
FRAME-BASED COMPUTER NETWORK MONITORING 

Lawrence A. Stabile 
Prime Computer, Inc. l 

500 Old Connecticut Path 
Framingham, Massachusetts 01701 

Abstract 

This paper describes an application of FRL to 
the monitoring of a large computer network. The 
design utilizes frame models for the network 
domain and a general graphics system, and a method 
for coupling the two domains by analogy creation 
and maintenance. We also explore the use of 
heuristics to control the selection of viewable 
descriptions, at their various abstraction levels 
and sizes. An ultimate goal of the project is to 
provide a convenient means for developers to 
create new graphic descriptions of the domain, 
without worry as to size of the description, and 
allow the heuristics to decide how and when the 
descriptions should be placed on the screen. 

Introduction 

We present the design of a frame-based system 
for monitoring and displaying the properties of a 
large computer network. We focus on (1) the 
development of a frame model for the computer 
network domain, including relevant information 
regarding performance, operational status, and 
topology, (2) the design of a frame model for 
graphic displays, a general constraint-based 
structure of hierarchical regions that may be 
manipulated by the user or the network domain; i!'t 
includes the notion of "intelligent pan and zootry", 
described further below, and (3) the use of 
analogy creation and maintenance to join tHese 
two domains to effect the desired interactive 
behavior and promote the modularity of state-based 
structures. This project uses a version of FRL 
[7,8], briefly described in a later section. 

This work bears similarity to the I-Space 
project of Rieger et. al. 161, and to various 
constraint-based simulation-oriented systems, such 
as Thinglab Cl], and Constraints 191. A 
distinction between our project and I-Space is our 
explicit attack on the problem of the size of 
graphic description: a terminal screen is of 
limited resolution; it represents an ultimate 
constraint in graphic-system design. The author 
sees this problem as central to the control of 

---w-www 
* Present address: 
Apollo Computer, Inc., 
19 Alpha Road, 
Chelmsford, Mass. 01824 

large data sets; our solution is to use 
domain-independent and -dependent heuristics en a 
homomorphic correspondence between the 
application domain (here, computer networks) and 
the graphics domain. This manifests itself as a 
so-called generic B, which we describe 
below. 

Goals 

We desire to construct a system that permits 
the centralized observation of all activities on a 
large network of computers (in our case, a 
token-based ring network of approximately 50 Prime 
750 systems). Typically, the user of such a 
system will be an operator or system administrator 
who needs to view an entire field of machines at 
once. 

The desired characteristics of the network 
monitor are: 

(1) The continuous monitoring and abstraction of 
important system events, such as faults, illegal 
attempts to access, and configuration changes. 

(2) The observation of system performance via 
abstractions such as Cartesian graphs, tables, 
and flow diagrams, to display individual and 
overall machine loads, available disk space, 
topology, and other properties. 

(3) The presentation of the above items to the 
user in an intelligent fashion on a (preferably 
color) graphics display. 

Design of the Network Monitor 

With the above goals in mind, it was natural 
to choose a system like FRL for its 
implementation. Its active nature (via attached 
procedures) provides us with the ability to make 
inferences, enforce constraints, and propagate 
information. This gives us the ability to use the 
representations as "physical things" that change 
appropriately when kicked or poked, just as real 
"things" should. 

In the following paragraphs, we will first 
desribe the overall structure of our system, the 
network domain model, then the graphics model, and 
last the analogical link constructed between the 
two. 

327 

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved. 



Overall operation of the network monitor is as 
follows. We start with a large network of 
machines, in this case a token-based ring. 
Running on each machine is a process that 
periodically sends a package of raw data back to 
the master monitoring process. Here, the raw data 
is placed under the appropriate slots in the frame 
or frames that model that machine, or associated 
communication links (virtual circuits). Placement 
of this data trggers demons that compute desired 
features and abstractions, which in turn may 
trigger further computations. 

When sufficient data has been computed, 
demons that recognize this fact pass the data to 
the corresponding graphics frame via the 
analogical link (should one exist). Should the 
user be observing an updated piece of data, this 
update will immediately appear on the screen. The 
user may choose, via keyboard and/or tablet, to 
observe some other data or to probe a given datum 
in more detail. The graphics system will then be 
"connected", via analogy, to that data, and 
observation proceeds from there. 

The frame structure for the network domain starts 
with the object "ring-net", which contains as 
components sets of machines and communication 
links. These frames in turn have components, such 
as user sets and peripheral devices. In addition, 
the frames contain various features and demons to 
compute these features as data is added. 

