
ARBY: Diagnosis with Shallow Causal Uodels 

Drew McDermott 

Yale University Department of Computer Science 

Ruven Brooks 

ITT Integrated Systems Center 

ABSTRACT 

Arby is a software 
for writing expert 
electronic systems 

system or higher order language 
systems to do diagnosis in 

. 

As such, it is similar to EMYCIN (van &lle 
1962) in application, but quite different in 
design. It is rule-based to an extent, but the 
rules are written in predicate calculus. It 
resembles Caduceus (Pople 1977) in its me&a- 
nisms for refining and combining hypotheses. 

1. Ovemiew 

Arby is a software system or higher order language 
for writing expert systems to do diagnosis. As such, 
it is similar to EMYCIN (Van Melle 1962) in applica- 
tion, but quite different in design. It is rule-based to 
an extent, but the rules are written in predicate cal- 
culus. It resembles Caduceus (Pople 1977) in its 
mechanisms for refining and combining hypotheses. 

Unlike both of those systems, however, Arby is 
designed for finding faulty modules in large elec- 
tronic systems. (Davis 19Sl) The system we have been 
studying so far is the Microwave Stimulus Interface 
(designed by the General Dynamics Electronics Divi- 
sion). This system is itself used to test avionics 
equipment. It provides microwave signals modulated 
in certain standard ways. A (simplified) block 
diagram appears in Figure 1. 

software. So he is presented with findings and eui- 
dence including the output of the low-level diagnos- 
tics. His job is to find which module (detector, pulse 
modulator, any of several switches, etc.) is faulty. He 
can set switches to any position, probe with an oscil- 
loscope, break the connection at certain points, and 
stimulate various inputs with standard signals. How- 
ever, these actions vary in time expended and infor- 
mation gained. 

This domain is distinguished by the following two 
features: 
l Reasoning with shallow models 

The problem of diagnosing faults in electronic 
circuits is in general quite difficult. (deKleer 1976, 
Brown 1975) This is because electronic circuits 
are hard to break into separable modules. 
Explaining why such a circuit is malfunctioning 
requires understanding a causal model of it. How- 
ever, above the level of individual circuits, the 
models get simpler. They usually consist of a flow 
of something (like a signal) through nodes and deu- 
ices. The most sophisticated system to under- 
stand is a negative-feedback loop. On the other 
hand, things are more complex than in medical 
diagnosis, where multilevel causal models are 
quite rare. 

l Information acquisition strategies 

In diagnosis, the full set of symptoms is not usu- 
ally available at the time diagnostic reasoning is 

OUTPUT 1 

.OUTPUT 2 

m 1. MS1 block diagram - done but must be acquired during the reasoning 
process; thus, part of the reasoning process must 
be to determined which tests are to be run or 
which observations are to be made. The mechan- 
ism for doing this must take into account the cost 
- whether financial, time or risk to the patient - of 
acquiring the additional information. 

The MS1 consists of two main stages. The first 
amplitude-modulates the output of an RF synthesizer 
using a feedback through a detector. The second 
introduces pulse modulation Ordinarily, the diagnos- 
tician is presented with a faulty MS1 which has 
already been run through some automatic diagnosis 

370 

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved. 



2 How Arby Works 

Arby consists of two major modules, an inference 
system, I-IWO, which reasons about symptoms and 
hypotheses and a human interface system, IFK, which 
obtains information from the user. Both modules of 
Arby are written in Franz Lisp, and use the DUCK gen- 
eral purpose retriever. DUCK is a descendant of Con- 
niver (Sussman and McDermott 1972), and may be 
thought of as a more powerful version of Prolog. 

profitable, that is, the one that will apparently pro- 
duce the biggest impact on the evidence totals for 
the leading candidates at the least cost. (This is done 
with the Interaction Frame Manager, described 
below.) 

