the model tracks the user 
interaction. Furthermore, the system must have the ability 
to automatically take a recommended action if the the user 
agrees. In effect, we will have a program that not only 
gives advice, but also can accept the advice and act on it 

II Comparison with a Interpretation/Classification Model 

An expert model which interacts with a complex 
program can be thought of as an extension of the type of 
interpretation/classification models that have been widely 
used in medical consultation (such as CASNET and MYCINI, 
and geology (PROSPECTOR). Regardless of the underlying 
knowledge representation, these models are typically 
implemented as programs which ask questions of the user 
until enough evidence has been accumulated for the model 
to offer an interpretation. In situations where the human 
experts follow agreed upon procedures for eliciting 
evidence, the questions are often highly structured, and one 
can expect that the results will be reported in a systematic 
and ordered fashion. Although some of the results may be 
gathered by external sources (such as instruments), they are 
typically “filtered” through the user who enters them into 
the program. In a few situations, where most of the 
evidence is taken directly from instrument data, [3, 41, 
signal processing algorithms feed directly into the reasoning 
model. 

In a model that is completely integrated with a set of 

322 

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved. 



complex applications programs, so that they appear to the 
user as a single program, important additional functional 
characteristics are needed that go beyond those found in 
the typical interpretation/classification type models: 

The advisory model must be able to receive 
data or evidence automatically from the 
application programs, in addition to that 
reported by the user. 

The logic of the model must be prepared to 
interpret evidence in real-time. 

The model must be able to not only suggest 
advice on the interpretation of evidence, but 
must also monitor how the user reacts to this 
advice in his subsequent choice of methods of 
analysis, and then provide new advice (to fit 
the dynamically changing situation) if the user 
requests it 

Yet, despite the above differences we can use an 
important analogy from the more traditional consultation 
systems: the set of applications programs can be made to 
communicate with the advice model primarily through the 
evidence, as long as we are willing to broaden our 
definition of what we consider to be evidence. We will 
now take evidence to include not only facts about the 
particular domain problem, but also the status of the 
actions taken by the user while interacting with the 
applications programs, and the results of key calculations 
performed by these programs as the result of the user’s 
actions. In the advisory model, we must represent classes 
and sequences of user actions, their consistency 
relationships, and expected effects. To be both effective 
yet flexible to the nuances of expert problem solving, the 
advisory system must monitor and interpret the actions of 
the user in a type of background mode. The user must 
have a considerable degree of freedom in the choice of 
methods and direction of analysis, yet should be discretely 
warned if his choice is leading to a likely dead-end, or is 
introducing harmful inconsistencies in the analysis or 
interpretation If the analysis is proceeding smoothly, as 
might be expected with an experienced user, the model 
should be available in an advisory and summarizing capacity, 
without interfering with the user’s control over the 
problem solving flow. 

The logic for the interpretive analysis can be stated in 
the form of production rules as in the usual 
interpretation/classification models. However, the designer 
of the model must take into account the newly enlarged 
scope of types and the dynamically varying nature of the 
evidence that must be handled. While in a traditional 
consultation system we expect evidence to remain relatively 
stable during a single consultation session, here, because 
the control and monitoring of the separate applications 
programs must be carried out in real time, evidence will 
change values very frequently in the course of a session. 
For example, an observation such as, Task A not 
performed, will be changed once Task A is done; or a 
numerical result may be received from one program, and 
then be changed as the consequence of further analysis and 
processing by another program. This type of situation 
resembles a consultation where someone is continually 
modifymg or updating the evtdence, and sequentially asking 

for an interpretation. There are some analogies to the 
medical problem of evaluating a patient over time. Here, 
however, the time frame is highly condensed into a reai- 
time evaluation. 

Another important difference with the usual 

interpretation/classification model is that the controlling 
model has the opportunity to go beyond just giving advice; 
it can provide the means of accepting the advice and taking 
the recommended action in real time. This step may prove 
somewhat more difficult for expert system builders than 
might be initially expected, since the model and the set of 
application programs must be Lnified in what appears to the 
user as a single system. In addition, a single task of the 
expert may require the compilation of many steps through 
one or several of the programs or even combining or 
adding steps that are not directly available in the application 
programs. Although the application programs may not have 
to be completely recoded, new code may be needed to 
integrate steps that reflect the expert’s particular approach 
to analyzing a problem. In our experience, we have found 
that this can be done successfully while building an overall 
expert system. 