As an example of operation of the network 
frames, consider some parameters of an individual 
machine. The raw data from the measurement 
processes contains cpu-time, io-time, and 
page-fault-rate. The addition of any of these to 
their slots in a machine frame causes computation 
of a general "load" figure. Similarly, other 
performance parameters, network topology, 
peripheral status, and other data, trigger demons 
appropriate to the desired abstractions. The 
demon-inheritance mechanisms of FRL are very 
important here; for instance, general topology 
changes are handled high in the ako-structure for 
the net, whereas more specific computations reside 
at the low level. The demons which may be 
triggered by such data-changes thus range from 
entire recomputation of the graphics analogy 
(e.g., a result of a topology change), to simple 
changes of one text string to another. 

The graphics frame system is a 
general-purpose graphics tool with which one can 
build several kinds of hierarchical structures. 
Regions are contained within regions down to a 
primitive level; these are the objects that 
directly drive the terminal at hand, and are 
typically lines or strings, although any program 
that directly drives the terminal may be 
interfaced to the system to act as a primitive 
object (e.g., a bar graph). The basic unit used 
to size and group the data is the rectangle; a 
"compute-size" demon calculates the enclosing 
rectangle of a set of rectangles, given their 
relative coordinates. Special demons for each 
kind of layout desired position the objects in the 
appropriate way 9 relative to the enclosing 

object. Size computations propagate from the 
bottom up, thus giving the layout-designer freedom 
from screen-size constraints. One can build 
objects from other objects, construct new 
layout-demons, or add to the set of primitives, 
without regard to size - choice of properly-sized 
objects is done heuristically, as described 
below. Current elements of the layout library 
include center-justified-stacks of rectangles, 
top-justified-strings (and variations on these), 
elliptical layouts, text- strings of various font, 
sizes, bar graphs, and individually pan/zoom-able 
(in the physical sense) Cartesian graphs. 

With the network domain model and the 
graphics model so described, our task now is to 
link them together. We do this by creating and 
maintaining an ana-lo3zv between the two 
structures. In our system, this method forms a 
fundamental engineering structuring technique: 
state-based systems may be built Jndenendent-ly, 
then coupled via the analogy mechanism. This is 
similar to using composition in a functional 
model, but here the state behavior of each system 
is naturally preserved and utilized. 

An analogy is simply a correspondence between 
the components of two frame structures such that 
changes in the components of one domain are 
naturally reflected in the other. A slot name is 
chosen for the correspondence, such as 
"full-graphic-description" or 
"summary-graphic-description". The correspondence 
is currently produced by demons in the source 
domain that instantiate the target frames and 
connect the analogical link. Recursive domains 
are supported simply by requiring an 
analogy-creating demon to construct a target frame 
using components that are analogies of the 
components of the source frame. 

Although many analogies are built as 
correspondences between individual frames, the 
truly interesting case occurs when we create a 
correspondence between an individual and a mer-ic 
structure. We thus have a homomorphism in which 
any object that may be instantiated in the target 
prototype validly represents the source object. 
The user, and the system-heuristics, may freely 
choose an object to instantiate depending on size 
constraints, desired level of abstraction, and 
other general or domain-specific information. 

In our monitoring system, the individual is 
the network model and the generic structure is the 
set of possible graphic descriptions of that 
model. For example, a ring-net may have a 
description which is graphically depicted as an 
elliptical layout, with small objects for each 
machine-node that may indicate nothing more than 
"up", "down", "loaded", or "unused". One could 
thus fit this summary of many machines on a 
single screen. A more detailed description might 
include bar graphs of performance of each machine, 
but one could then see only a small number of them 
at a time. The variety of descriptions continues 
in this way; what the user sees is determined by 
desire, size, detail, and importance. 



The resulting generic-graphics structure 
forms an AND/OR graph; any tree built from this 
graph is a valid description of the domain. To 
obtain a size-sorted set of descriptions for 
pan-zoom, we note that since size propagates 
upwards, we could simply enumerate the cross- 
product of all choices, size-sort them, and allow 
the user to choose a specific structure. This is, 
unfortunately, potentially explosive 
combinatorially. We thus use both graphics-domain 
and network-domain heuristics to determine the 
appropriate set of objects to build. Some of the 
heuristics are: (1) Allow the user (in the 
network domain) to attach intuitive information as 
to the relative size and importance of the 
graphic descriptions, (2) Use limited-depth 
search of the graphics AND/OR graph to approximate 
exhaustive enumeration, (3) Use general 
domain-properties, e.g., a table may be too large 
to fit on the screen and could be divided into 
"pages,', (4) Use the ,,uniform level hypothesis" 
that many domains are naturally structured as 
parts decompositions that are of the same kind at 
each level (e.g., in digital circuits, we go from 
block diagram -> gates -> transistors -> holes and 
electrons), (5) Be able to correct any erroneous 
choices made above by suitable backtracking. 

