
AN OVERVIEW OF @NIX

David Barstow, Roger Dufley, Stephen Smoliar, Stanley Vestal

Schlumberger-Doll Research
Old Quarry Road

Ridgefield, Connecticut 06877

ABSTRACT

@NIX is an automatic programming system being
developed for use by petroleum scientists who may not
be knowledgable about computers. As a first step, a
system has been implemented to assist in the trial-and-
error process of developing new models and techniques
for quantitative interpretation of well logs. The user
interface exploits graphical techniques to enable
petroleum scientists to describe their models in the
natural concepts of the domain. The resulting
specification can be implemented in any of several
different target languages. The system is in active use
by petroleum scientists, who find that it has significantly
reduced the time to get feedback on hypothesized
models.

I INTRODUCTION

@NIX is an automatic programming system whose
development is guided by three basic principles:

l @ NIX users need not be knowledgable about com-
puters or computer science.

l @NIX must be able to produce prototype software
quickly enough for the user to cycle many times
through the trial-and-error loop of initial
specification.

l @NIX must be able to produce software that is
sufficiently general, robust and efficient for routine
use.

We do not believe that t@e software development
process is sufficiently well understood for general-
purpose systems based on these principles to be built in

* Oil well logs are made by lowering instruments (called tools)
into the borehole and recording the measurements made by the
tools as they are raised to the surface. The resulting logs are
sequences of values indexed by depth. Logging tools measure a
variety of basic petrophysical properties (e.g., the resistivity of
the rock surrounding the borehole). Petroleum engineers,
geophysicists and geologists are typically interested in other
kinds of information which cannot (now) be measured directly
(e.g., water saturation, the fraction of the rock’s pore space
occupied by water as opposed to hydrocarbons). Loi3
interpretation is the process of computing the desired
information from the measured information.

the near future. In particular, we believe that the goal
of generality has led traditional automatic programming
research to ignore significant software development
issues. Principal among these are:

0 software specification by users who are not
knowledgeable about computer science

l software complexity due to size rather than algo-
rithm

l software evolution as a fundamental characteristic of
software use

With the hope of addressing these issues, we have
adopted an experimental approach in which we select
particular “real-world” programming tasks and develop
special-purpose systems for them, guided by the princi-
ples given earlier. In the rest of this paper, we will try
to convey our goals and approach by describing our first
experimental system from a user’s viewpoint, followed
by a brief discussion of specific issues we plan to address
in future experiments.

II qbo, AN INITIAL EXPERIMENT

For our first experiment, we have chosen the prob-
lem of writing prototype software to support the trial-
and-error process with which petroleum scientists
develop models and techniques for interpreting the
petrophysical data measured by logging tools.* Quantita-
tive log interpretation is usually done on the basis of
models which are statements of relationships between
the measured information and the desired information.
Many such models can be described mathematically as
equations in which the terms denote the log readings or
the desired numeric quantities. The models themselves
are the result of a variety of concrete experiments and
theoretical investigations.

In developing our initial system, called 40, we have
had two primary concerns:

l Since the user (a log analyst) may be neither experi-
enced in nor comfortable with traditional computer
interfaces, it was important for $0 to “speak the
user’s language”. Most importantly, we did not want
to require the user to learn some kind of command

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

0

language.

Since the user’s data exist on a variety of computing
environments with different computational abilities,
it was important for 40 to be able to implement the
user’s model in a variety of target languages. How-
ever, the user should be required, at most, to simply
indicate the target environment, with 40 handling all
of the details.

Perhaps the best way to describe 40 is from the per-
spective of the user, a log analyst not necessarily
knowledgable about computers or computer science. In
effect, $0 provides him/her with a “model editor”: facili-
ties for developing and modifying the different aspects
of an interpretation model. Each of these facilities
includes high level operations, expressed in the natural
concepts of the domain.

The attached picture shows the 40 user interface**
during the process of developing a particular interpreta-
tion model (an unrealistically simple model has been
chosen for the sake of this presentation). Different win-
dows are used to show different aspects of the model.

The window entitled “Geological Model: CORI” con-

** & currently runs on a Xerox 1100 Scientific Information
Processor which includes a 1024 by 808 black and white pixel
screen. C#Q is written in Interlisp-D, a Lisp dialect with a variety
of primitives for dealing with bitmaps, windows, menus, and a
“mouse” pointing device.

tains a diagramatic description of the universe which has
been assumed for this particular model: the rock
around the well consists of two types of solid (calcite
and dolomite) and two types of fluid (water and oil). A
geological model corresponds to certain equations which
constitute part of the overall interpretation model. In
this case, the equations are:

1 .o= v,,,+ V,,

where V, represents the volumetric fraction of material
X. By stating this assumption, the user has laid the
foundations for the other aspects of an interpretation
model. In order to allow the user to develop alternative
geological models, $0 includes a graphics-oriented tree
editor. For example, to indicate that there are two types
of hydrocarbons present, the user could point (using the
mouse) to the OIL node and replace it (through selec-
tions from a command menu) with a HYDROCARBON
node whose children are OIL and GAS nodes.