III The ELAS Expert System for Well-Log Analysis 

The main goal of the ELAS project is to introduce 
methods of expert systems in well-log interpretation. In 
ELAS we are demonstrating how the knowledge and 
reasoning methods of an expert log analyst can be 
combined with INLAN - Amoco’s large scale interactive 
program for well log data analysis and display [51. The 
Dipmeter Advisor, which is a knowledge-based 
interpretation model for a very specialized type of log 
analysis, has been described previously by others [61. In 
our system, we are concentrating on the more widely used 
and more numerous suites of logs for which there is quite 
a large body of published [51 and unpublished results . 

Working with the expert analyst, we have observed the 
sequence of steps involved in solving certain typical 
interpretation problems, and encoded them as a set of 
advice rules using the EXPERT [71 formalism. Thus, more 
specific objectives in developing ELAS include: 

l formalizing methods of expert well-log 
analysis into a representation that can be easily 
used and understood by others; 

l providing interpretations based on the data, the 
actions, and expectations of the user and the 
program 

Our first prototype system is running on IBM’s 
VMKMS operating system using a RPQ terminal 

configuration. This configuration consists of a Tektronix 
graphics terminal with a joystick, an IBM CRT, and a single 
alphanumeric keyboard. The system allows the user to 
interactively perform experiments in the analysis of logs. 
Advice is generated based on the results of previous 
experiments, and a running summary is kept of the actions 
already taken. The advice system is fully integrated with 
INLAN, while based on the EXPERT production rule scheme. 

One of the contributions to a specific domain that 
comes from building an expert system is that it helps to 
structure and organize practical problem solving knowledge 

323 



in the domain. When many of the important methods of 
interpretation are informally specified, and personal to the 
experts in the domain, the expert systems formalization can 
be particularly valuable. By encouraging or even forcing a 
formal structure on the domain knowledge, and 
incorporating it into a runnabie expert system, the 
knowledge becomes testable, reproducible and more widely 
reportable to others. While many general software 
programs require expertise not only in the application 
domain but also in the use of the program, our objective in 
developing ELAS has been to produce a new, powerful yet 
easy to use experimental tool for the well-log analyst. 

To make interaction easy for users, the front-end of 
the ELAS system has as its top level a Master Panel, which 
holds a snapshot of the current status of the analysis of an 
already selected well (Figure ill- 1). 

j 
ADVICE 0 
EXPFRT DEBUG : ’ 0 

0 ‘0 L-J 
a a I3 

0% WCNIJ 0 a u cl IU 

OTOTAL ANAl.YSTS 

Figure III -1: Preliminary Master Panel 

Most user-program communication is controlled through 
this master panel. it is displayed on the Tektronix graphics 
screen, and includes a concise set of key parameters and 
tasks that are crucial in well log analysis. Here, a 
parameter may be a constant, a log (represented as a 
vector of digitized values for each foot of depth in the 
well), or an expected characteristic of the well (e.g. the 
presence of gas in some zone). The value of the 
parameter will influence the results of the subsequent 
analysis. Whereas the original software was an interactive 
system that required specification of many detailed 
operations, our task has been to develop a much higher 
level system that compiles many of these smaller steps. At 
the initial user level there is a superficial similarity to 
VisiCalc, the highly successf ui personal computer program. 
In the simpler environment of VisiCalc, we see a program 
that presents information in a concise format and allows 
the user to vary a parameter and then watch all dependent 
results change. in our case, we are faced with a much 
more complicated computational task, but we too try to 
show the propagation of effects that follow from the 

user’s change of a parameter value or choice of analysis 
method within as short a time as possible, ranging from 
almost instantaneous to many seconds. This is done by 
updating the master panel at the top level, from which the 
user will be led to more detailed panels or displays for the 
specific methods. Changing a parameter may imply quite a 
large number of computational steps and not ail information 
can be described in a simple tabular format. 

In ELAS the user can direct both the mathematical 
analysis and the interpretive analysis by changing parameters 
or invoking tasks through the master panel. As just stated, 
the outcomes of mathematical analyses that follow are then 
reported back to the user through this same panel. The 
expert system keeps updating its interpretive analysis after 
every change in the evidence so that it atways reflects the 
current status of the panel. The system also synchronizes 
all derived logs which are affected by changes in the panel 
parameters or methods. Changes are made either through 
user action or updates in the mathematical analysis. The 
user has the freedom to carry out an entire well log 
analysis sequence without ever asking for advice from the 
system, or he can proceed to request advice for any stage 
where he feels the need or curiosity for it. 

