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Information Acquisition in Diagnosis
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Abstract

We arguc that the question selection processes used in the existing
Al in Medicine programs arc inadequate. We trace these inadequacies
to their use of purely surface level models of discase and to the lack of
planning in sequencing their inquirics. We then describe the
information gathering component of ABEL (a program for Acid-Base
and Electrolyte disturbances) with emphasis on its use of a causal
model of a patients illness in guiding its diagnostic inquiries.

1. Background

Diagnostic programs built using the Af in Medicine (AIM)
meihodology typically consist of two parts: one w form hypotheses that
cxplain the data known to the program. and onc to acquire new
information from the program’s uscrs to clarify difficultics remaining
with the hypotheses under consideration. In this paper we suggest that
the questioning behavior of most cxisting diagnostic programs is
inadequate because it is not very responsive to the totality of the
program’s hypotheses.  Both rule-based systems such as Mycin
[Shortliffe76} and frame-based systems such as Internist-1 [Pople77] and
PIP [Pauker76] suffer from this defect, though for diverse reasons.

Mycin [Shortliffe76] is a rulec-based cxpert program for the
diagnosis and therapy of infectious discases. It uses a backward
chaining control structure to sequence through its rule-basc in search of
information rclevant in the diagnosis of possible infections. Mycin
always pursues the antecedent clauses of a rule in their order of
appearance in the rule. Thus during any execution of the program the
antecedent clauses of every rule are expanded in cxactly the same
order, resulting in a pre-determined order in which the questions may
be asked.? This rigidity in Mycin results from its use of rules to encode
both its medical knowledge and the control component of expert
reasoning. The resulting limitations of the Mycin system were
recognized by Davis [Davis76], who proposed meta-rules as a means of
separating these two aspects of expert behavior.' Meta-rules are used in
his system, Teiresias [Davis76], to encode strategic knowledge for the
control of the backward chaining rule interpreter by dynamically
re-ordering and selecting rules to be pursued. It is important to note
that the meta-rules do not alter the program’s domain knowledge; they
provide additional knowledge that allows it to make more efficient use
of this knowledge.
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2. Mycin’s reasoning scheme chooses not to ask a question only if the rule
whose antecedent part suggests it is already doomed to fail by answers to
previous questions or if the question has been previously answered hecause it
appeared in the condition of another rule.
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medicine [Pople77). and the Present lliness Programs (PIP), a program
for the initial formulation of a diagnosis for patients with discases of the
kidneys [Pauker76), both focus on a problem to investigate next by
considering all their active hypotheses. ‘Therefore, control over which
discase or discase set is next to be explored doces not depend on the
manner or order in which these arc cxpressed in the program.
However, once the controlling hypothesis set is determined, the
information gathering  strategics are  limited to  sclecting one
pre-packaged group of questions at a time. E.g., cach time the program
chooses to try to contirm some particular hypothesis, it will run through
the same list of associated questions, in the order in which they appear
in the program’s static knowledge base without regard to what clse the
program knows, After a group of questions is asked, the program’s
hypothesis formation module takes control again, and whether this line
of questioning is resumed or abandoned depends on the process of
hypothesis evaluation and whether the same hypothesis set again rises
to the top of the program’s interest.  Often too little control is thus
excrcised” by the information acquisition part of the program, and
overall diagnostic inefficiencies and incoherent question scquences
result.

Internist-1, a diagnostic program heing developed for all of internal

To study the valuc and use of multi-level causal descriptions in
diagnostic and therapeutic reasoning, we have been developing a new
medical expert consultation program for the domain of acid-base and
clectrolyte disorders, called ABEL.  ‘The information-gathering
component of ABEL uses the program’s causal model of what it
believes might be wrong with the patient to help sclect and order
possible questions to be asked (thus capturing the advantages of
meta-rules used for this purpose in Mycin), and unlike Internist-1 or
PIP it constructs a rather detailed information gathering plan tailored to
the specific set of hypotheses it must confirm or differentiate among.
"This approach gives ABEL an improved control over the sequencing of
questions that are cventually asked of the user.

Wec have noted clsewhere [Patil81] that most of the medical
knowledge contained in the first gencration AIM programs can be
characterized as phenomenological: it describes the associations among
phenomena without the causal mechanisms underlying the observed
associations. Therefore, unlike expert clinicians, these programs are
unable 1o recognize and use causal and temporal relationships among
discascs and to reason about the discase mechanisms at various levels of
detwail. They are unable to evaluate the intcractions, commonalities and
differences among discases, except perhaps in terms of some simple
measure of relative likelihood. ABEL is intended, by contrast, to
provide multiple levels of description of its hypotheses, allowing it to
use both the phenomenological associations of a shallow level and the
dewiied causal mechanisms of deeper levels in formulating hypotheses
and in planning the gathering of new information.



In a previous paper [Patil8la] we have presented ABEL’s
mechanism for describing a patient’s illness. Called the patient-specific
model this description includes data about the patient as well as the
program’s hypothetical interpretations of these data in a muiti-level
causal network. In this paper we focus on the diagnostic
information-gathering  process of the ABEL  program  which
complements the patient-specific model.

