
SWIRL: AN OBJECT-ORIENTED AIR BATTLE SIMULATOR 

Philip Klahr, David McArthur and Sanjai Narain;: 

The Rand Corporation 
1700 Main Street 

Santa Monica, California 90406 

ABSTRACT ROSS, an object-oriented language that has evolved 
over the last two years as part of the 
knowledge-based simulation research at Rand 
[1,3,6,7,8,91. 

We describe a program called SWIRL designed for 
simulating military air battles between offensive 
and defensive forces. SWIRL is written in an 
object-oriented language (ROSS) where the knowledge 
base consists of a set of objects and their 

In the following sections we discuss the goal 
of SWIRL, outline the main objects in the 
air-battle domain, and note how those objects and 
their behaviors map onto the ROSS objects and ROSS 
behaviors that constitute the SWIRL program. We 
discuss some of the problems encountered in 
designing an object-oriented simulation, and 
present our solutions to these problems. 

associated behaviors. 
problems we encountered 

We discuss some of the 
and in designing SWIRL 

present our approaches to them. 

I INTRODUCTION 

Object-oriented programming languages such as 
SMALLTALK [2], PLASMA [4], and DIRECTOR [5], as 
well as ROSS [S], enforce a 'message-passing' style 
of programming. A program in these languages 

II THE GOAL OF SWIRL - ---~ 

The goal of SWIRL is to provide a prototype of 
a design tool for military strategists in the 
domain of air battles. SWIRL embeds knowledge 
about offensive and defensive battle strategies and 
tactics. SWIRL accepts from the user a simulation 
environment representing offensive and defensive 
forces, and uses the specifications in its 
knowledge base to produce a simulation of an air 
battle. SWIRL also enables the user to observe, by 
means of a graphical interface, the progress of the 
air battle in time. Finally, SWIRL provides some 
limited user aids. Chief among these are an 
interactive browsing and documentation facility, 
written in ROSS, for reading and understanding 
SWIRL code, and an interactive history recording 
facility for analyzing simulation runs. This, 
coupled with ROSS's ability to easily modify 
simulation objects and their behaviors, encourages 
the user to explore a wide variety of alternatives 
in the space of offensive and defensive strategies 
and to discover increasingly effective options in 
that space. 

consists of a set of objects called actors that 
interact with one another via the transmission of 
messages. 
set of message 

Each actor has a set of attributes and a 
templates. Associated with each 

message template is a behavior that is invoked when 
the actor receives a message that matches that 
template. A behavior is itself a set of message 
transmissions to other actors. Computation is the 
selective invocation of actor behaviors via message 
pasSing. 

This style of computation is especially suited 
simulation in domains that may be thought of as to 

consisting of autonomous interacting components. 
In such domains one can discern a natural mapping 
of their constituent components onto actors and of 
their 
Indeed, 

interactions 
experts in many 

onto message transmissions. 
may find the domains 

object-oriented metaphor a natural one around which 
to organize and express their 
addition, object-oriented simulations can achieve 

knowledge In 

high intelligibility, modifiability and credibility 
III SWIRL'S DOMAIN - ~~ [1,6,91. However, while these languages provide a 

potentially powerful simulation environment, they 
can easily be misused, since good programming style 
in object-oriented languages is not as well-defined 
as in more standard procedural languages. 

In this paper we describe a program called 
SWIRL, designed for simulations in the domain of 
air battles, and use SWIRL to demonstrate effective 
simulation programming techniques in an 
object-oriented language. SWIRL is written in 

5: Views expressed in this paper are the authors' 
own and are not necessarily shared by Rand or its 
research sponsors. 

In our air-battle domain, penetrators enter an 
airspace with a pre-planned route and bombing 
mission. The goal of the defensive forces is to 
eliminate those penetrators. Below we list the 
objects that comprise this domain and briefly 
outline their behaviors. 

1. Penetrators. These are the primary offensive 
objects. They are assumed to enter the defensive 
air space with a mission plan and route. 

2. GCIs. "Ground control intercept" radars 
detect incoming penetrators and guide fighters to 

331 

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved. 



intercept penetrators. 