The example in Figure 111- 1 shows the master panel for 
a sample test well, TEST UNlT 9 1 134. The five columns 
correspond to five different geological zones (by depth) 
which have been chosen for analysis. The rows 
correspond to the parameters for the zones. initial values 
for some of the parameters must be suppried by the user. 
Many of them, however, may be obtained through 
subsequent analysis. Some parameters may stand for 
specific tasks that the user might want to invoke to help in 
the analysis. 

Consider another sample test well, NO. 25 TEST FiELD 
UNIT, for which the user wants to examine (on his own, or 
following the advice of the model) the effect of lithology 
on the calculation of rock porosity in a zone. The 
appropriate box on the panel for that method and zone is 
marked. The marking of that box causes the system to 
invoke the task, displaying first a crossplot of the zone 
depth points with the various lithological choices made 
available for further analysis (Figure 111-2). These are shown 
as the SS (sandstone), LMST (limestone), and DOL (dolomite) 
boxes on the crossplot Once the user has made his 
choices (of two of these boxes, in this particular instance), 
the program calculates the corrected logs using the 
lithologicai assumptions, and then returns to the main panel, 
which now reflects any updates due to this task invocation. 
This is an example of a single step in an incremental 
analysis. If the user wishes to see the full extent of 
analyses that follow a particular change in parameter value, 
all he needs to do is mark the TOTAL ANALYSlS box on 
the side of the master panel, and a set of derived logs, 
which are particularly conclusive, will be displayed. In 
addition, the interpretation for each geological zone will be 
given. The logs displayed in Figure 111-3 were plotted using 
a batch plotter program. They represent the type of display 
we are designing, although the current version of ELAS 
does not shade the overlaid portions of logs while 
displaying them. 

The system also maintains consistency between 
dependent tasks, which is necessary whenever a significant 
parameter changes values. This can involve computations 

324 



i.8 NO. 25 TEST FIELD UNIT 

. . l * 
Z.OQ. 

2.2Q. 

2.4Q. 

DETECT 2 I 
2.BQ CORRECTED 

0. 10. 20. 30. ao. 
ON l 

-_c-._ -me__- Np ______II-_^._--.--- 

.ITWO 
PI41 I BOXES TO STORE 

.OC AM EXIT. 

Figure III -2: Neutron Density Crossplot 

100 SFTUHRTICJN Q 
GRSSRI 1 OILSRT 1 5u 

3900 I_ 

Figure 111-3: Log Display 

ranging from almost negligible to very formidable. For 
example, one of the most frequently used formulas in log 
analysis is: 

SW = FoR~/R,).~ !l) 

where the variables are quantities that can be changed 

through the master panel. Even a minor change in one of 
the variables in this equation involves a recomputation for 
all the points in the log, which are usually in the thousands. 
This will immediately cause reinterpretation and revision of 
previous conclusions and recommendations. 

In summary, we are emphasizing that the formalization 
of the methods may very well require a new organization 
and presentation of the original software, and may not be 
quite as simple as feeding numbers and arguments back and 
forth between the original software and the model. A clean 
interface is of course an important ingredient in the ultimate 
success of the program. In our case, the system will lead 
the user into many specialized routines associated with a 
particular task. Often, the setting of a key parameter may 
require a separate analysis in itself. 

The well log analysis model considers 3 types of 
advice which can be described in a production rule 
framework. 

1. interpretation of existing evidence and past 
actions 

2. advice on future actions 

3. consistency checking 

In a system such as ELAS, there are many possible 
reasoning paths that the user may take, most of which are 
under user control. Thus depending on the user’s prior 
actions, the model may give radically different advice even 
for the same initial data. Furthermore, depending on its 
interpretation of the status of analysis and user actions up 
to a given stage, the model will make recommendations to 
try out various preferred methods for subsequent analysis. 
The user also has the choice to enter certain a-priori 
information about the problem, such as whether one ought 
to expect gas in the well. In this case, if we were told 
not to expect gas, but gas is indicated by an analysis of 
some of the logs, we can proceed to get clues as to 
whether the method of analysis might be at fault, whether 
the logs are noisy or otherwise inaccurate, or whether 
some underlying assumption is unjustified, etc. This is an 
example of the kind of consistency checking that involves 
both the log data and the interplay betw,een the various 
methods of analysis. While actual advice’ depends on the 
types of analyses that are specific to a domain, we have 
found that they are all readily representable in a production 
rule framework. 