2. The information acquisiton problem

The overall diagnostic activity is concerned with developing a clear
understanding of the discase process(es) responsible for the patient’s
ilincss, for usc in prognosis and therapy. It involves interpreting
available information about the patient to form diagnostic hypotheses
which might explain the patient’s illness and acquiring new information
that will help discriminate among these hypotheses. The information
acquisition activity must take into account factors such as the cost,
cfficiency and urgency of acquiring information. In addition, as it
interacts with the uscr, it must also take into account factors such as
topical coherence and the possibility of errors.

Previous programs c.g., Internist-1 [Pople77] have employed
strategics such as discriminate, pursue and rule-out to help sclect a
question or group of questions to ask next. ABEL uses such strategies
instcad to decompose the overall diagnostic problem of resolving
uncertaintics in the hypotheses into sub-goals cach of which is more
specific and amenable to further decomposition.  Thus, rather than
generating questions directly from the top-level diagnostic problem,
ABEL gencrates a tree of sub-problems the leaves of which can be
solved by asking onc or a small group of questions. Because the whole
sct of these questions is methodically selected before any question is
actually asked. interdependencies among the questions can be taken
into consideration. For cxample, ABEL currently organizes all the
planncd questions by the organ system, ectiology, or time period on
which they concentrate, so that groups of questions arc asked in a
coherent order. ‘The number of places in the sub-goal tree where the
answer to a question is thought to be useful is also used to efficiently
order the sequence of questions.

Erroneous information is bound to be presented to the program
during a diagnostic session.  Thercfore, an ability to identify
questionable information and to challenge and correct it quickly is an
important ingredient of clinical expertise. When presented with a
finding which, if accepted, may require extensive reformulation of the
currently held diagnoses, it may be unwise for the program to act on
such information unless it can bc substantially corroborated and its
validity as a diagnostic sign checked out. For example, upon
unexpectedly (and erroncously) finding “a substantial weight increase”
in a patient over a short period of time, the program should check if the
two weights were taken on the same scale. It is unrcasonable, however,
to ask the same question cvery time a weight change is reported for a
patient.  In ABEL we associate with cach information gathering goal
expectations about its possible outcomes. After each question is asked,
if the answer is consistent with expectations, questioning continues with
the planned sequence.  However, if the answer contradicts the
expectations, this information is considered questionable and an
excuse-finding mechanism is activated. This allows ABEL to pursue
qucstionable findings further before accepting them.

In the remainder of the paper we will describe the workings of the
information gathering activity of ABEL with the help of an example.
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3. An Example

Let us consider a patient who has been ill for 3 to 4 days and is known
to have moderately severe metabolic-acidosis and slight hyponatremia
(scrum Na of 128 meq/L). Lect us also assume that no additional
history is available. 'Two possible formulations of the paticnt’s problem
are shown in Figs. 1 and 2. One hypothesis states that the underlying
disorder is diarrhea, the other, that it is acute renal failure. The

diarrhea —S2US€Ss |ower-Gi-loss —S22%35. metabolic-acidosis
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poor slightly increased
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Fig. 1. In onc cxplanation of the example case,
diarrhea is lower gastro-intestinal losses, which result
in metabolic-acidosis, volume depletion, and their
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Fig. 2. An alternative cxplanation to that of Fig. 1
holds acute renal failure responsible for acid retention,
which causes metabolic-acidosis and its consequences.

Goal 1: Differentiate diarthea, acute renal failure
Context: Cause-of metabolic acidosis
Expectations:

Possible: diarrhea
Severity: moderate
Possible: acute renal failure
Severity: moderate
Duration: a few days
Subgoals: (AND 2389 10)

Fig. 3. Top-level goal structure for discriminating
between diarrhea and acute renal failure.

program has set as its top level goal, as shown in Fig. 3, the desire to
discriminate between these two possible interpretations. To accomplish
this objective the program compares the two interpretations, identifying
the differences between the states predicted by the two interpretations,
and formulates sub-goals to pursue cach difference. For example, the
program identifies urinary sodium concentration as a useful
diffcrentiator between diarrhca and acute renal failure, because
diarrhea predicts that the urinary sodium concentration will be low
whcreas renal failure predicts a rclatively high urinary sodium
concentration.  Similarly, the program can differentiate between
diarrhea and acute renal failurc by determining the state of hydration
of the patient; this goal can be achicved by confirming either volume
depletion or edema. Diarrhea predicts the loss of fluid and therefore
volume depletion.  Volume depletion, however, can not be directly



observed: therefore, the program further decomposes this goal into
sub-goals for confirming poor tissue turgor, low blood pressure and a
slightly elevated scrum creatinine concentration. Acute renal failure,
on the other hand, predicts the accumulation of body fluids if normal
intake of fluid has continued during the period of oliguria. If a
sufficient accumulation occurs, it will manifest itsclf as edema. A
graphic representation of the complete goal structure is shown in Fig, 4,
and the goals are listed below it. The program has now completed the
gencration of the sub-goal tree for differentiating between diarrhea and
acute renal failure. It can group and order the questions by efficiency
and stylistic measures. For example, it groups questions about the