If no test looks like it is worth running, then HYPO 
is not lost. In addition to favoring hypotheses with 
the highest evidence totals, it also favors those that 
account for as many findings as possible. (Pople 
1977) 

A IFS 

DATA BASE 

-EXPERT 

Figure 2. At-by block diagram 
2 1 The Hypothesis Generator 

The hypothesis generator (HYPO) is responsible for 
creating and refining hypotheses to account for 
findings. It has two main submodules for doing this: 
the candidate hypothesis finder, and the evidence 
sifter. Each of these relies on predicate-calculus 
deductions on a data base of rules. 

Findings and hypotheses are (in principle) arbi- 
trary formulas about entities in the domain. A 
flnding is a fact that needs to be explained, and a 
hypothesis is a fact that would explain it. In order to 
find hypotheses, it uses the backward-chaining facil- 
ity of DUCK to find solutions to the goal: 

(accounts-for ?hypo <finding> <given>) 

(The third argument will be explained later.) The 
solutions come back in the form of possible values for 
?hypo, plus justifications, rules and facts which 
together support this explanation. (Doyle 1980) 

It is quite common for TYPO to fLnd more than one 
hypothesis that could account for a given finding. To 
handle this, it enters a special choice protocol 
(McDermott 1978) in which it attempts to fmd evi- 
dence for and against each candidate, That is, it 
attempts to deduce formulas of the form 

(evidence <hypothesis> ?amt) 

for each candidate hypothesis. It totals the evidence, 
and the candidates with totals significantly higher 
than the others are retained. 

This strategy as described has one failing: it 
assumes that all the evidence has already been gath- 
ered. In some domains (e.g., that of MSCIN), this is a 
reasonable assumption, In the domain of simple elec- 
tronic reasoning, there are many tests that could be 
run. It would be silly to run them all before the con- 
sultation begins. Instead, the system doesn’t run any 
until it is faced with a choice situation that requires 
more information to separate the two leading candi- 
dates. Then it runs whatever test seems most 

After producing the composite hypothesis with the 
best overall evidence, Arby does not quit, but 
proceeds to refine each element of the hypothesis. 
This means finding a more detailed explanation of 
each tiding. For instance, the first round might 
localize the failure in module33. The second round 
might then localize it to a device within that module, 
by solving the deductive goal: 

(accounts-for ?hypo <finding> (fault-in module33)) 

The advantage of doing things this way is that only a 
small number of alternatives need to be considered 
at each level. When one is rejected, all of its 
reLfi.nements are swept away without ever being con- 
sidered. Furthermore, this organization nicely 
reflects the hierarchical structure of many electronic 
sys terns. 

22 Interaction Frames 

The basic structure which controls 
the user interaction is organized is an interaction 

manager, IM, and a set of interaction frames, IFS. -An 
IF is a discrete unit of interaction u-ith the user 
which, when it terminates, results in the addition of 
assertions to the database. A very simple IF might 
consist of asking the user a multiple choice question 
and, depending on the answer, placing just a single 
assertion into the database. A more complex IF 
might instruct the user step by step to run some 
complicated equipment test and then place several 
different assertions into the database to record the 
results of the test. An important property of interac- 
tion frames is that the assertions they may add are 
unconstrained; this is in contrast to the MYCIN struc- 
ture in which an interaction may only change the 
values of variables. 

Interaction frames are invoked because the HYPO 
component needs to retrieve information that is not 
yet in the database but which could be obtained by 
asking the user. This is implemented by asserting 
rules of the form: 

(<- <form to be deduced> 
(QIF’ <interaction frame> <arguments>)) 

371 



If the deduction can not be made any other way, this 
causes the interaction frame to be placed on a list of 
candidate frames to be invoked. Using the cost cri- 
terion described earlier, this list is ordered to iden- 
tify the most “profitable” frame to run. 