IV Communication Between Programs 

Because we are starting with existing software, we 
initially see two separate programs, the original software 
(INLAN) and the interpretation program (EXPERT). To 
integrate the two, we need a means of communication, 
which involves automatically filling in the arguments of 
some of the evidence necessary to correctly invoke the 
production rules. Figure IV- 1 is a simple illustration of such 
a production rule, where the finding of gas can be 
communicated once certain tasks have been performed in 
the well log analysis program. This requires that the original 
program record such information and pass it on to the 
interpretation program. Because both programs are written 
in FORTRAN, communication is relatively straightforward. 

325 



If: 
The neutron-density crossplot has been performed, 
and gas is found, 
and the current porosity log has not been gas corrected 

Then: The following advice is given: 
The porosity logs may be gas corrected by Methods a, 6. 

Figure IV-l: Example of a rule for advising on methods 

Secondly, we need to communicate back to the well 
log program so that the user may now choose whether to 
accept the advice or not. The selection of methods through 
the master panel and other screens is menu oriented and 
therefore, we can use a dynamic scheme to place an item 
on the menu. A production rule may then be invoked to 
indicate the circumstances under which the method is 
displayed on the menu and is available for the user to 
select Thus in the example of Figure IV- 1 Methods a and 
b would appear on the menu when the production rule is 
satisfied. Figure IV-2 gives an overview of communication 
channels used in ELAS. 

Figure IV-P: Overview of ELAS Communication 

V Conclusions and Future Directions 

A major challenge of this project is to develop an 
expert system that is effective and productive in a realistic, 
large scale application. In the present project there is a 
strong incentive to encode expert knowledge and make this 
knowledge available to others in the field because of the 
scarcity and cost of expert interpreters. The building of 
such a system will allow us to gain important insight into 
the complete spectrum of tasks needed for taking an 
expert system from conception and design to actual use in 
a real world setting. Another long-term goal of the ELAS 
project is to abstract some of the general principles of 
knowledge organization and systems design that are 
applicable to signal interpretation problems of whch well 

log analysis is an example. Of particular interest to us is 
the development of more general schemes to interface an 
interpretive program to existing applications software. We 
have already established some of the mechanisms in this 
project, but a more structured approach may prove valuable 
in addition to a production rule scheme. Formal 
representation issues regarding multi-level expert systems 
are being presently studied within the framework of the 
ELAS system. Specification of inter-level communication, 
such as task dependencies, task-observation relations, and 
consistency invocations should eventually have schemes for 
easy encoding in the knowledge base. For example, task 
dependencies, such as if Task A is redone then Task 6 
must also be redone, should be more concisely 
representable than in a pure production rule knowledge 
base. 

The system is expected to be operational in Amoco’s 
regional offices in the latter part of this year. If well- 
received, we expect that the system will grow in expertise, 
benefiting from the contributions of many knowledgeable 
users. 

Cl1 

c23 

C3l 

L-41 

c53 

ES3 

C7l 

VI References 

Hart, P. “Directions for Al in the Eighties.” SIGART 
Newletter. 79 (1982) 1 l- 16. 

Bennett, James S. and Engelmore, Robert 
S. “SACON: A Knowledge-Based Consultant for 
Structural Analysis.” In Proceedings of the Sixth 
International Joint Conference on Artificial 
Intelligence. Tokyo, Japan, 1979, 47-49. 

Weiss, S., Kulikowski, C., Galen, R. “Developing 
Microprocessor Based Expert Models for Instrument 
Interpretation.” In Proceedings of the Seventh 
International Joint Conference on Artificial 
intelligence. Vancouver, Canada, 198 1, 853-855. 

Fagan, Lawrence M. “Ventilator Manager: A Program 
to Provide On-Line Consultative Advice in the 
Intensive Care Unit”, Technical report HPP-78- 16, 
Heuristic Programming Project, Stanford University, 
September 1978. 

Martner, Samuel T. and Brigham, Robert J. “An 
Interactive Computer System for Well Log Analysis.” 
In SPWLA Sixteenth Annual Logging Symposium. , 
June 4-7, 1975, . 

Davis, R., Austin, H, Carlbom, I., Frawley, B., 
Pruchnik, P., Sneiderman, R., Gilreath., J. “The 
Dipmeter Advisor: Interpretation of Geologic 
Signals.” In Proceedings of the Seventh 
f nternational Joint Conference on Artificial 
Intelligence. Vancouver, Canada, 198 1, 846-849. 

Weiss, Sholom, and Kulikowski, Casimir “EXPERT: A 
System for Developing Consultation Models.” In 
Proceedings of the Sixth International Joint 
Conference on Arti f icia f Intelligence. Tokyo, 
Japan, 1979, 942-947. 