3. AWACS. These are airborne radars that also 
detect and guide. 

4. SAMs. Surface-to-air missile installations 
have radar capabilities and fire missiles at 
invading penetrators. 

5. Missiles. These are objects fired by SAMs. 

6. Filter Centers. They serve to integrate and 
interpret radar reports; they send their 
conclusions to command centers. 

7. Fighter Bases. Bases are alerted by filter 
centers and send fighters out to intercept 
penetrators when requested to by command centers. 

8. Fighters. Fighters receive messages from 
their base about their target penetrator. They 
are guided to the penetrator by a radar that is 
tracking the penetrator. 

9. Command Centers. These represent the top 
level in the command-and-control hierarchy. 
Command centers receive processed input about 
penetrators from filter centers and make 
decisions about which resource (fighter base) 
should be allocated to deal with a penetrator. 

10. Target. Targets are the objects penetrators 
intend to bomb. 

Figure 1 shows an example snapshot of an air-battle 
simulation. A complete description of the SWIRL 
domain can be found in [7]. 

IV THE DESIGN OF SWIRL - -~- 

In this section we outline how the above flow 
of command and control among the different kinds of 
objects is modeled in ROSS. 

The first step in modeling in an 
object-oriented language such as ROSS is to decide 
upon the generic actors and their behaviors. A 
generic object or actor in ROSS represents an 
object type or class and includes the attributes 
and behaviors of all instances of that class. For 
example, the generic object FIGHTER represents each 
of the individual fighters that may be present in 
any simulation environment. Second, one may need 
to design a set of auxiliary actors to take care of 
modeling any important phenomena that are 
unaccounted for by the generic objects. 

A The Basic Objects 2 -~ 

We begin by defining one ROSS generic object 
for each of the kinds of real-world objects 
mentioned in the previous section. We call these 
objects basic objects. Each of these has several 
different attributes representing the structural 
knowledge associated with that type of object. For 
example, to express our structural knowledge of 
penetrators in ROSS, we create a generic object 

Figure 1. Graphical Snapshot of SWIRL Simulation. 

332 



called PENETRATOR and define its 
the following ROSS command: 

attributes using times. (The entire hierarchical 
SWIRL is given in [7].) 

organization for 

(ask MOVING-OBJECT create generic PENETRATOR with Each object type in the class hierarchy can be 
position 1 a position' construed as a description or view of the objects 
max-speed 'a maximum speed' below it. One object (AWACS) happens to inherit 
speed 'current speed' its behaviors along more than one branch of the 
bombs 'current number of bombs' hierarchy (via RADAR and MOVING-OBJECT). Such 
status 'a status' 'multiple views' Or 'multiple-inheritance' is 
flight-plan 'a flight plan') possible in ROSS but not in most other 

object-oriented programming environments. 
where phrases in single-quotes represent variables. 

C. Modeling Non-Intentional Events 
To capture the behaviors of each kind of - 

real-world object, we begin by asking what The basic objects and their behaviors have a 
different kinds of input messages each of these clear correspondence to real-world objects and 
real-world objects could receive. For example, a their responses to the deliberate actions of 
fighter can receive a message (a) from its fighter others. These actions comprise most of the 
base telling it to chase a penetrator under significant events that we wish to simulate. 
guidance from a radar, (b) from that radar telling However, there are several important kinds of 
it to vector to a projected intercept point with events that represent side effects of deliberate 
the penetrator, or (c) an 'in-range' message actions (e.g., a penetrator appearing as a blip on 
informing it that the penetrator is in its radar a radar screen is a side effect of the penetrator 
range. Each of these messages then becomes the flying its course and entering a radar range). 
basis for a fighter behavior written in ROSS. To Such events are important since they may trigger 
determine the structure of each of these behaviors other actions (e.g., a radar detecting a penetrator 
we ask what messages the object transmits in and notifying a filter center). However, these 
response to each of its inputs. For example, in non-intentional events do not correspond to 
response to a 'chase' message from its fighter real-world message transmissions (e-s., 
base, a fighter will send a message to itself to penetrator does not notify a radar that it ha: 
take off, and then send a message to the specified entered the radar's range). An important issue in 
radar requesting guidance to the penetrator. The the development of SWIRL has been how to capture 
following ROSS command captures this behavior: these non-intentional events in an object-oriented 