The window entitled “Tool Response Model:
BULKDENSITY” shows the equation which relates the
measured tool response (pb) to the responses the tool
would make in the presence of 100% concentrations of
the materials which make up the geological model (p,
denotes the response of the tool to material x). A table
of responses to particular minerals is also shown. 40

includes an editor for tool response models; for exam-

Tml raspoma modebz (EUKCENSITY MIUTROFl solllc)
Eqwth systems: (COFUMIATER-SATURATI)

368

ple, one editing activity is to add or change the response
of a tool in a particular mineral.

Geological models and tool response models are two
of the most common ways that log analysts use to
describe the equations of an interpretation model. How-
ever, not all equations are appropriately described using
such techniques. For such cases, $0 provides an equa-
tion editor. The window entitled “Equation System:
CORI/WATER-SATURATION” illustrates the editor
being used to describe a water saturation equation for
use in conjunction with the geological model given ear-
lier. The editing commands are generally oriented to
particular subexpressions of the equations. For exam-
ple, two subexpressions may be swapped by pointing to
each with the mouse after selecting the “swap” command
from the command window.

The window entitled “Computational Model: CORI”
shows how the user may combine together the different
aspects of an interpretation model to give a complete
model. In this case, the user has selected a single geo-
logical model, three tool response models, and the water
saturation equations. By putting these pieces together,
the user has, in effect, specified a model consisting of
eight equations in eight unknowns. The typical use of
such a model is to compute, for each depth in a well,
the relative concentrations of the minerals of the geo-
logical model, given the tool readings at that depth.
This use is described in the rest of the computational
model window: the input and output logs are the inputs
and outputs for each depth; parameters are values the
user has chosen for run-time specification; constants are
values which $10 has stored in its knowledge base about
log interpretation; locals are terms which appear in the
equations but which the user has chosen not to see as
outputs.

At this point, the user has finished his/her part of
the job; the process of implementing the model as a
program in a particular target language is “merely” an
exercise in mathematical manipulation and programming
and is left to 40 to complete.***

III DISCUSSION

$0 is now in active use by petroleum scientists.
They have found the rapid feedback to be of great value
in their interpretation development activities. Perhaps
more importantly, however, they have found that they
can concentrate their energies much more directly on
the concepts of log interpretation rather than being
overly concerned with figuring out the right way to

*** Of course, the process of enabling 40 to do this exercise was a
major effort, involving the codification of several kinds of
programming knowledge, ranging from techniques for algebraic
manipulation to the syntax of three significantly different target
languages (LISP, FORTRAN, PROSE). The details of how C#BO

works internally are available elsewhere 111

express such concepts in traditional programming terms.

Thus, 40 seems to have addressed our first two prin-
ciples quite well. By focusing on pure equational
models, however, we have avoided the third principle:
the ability to produce software that is sufficiently gen-
eral, robust and efficient for routine use. Future work
on @NIX will address this problem directly. This will
require research in three general directions:

Specification: the development of convenient facili-
ties for expressing the real-world considerations that
make software much more complex than simple
equational models. We are currently exploring the
use of an object-oriented specification technique as a
way of dealing with such complexities; the initial
results look promising [2].

Programming knowledge: @NIX will clearly require
access to several types of programming knowledge in
addition to the algebraic manipulation knowledge
contained in 40. Chief among these are knowledge
about certain aspects of numerical analysis and
knowledge about the efficiency trade-offs among
different programming techniques. Perhaps the most
interesting question concerns the degree to which
knowledge about log interpretation itself will be
required during synthesis: is the information con-
tained in the specification sufficient for synthesis, or
must the synthesizer understand the domain to a
greater degree in order to decide among implementa-
tion alternatives?

System development repository: During the synthesis
process, @NIX will be making a large number of
decisions. Both to validate the target code and to
facilitate evolution of the code to accomodate
changes in the specification, it will be necessary to
keep detailed records about the decisions and the
motivation for them.

We are hopeful that addressing these issues will help
automatic programming research to have a significant
impact of the real world on software engineering.

m

PI

REFERENCES

Barstow, D., Duffey, R., Smoliar, S., Vestal, S.
“An automatic programming system to support an
experimental science”, Sixth International Confer-
ence on Software Engineering, Tokyo, Japan,
Sept. 1982.

Smoliar, S. “Specifying logic and control: an
object-oriented approach.” (in preparation).

