
AN EXPERT SYSTEM THAT VOLUNTEERS ADVICE

Jeff Shrager
Carnegie-Mellon University
Department of Psychology

Tim Finin
University of Pennsylvania

Department of Computer Science

I. Motivation and Svstem Overview

This paper describes the design and
expert system that provides novice users

implementation of an
Nith help in using the

Vax/VMS operating system. The most interesting feature of our
advisor is that it follows the user’s interactions with the system and
volunteers its help when it believes that the user would benefit
from advice. The user need not ask for help or raise an error
condition. The adivsor recognizes correct yet inefficient command
sequences and helps the beginner become more proficient by
indicating how these tasks may be done more efficiently.

What are the the inefficient command sequences that we are
trying to recognize? There are several dimensions to inefficiency
in operating system interactions: Operating systems provide many
features (such as wild cards in file names, lists of verb targets, etc)
which are meant to minimize the user’s work (e.g., typing).
Consider:

$PRINT PROGRESS.MEM
$PRINT MEETING.MEM
etc...

rather than:

$PRINT *. MEM

On another dimension, we measure inefficiency in terms of
system resources. The system typically provides special functions
which perform operations much more sparingly than more general
means would permit. Contrast:

$COPY NOTES.* OLDNOTES.+
$DELETE NOTES.*.*

with:

$RENAME NOTES.* OLDNOTES.*

The DCL expert that we have constructed recognizes less
efficient sequences and constructs help messages that provide
either immediate advice or a pointer to a manual or online HELP
entry. Following is a sample of the DCL expert’s behavior (the first
two lines are entered by the user):

$COPY TEST.TXT EXPl.TXT
$DELETE TEST.TXT:
%If you mean to be changing the name of
% TEST.TXT to EXPl.TXT you might have
% simply used the command:
% $RENAME TEST-.TXT EXPl.TXT
% The HELP command can tell you mqre
% about RENAME.

II. General Approach

The difficulty of this task is, of course, to recognize when some
sequence of commands constitutes a plan that a person is using
to achieve a goal. We have approached this problem by collecting
a catalog of “bad plans” which novice users often use to achieve
common goals. The problem thus reduces to matching command
sequences to descriptions of generic plans from the catalogue. In
this application, the matching process is complicated by the
lollowing issues:

l Non-contiguity: The individual commands which make
up a sequence might be spread out over a session.
Each of the intervening commands may or may not
affect the goal which the overall sequence is meant to
achieve.

l Ambiguity: The mapping from plan to goals is many to
many. A given sequence may match several plans. A
given plan may be realized by several sequences.

l The necessity of Extensional Knowledge: A given
sequence may have side effects or use information
not directly expressed in the syntax of the commands.
In order to recognize which of several possible goals
is being attempted one may, for example, have to
expand “wildcard” patterned filenames and select
names from the current directory which are refered to
by the command at hand.

Ill. Specific Method

Our. goal recognition heuristic is driven by an expectation
parser [l]. A KL-One like network [Z] describes the commands
that form the heads of sequences to be recognized. Upon
instantiation of any new entry in the net, some action takes place
as specified by the parsing object for which the new instance
represents a case. The actions can activate, deactivate, or modify
other objects in the network. Since the contents of the net direct
the parser, changing it can substantially effect the way in which
future commands are processed and the actions to take place
when they are parsed. In particular: parsing objects are added
which recognize commands that come later on in the sequence
whose head was just recognized. The action taken on recognition
of the last command in a sequence typically invokes a help
message. The actions have access to the network contents and
thus can tailor the message to the case just recognized (or any
other information contained therein since the contents of the net
represent everything of which the user has demonstrated
knowledge).