framework (i.e., via message transmissions). 
(ask FIGHTER when receiving 

(chase 'penetrator guided by >gci) One method of capturing non-intentional events 
(-you unplan all (land)) could be to refine the grain of simulation. The 
(-you set your status to scrambled) grain of a simulation is determined by the kind of 
(if (-you are on the ground) real-world object one chooses to represent as a 

then (-you take off)) ROSS object. A division of the air-battle domain 
(-requiring (-your guide-time) tell -the gci into objects like penetrators and radars is 

guide -yourself to -the penetrator)). relatively coarse grained; a finer grain is 
possible. In particular, one could choose to 

(The '-'s signal abbreviations. The ROSS create objects that represent small parts of the 
abbreviations package t81 enables the user to 
introduce English-like 

airspace through which penetrators fly. Then, as 
expressions into his 

programs and to tailor the expressions to his own 
penetrators move they would send messages to those 

preference. This approach towards readability is 
sectors that they were entering or leaving (just as 

'send 
particularly flexible, since the user is 

objects moving through real space impact or 
not 

restricted to system-defined 
messages' to that space). Sectors could be 

any English associated with radars whose 
interface.) 

ranges they define, 
and act as intermediary objects to notify radars 

B. Organizing Objects Into a Hierarchy 
when penetrators enter their ranges. Essentially 

- - - this solution proposes modeling the situation at an 
almost 'molecule-strikes-molecule' level of detail 

The behaviors of basic objects often have many 
that are revealed in the process of 

since, by adopting this level, one can achieve a 
commonalities strict mechanical cause-and-effect chain that is 
defining their 'behaviors. For example, GCIs, AWACS 
and SAMs all share the ability to detect, and their 

simple to model via message transmissions between 
real objects. 

detection behaviors are identical. We can take 
advantage of ROSS's inheritance hierarchy (see [8]) However, although this method solves one 
to reorganize object behaviors in a way that both it causes two others that make it 
emphasizes these conceptual similarities and 

modeling problem, 
intractable. First, the method entails a 

eliminates redundant code. For example, for prohibitive amount of computation. Second, in most 
objects that have the behaviors of detection in cases, the extra detail would make 

abstract generic object 
modeling very 

common, we define a more 
called RADAR to store these common behaviors. We 

awkward and unnatural (at least for our purposes in 
building and using SWIRL). The natural level of 

then place it above GCI, AWACS and SAM in the decomposition is that of 'coarse objects' such as 
hierarchy, so that they automatically inherit the penetrator and fighter. To the extent we stray 
behavior for detection whenever necessary. Hence from this, we make the simulation writer's job more 
we avoid writing these behaviors separately three difficult since he can no longer conceive of the 

333 



task in the way that comes simplest or most y PERFORMANCE FIGURES 

The ROSS interpreter is written in MACLISP and 
runs under the TOPS-20 operating system on a DEC20 
(KLlO). The space requirement for this interpreter 
is about 112K 36-bit words. SWIRL currently 
contains the basic and auxiliary objects mentioned 
above, along with approximately 175 behaviors. 
Compiled SWIRL code uses about 48K words. A 
typical SWIRL simulation environment contains well 
over 100 objects and the file defining these 
objects uses about 3K words. Total CPU usage for 
the simulation of an air-battle about three hours 
long is about 95 seconds. This includes the time 
needed to drive the graphics interface. 

VI CONCLUSIONS - 

We have found the object-oriented environment 
afforded by ROSS to be a rich and powerful medium 
in which to develop a non-trivial simulation 
program in the domain of air-battles. The program 
adheres to the criteria of intelligibility, 
modifiability and credibility laid out in [1,6,9]. 
Liberal use of the abbreviations package has led to 
highly English-like code, almost self-documenting 
in nature. BY adhering to several stylistic 
principles for object-oriented programming, such as 
the Appropriate Knowledge Principle and the 
Appropriate Decomposition Principle, we have been 
able to further enhance SWIRL's modifiability. 
This has enabled us to easily experiment with a 
wide range of air-battle strategies. Coupled with 
a graphics interface which allows us to quickly 
trace a simulation run and test the credibility of 
its behaviors, SWIRL provides a powerful 
environment in which to develop and debug military 
strategies and tactics. 

naturally to him: In summary, we reject this 
technique because it violates the following 
principle that we have found 
object-oriented simulators: 

useful in designing 

THE APPROPRIATE DECOMPOSITION PRINCIPLE: 
Select a level of object decomposition that is 
'natural' and at a level of detail commensurate 
with the goals and purposes of the model. 