In general, however, just asking for the informa- 
tion in the order determined by the inference system 
will not result in an acceptable order of questions 
from the user’s standpoint: The questions might have 
logical prerequisites which are not yet satisfied or the 
questions might not occur in the order to which the 
user is accustomed. To insure the satisfaction of 
these constraints, the Interaction Frame manager 
requires that an IF be explicitly enabled before it can 
be invoked. In the database, this is indicated by 
assertions of the form: 

(want <IF> <arguments>) 

To insure, for example, that the status of switch 17 is 
asked about only after it has been determined that 
the level of amplitude modulation is high, rules of the 
following form could be written: 

(<- (want IF23 17) (modulation-level high)) 

There are also assertions for indicating that an IF has 

already been run and for indicating that an IF may be 
run whenever needed. This co,mbination gives the 
Interaction Manager considerable pGi%eI- in reasrjning 
about and optimizing the structure of interactions 
with the users. 
23 TheArbyEkwironment 

A system like Arby is, we have discovered, one-third 
thinker and two-thirds explainer of its thoughts. 
Although the set of explanation tools is still rapidly 
evolving, we have found it necessary to provide tools 
for the following tasks: 
l Editing of rules and IFS by the domain expert. 
. Explanations of why a question is being asked (in 

terms of the evidence it might provide) 
. Explanations of why a given fact is currently 

believed. 

3. Example 

Version 0 of Arby has been written, and coding is 
complete for an intial set of rrles and interaction 
frames for the MSI. We anticipate the usual redesign 
as we attempt assimilation of expert know-ledge, but 
the basic design seems sound. 

As an example of the operation of Arby, we present 
the following description of current system function- 
ing: 

1. When Arby is started, a standard IF is always run 
to ask what the output of the low-level diagnostics 
was. Let’s say the output was “persistent loss of 
power at low frequencies.” 

2. Arby notes this as a finding to be accounted for. 
3. “Accounts-for” rules are used to propose candi- 

date explanations I In this case, the problem 
could be in the low-frequency modulation loop. 
This is the only candidate, so it is accepted. 

4. Next Arby attempts to refine the hypothesis. 
“Accounts-for” rules suggest any of several com- 
ponents in the low-frequency modulation loop. 
“Evidence” rules are sought to propose evidence 
one way or another. There is a rule of the form 

“If after cutting the loop before the synthesizer, 
measurement of a node shows it to be saturated 
the wrong way, 

then 
there is good evidence in favor of 

localizing the problem in some device 
before the node 

else 
there is good evidence in favor of 

localizing the problem in some device 
after the node.” 

5. This rule has no immediate effect, because it 
refers to a real-world action that may not be 
worth performing. This action is queued, and, 
assuming no decision can be reached without it, it 
is handed to IFM. IFM then uses IFS to instruct 
the user how to cut the loop and what to measure 

111 

PI 

PI 

Bl 

B-1 

PI 

PI 

Bl 

References 
Johan deKleer 1976 Local methods for local- 
izing faults in electronic circuits. MIT A.I. 
Lab TR394 

Jon Doyle 1980 Truth Maintenance in 
A~tifcd Intelligence 12 pp. 231-272. 
Allen Brown 1975 Analytical knowledge, 
causal reasoning and the localization of 
failures MIT A. I. Lab. TR394. 

Randall Davis 198 1 Expert systems -- where 
are we and where do we go from here? 
Invited talk at IJCAT 7 

Drew McDermott 1978 Planning and acting. 
Cognitive Science 2, no. 2, p. 71 
H. Pople 1977 The Formation of Composite 
Hypotheses in Diagnostic Problem Solving, 
IJCAT 5. 

Gerald J. Sussman and Drew McDermott 
1972 From PL4NNER to Conniver -- a genetic 
approach. Proc. FJCC41, p. 1171 
Van Melle, W. 1980 A domain independent 
system that aids in the construction of 
knowledge based consultation programs. 
Heuristic Programming Fhject, Depart- 
ment of Computer Science, Stanford 
thiversit~, HPP 80-I 1. 

372 