Goal 1
- e =3 -
Goal2  Goal3 Goal8  Goal9 Goal 10
7 XOR
7/
Goal 4 Goal 5
AND

Goal 6 Goal 7

Goal 2: explore urinary sodium concentration
Context: differentiate diarrhea, acute renal failure
Expectations:

Possible: low (less than 10 meq/1)
Cause: diarrhea

Possible: high (greater than 40 meg/I)
Cause: acute renal failure

Goal 3: explore state of hydration
Context: differentiate diarrhea, acute renal failure
Expectations:
Possible: volume depletion
Cause: diarthea
Severity: moderate
Possible: fluid retention
Cause: acute renal failure
Defauit: continued normal fluid intake
Severity: mild to moderate
Subgoals: (XOR 4 5)

Goal 4: confirm fluid retention
Context: caused by acule renal failure
Expectations:
Possible: edema
Severity: mild to moderate
Possible: no edema

Goal 5: confirm volume depletion
Context: caused by diarrhea
Expectations:
Possible: present
Severity: mild to moderate
Possible: absent
Subgoals: (AND 6 7)

Goual 6: confirm poor tissue turgor
Context: explore state of hydration
Expectations:
Possible: mild
Cause: volume depletion
Possible: absent
Cause: fluid retention

347

Goal 7: explore blood pressure
Context: explore state of hydration
Expectations:
Possible: slightly low
Cause: volume depletion
Possible: normal
Cause: fluid retention
Goal 8: confirm hemoglobin and tubular cell casts in urine
Context: differentiate diarrhea, acute renal failure
Expectations;
Possible: present
Cause: acute renal failure
Possible: absent
Cause: diarrhea

Goal 9: explore serum creatinine
Context: differentiate diarrhea, acute renal failure
Expectations:
Possible: slightly to moderately elevated
Cause: acute renal failure
Possible: slightly elevated
Cause: diarrhea

Goal 10: explore serum K
Context: differentiate diarrhea, acute renal failure
Expectations:
Possible: increased
Cause: acute renal failure
Possible: low
Cause: diarthea

Fig. 4. The complete goal structure.  AND indicates
goals that must be simultancously achieved and XOR
indicates goals of which only one can be achieved.
The solid arcs in the goal structure represent the path
actually being taken by the information-gatherer.

results of urine analysis (namely urinary sodium concentration and
urine sediment) to ask first, general physical questions relating to the
state of hydration (i.c., edema, tissue turgor and blood pressure) next,
and serum creatinine and serum K concentrations last. The foiiowing is
asummmary of the information gathcred by the program in pursuing this
goal structure.

Urinary sodium concentration: 50 meq/1

Urine sediment: negative

Edema: absent

Tissue turgor: stightly reduced

Blood pressure: normal

Serum Creatinine concentration: 2.5 mg per cent
Serum K concentration: 3.5 meq/I

After successfully achicving cach of the sub-goals, the program
reconsiders the top-level goal of differentiating between diarrhea and
acute renal failure. 'The program realizes that the overall set of findings
are not consistent with one another. In particular, the finding of high
urinary sodium concentration suggests acute renal failure, whereas the
tow serum K concentration is inconsistent with acute renal failure. On
the other hand, low serum K concentration is consistent with diarrhea,
whereas high wrinary sodium concentration is not.  This conflict
activates the program’s excuse mechanism (sce below). o resolve the
contradiction, the program scts up two goals so that one of the two
diagnoses can be confirmed. The two goals are shown in Fig. 5. Upon
pursuing these goals the program finds that the patient has been
vomiting, which explains the slightly low serum K concentration and a
slight volume depletion. 'The high urinary sodium excretion argues
strongly in favor of acute renal failure.



Goal 11: Find excuse for high urinary sodium concentration
context: diarrhea
expectation:
possible: diuretic use
possible: Addison’s disease

Goal 12: Find excuse for low serum k
context: acute renal failure
expectation:

possible: diuretic use
possible: vomiting

Fig. 5. Additional goals created to resolve apparent
contradiction in input data.

After completing a cycle of information gathering the program
enters this information into the patient-specific models, revises its
hypotheses for the patient’s illness and continues the diagnosis.

4. Summary and Conclusion

In this paper we have briefly sketched the information acquisition
method used in the ABEL program. We have proposcd a novel way of
viewing the traditional diagnostic strategics as decomposition opcrators.
We have then used these strategics to decompose an overall diagnostic
goal into a tree of sub-goals the leaves of which can be solved directly
by asking questions. In addition we have proposed attaching to each
diagnostic goal the expectations of the program about its possible
outcomes. Because all the questions useful to the overall diagnostic
goal are methodically gencrated before any question is asked, the
program can order these questions for efficiency and coherence.
Because the possible outcomes of pursuing each goal are determined
before questions relating to it are asked, the program can easily
determine the success or failure of its goals and can identify
questionable information that contradicts all possible cxpectations.
This allows the program to make cfficient use of its case-specific
knowledge and exert better control in its information acquisition
activity.
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