A second solution for modeling non-intentional 
events would be to allow the basic objects 
themselves to transmit the appropriate messages. 
For example, if we allow a penetrator (with a fixed 
route) to see the position and ranges of all 
radars, it could compute when it would enter those 
ranges and send the appropriate 'in-range' messages 
to the radars. This solution is computationally 
tractable. However, it has the important drawback 
that it allows the penetrator to access pieces of 
knowledge that, in reality, it cannot access. 
Penetrators in the real world know their routes but 
they may not know the location of all enemy radars. 
Even if they did, they do not send messages to 
radars telling the radars about themselves: In 
short, we reiect this technique because it violates 
another useful principle that can be formulated as 
follows: 

THE APPROPRIATE KNOWLEDGE PRINCIPLE: Try to 
embed in your objects only legitimate 
knowledge, i.e., knowledge that can be directly 
accessed by 
being modeled. 

the real-world objects that are 

D L Auxiliary Objects 

We feel that the above principles should be 
considered by anyone attempting to develop an 
object-oriented simulation, as they are critical to 
insure readable and conceptually clear code. The 
solution we offer in SWIRL represents one technique 
that adheres to both principles. 

After we decompose the domain into a set of 
basic objects, we create auxiliary objects to 
handle non-intentional events. Auxiliary objects 
are full objects in the ROSS sense. However, they 
do not have real-world correlates. Nevertheless, 
such objects provide a useful device for handling 
certain computations that cannot be naturally 
delegated to real-world objects. We have included 
two auxiliary objects in SWIRL, the SCHEDULER and 
the PHYSICIST. 

The SCHEDULER represents an omniscient, 
god-like being which, given current information, 
anticipates non-intentional events in the future 
and informs the appropriate objects as to their 
occurrence. The PHYSICIST models non-intentional 
events involving physical phenomena such as bomb 
explosions and ecm (electronic counter measures). 
Although we have now introduced objects which have 
no real-world correlates, the objects that do have 
real-world correlates adhere to the above 
principles. Hence, code for the basic objects 
remains realistic and transparent. 

REFERENCES 

Faught, W. S., Klahr, P. and Martins, G. R. 
'An Artificial Intelligence Approach To Large- 
Scale Simulation." In Proc. 1980 Summer ~ - 
Computer Simulation Conference, Seattle, 1980, 
231-235. 
Goldberg, A. and Kay, A. "Smalltalk- 
Instruction Manual.' SSL 76-6, Xerox PARC, 
Palo Alto, 1976. 
Goldin, S. E. and Klahr, P. "Learning and 
Abstraction in Simulation." In Proc. 
IJCAI-81, Vancouver, 1981, 212-214. 
Hewitt, C. "Viewing Control Structures as 
Patterns of Message Passing." Artificial 
Intelligence 8 (1977), 323-364. 
Kahn, K. M. "Director Guide." AI Memo 482B, 
MIT, 1979. 
Klahr, P. and Faught, W. S. "Knowledge-Based 
Simulation." Proc. AAAI-80, Palo Alto, 1980, 
181-183. 
Klahr, P., McArthur, D., Narain, S. and Best, 
E. "SWIRL: Simulating Warfare in the ROSS 
Language." The Rand Corporation, 1982. 
McArthur, D. and Klahr, P. "The ROSS Language 
Manual." N-1854-AF, The Rand Corporation, 
Santa Monica, 1982. 
McArthur, D. and Sowizral, H. "An Object- 
Oriented Language for Constructing 
Simulations." Proc. IJCAI-81, Vancouver: 
1981, 809-814. 

[II 

[21 

[31 

[41 

[51 

[61 

[71 

[81 

[91 

334 