Implementation Status 

Currently, a small version of the network 
monitor runs on five machines. The network-domain 
frames receive data over X.25 virtual circuits; 
performance data is currently the only data 
gathered, 

The graphics system is complete, contains 
many primitive objects and layouts, and operates 
completely constraint-based. It has been tested 
on various small domains (including recursive 
ones) with success. Heuristics for pan and zoom 
currently consist of user-supplied size intuitions 
and a simple limited-depth size search. It is 
anticipated that the ultimate usefulness of the 
heuristics described earlier will not be 
ascertainable without using larger data sets. 
Backtracking is installed, and is currently 
user-controlled. 

FRL is implemented as a set of primitives 
inside our interpretive Lisp system. The 
performance of this system will have to be 
improved for truly usable results, although it is 
acceptable on the current small model. Our 
version of FRL is much like the original [7,8], 
but we have not implemented some of the more 
esoteric functions, and have added a few 
extensions: *if-added, *if-removed, etc., are 
properties attached to the frame--definition of 
slots. These are useful for bookkeeping kinds of 
slots that may have a variable number of 
occurrences in a frame (e.g., component-slots), 
for installing inverses of slots, and (eventually) 
for controlling analogies in a constraint-based 
way. Also, we have installed a simple queuing 
mechanism to suspend attached procedures (via 
closures) when their needed data is unavailable. 

Similar to the miters of Fikes C21, this is 
useful for non-constraint-based inferences, and 
for resolving "forward references" when loading 
data from a text file. 

The network communications facility is 
embedded in Lisp as a_ few simple functions to 
start processes and to send and receive messages. 
The underlying mechanism for this is a set of 
inter-process communication primitives (see [33 
for details). For an overview of Lisp-based 
network communication techniques, see Model [4]. 

Problems 
and 

Directions for Future Research 

Localization of naming scopes within a FRL domain 
would be of great benefit, allowing independent 
designers to combine frame systems without 
name-conflict worry. We are considering 
extensions in this direction. In addition, a 
troublesome aspect of FRL is the lack of clear 
distinction between knowledge and meta-knowledge. 
This crops up in spots where we wish to build, 
say, frames whose constraints control the way in 
which other frames and their constraints are 
built. 

We also wish to apply our system to the 
control of networks, as well as their monitoring, 
and to utilize some of the ideas from expert 
systems and pattern-matching in the monitoring and 
control process, a goal shared by the I-Space 
project [63. 

Despite the problems mentioned above, the 
author has found the object-based method to be of 
great use in structuring data and their 
interactions, with particular freedom from 
sequential control. 

329 



Cl1 

121 

c31 

141 

[51 

iI61 

c71 

183 

[91 

References 

Borning, A., "Thinglab - An 
Object-Oriented System for Building 
Simulations using Constraints", 
ICJAI-5, MIT, Cambridge, Mass., 
August, 1977. 

Fikes, R.E., "Odyssey: A 
Knowledge-Based Assistant", Artificial 
Intelligence, 16-3, July, 1981. 

Gertner, I., "A Report on Process 
Management in a Guest Distributed 
Operating System", Third Intl. Conf. 
on Distributed Computing 
Systems, October, 1982, Ft. 
Lauderdale, Florida. 

Model, M.L., "Multiprocessing via 
Intercommunicating Lisp Systems", 
Proc., 1980 Lisp Conference, 
Stanford, California. 

Rieger, C., and C. Stanfill, 
"Real-time Causal Monitors for 
Complex Physical Sites',, 
Proc., NCAI-1, Stanford, 
California, 1980. 

Rieger, C., R. Wood, and E. Allen, 
"Large Human-Machine Information 
Spaces", Proc., IJCAI-81, 
Vancouver, BC, 1981. 

Roberts, R.B., and I.P. Goldstein, 
"The FRL Primer,', MIT-AI Lab 
Memo 408, 1977. 

Roberts, R.B., and I.P. Goldstein, 
"The FRL Manual", MIT-AI Lab 
Memo 409, 1977. 

Sussman, G. J., and G.L. Steele, 
Jr., "Constraints-A Language for 
Expressing Almost-Hierarchical 
Descriptionsf,, Artificial 
Intelligence 14-1, August, 1980. 

[lOI Winston, P.H., "Learning and 
Reasoning by Analogy", CACM, 23-12, 
December, 1980. 

330 