339

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

IV. A Detail Example

$DIRECTORY NOTES.* /OUTPUT=OLDFILES.TXT

A more general way of routing output to a file involves the
separate commands ASSIGN and DEASSIGN to attach the
selected file to the output channel as:

$ASSIGN SYS$OUTPUT OLDFILES.TXT
$DIRECTORY NOTES.*
SDEASSIGN SYS$OUTPUT

The following recognition sequence takes place: Upon
recognition of an ASSIGN command, parsing objects for both the
DIRECTORY command and the DEASSIGN command are added
to the network. If a DEASSIGN command were to be entered at
this point, the DIRECTORY object would be deactivated and the
DEASSIGN object would deactivate itself. No goal is recognized.
If, on the other hand, a DIRECTORY command were entered, the
first DEASSIGN object would be detached and a new DEASSIGN
object activated whose action represents a successful goal
recognition and would trigger an appropriate help message. Note
the necessity of the interim DEASSIGN command in order that an
ASSIGN + DEASSIGN pair is not mistaken for one with a
DIRECTORY command between them.

V. Implementation Details

In implementation, the user is communicating via a Franz Lisp
program which sends the commands to VMS and then runs those
that succeed through the goal recognition parser. Only
commands, not the inputs of programs, are trapped. Commands
which cause errors are not processed because we assume, first,
that they will probably be immediately reentered. Also, the error
will certainly cause the parser trouble if the problem was syntactic
and will cause the goal recognition processor trouble if the error
was semantic. The working system recognizes 5 complete goals
and various short-cut strategies (combined command targets,
etc).

VI. Discussion

There are implications of this research beyond the additional
power that it affords expert systems in general. Since the
knowledge network contains an object for each command that has
been issued one can think of that database as a user profile. We
have made only marginal use of this potential by arranging the
actions so that advice is only given for commands that the user

has not already used. This is done by, for example, removing the
head parsing object of the COPY + DELETE = RENAME sequence
when the beginner uses a RENAME command (this action is a part
of the actions associated with the RENAME parsing object). Other
novice-user aids could be tailored to this dynamic user profile.

Our system essentially encodes the pattern recognition
knowledge of a consultant and applies these patterns to user
input. When inefficiencies are recognized, the automatic observer
can point the way to a more effective use of system capabilities by
refering the user to the help system or some other expert.
Otherwise, it can generate a help message of its own using the
context of the particular sequence to construct useful dialogue.
Our work represents an attempt to extend the range of interactive
advisor systems. User aids currently in service help only users
who cause errors which would invoke an error recovery system or
those who know how and when to ask for help. We have provided
a means by which the system can automatically tutor intermediate
level users who do not make trivial errors but who are not using
commands in an effective way. We therefore bridge the gap
between the introductory user aids and more technically oriented
expert advisors.

ACKNOWLEDGMENTS

This work was performed while the first author was enrolled in
the masters program in.the Department of Computer Science at
the University of Pennsylvania. The paper outlines a Master’s
thesis available as technical report number MS-CIS-81-l from that
department. This work was supported, in part, by NSF grant
number MCS 79-08401. Thanks to Ira Winston for construction of
the Lisp/DCL interface, lots of useful advice, and excellent Vax
systems support. Also, thanks to Peter Buneman for guidance in
the morals of software engineering.

REFERENCES and ABBREVIATED BIBLIOGRAPHY

[l] Riesbeck, C. and R. Schank; Comprehension bv Computer:
ExDectation Based Analvsis of Sentences in Context; Yale
University CS report no. 84.

[2] Brachman, Ron; A Structural Paradiqm for Remesentinq
Knowledae; BBN Report no. 3605, July 1978.

Ball, Eugene and Phil Hayes; ReDresentation of Task Specific
Knowledae in a Gracefullv lnteractinq User Interface;
CMU, in AAAI 1980.

Mark, William; Rule Based Inference in Larqe Knowledae Bases;
USC/Information Sciences Institute, in AAAI August 1980.

Genesereth, Michael R.; The Role of Plans in Automated
Consultation; Laboratory for Computer Science, MIT.

340

