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ABSTRACT 

Free space is rcprcscnted as a union of (possibly overlapping) 
generalized cones. An algorithm is prcsentcd which efficiently 
finds good collision free paths for convex polygonal bodies through 
space Iittercd with obstacle polygons. The paths are good in the 
sense that. the distance of closest approach to an obstacle over 
the path is usually far from minimal over the class of topologi- 
tally equivalent collision free paths. The algorithm is based on 
characterizing the volume swept, by a body as it is translated 
and rolatcd as a generalized cone and dct.ermining under what 
conditions one generalized cone is a subset of another. 

1. INTRODUCTION __- 

The find-path problem is well known in robotics. Given an 
ol?jcci with an initial location and orientation, a goal location and 
orientation, aud a set of obslncles located in space, the problem is 
to find a continuous path for the object from the initial position 
lo the goal position which avoids collisions with obstacles along 
the way. This paper presents a new representation for free space, 
as IliLt urn1 “freeways” between obstacles, and a new algorithm 
to solve find--path using that representation. The algorithm’s 
advantages over those previously presented are that it is quite 
fast and it finds good paths which generously avoid obstacles 
rather than barely avoiding them. It does not lind possible paths 
in extremely cluttered situations but it can be used to provide 
direction to more computationally expensive algorithms in those 
cases. 

A common approach to the find--path problem, used with 
varying degrees of sophistication, is the configuration space ap 
preach. Lozano-Perez [j] gives a thorough mathematical treat- 
ment of configuration space. The idea is to determine those 
parts of free space which a reference point of the moving ob- 
ject can occupy without colliding with any obstacles. A path is 
thei! found for the reference point through this truly free space. 
Dealing with rotations turns out to be a major difficulty with 
the approach - requiring complex geometric algorithms which 
are computationally expensive. 

Conceptually one can view configuration space as shrink- 
ing the object to a point while at the same time expanding the 
obstacles inverse1.y to the shape of the moving object. This ap- 
proach works well when the moving object is not allowed to 
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rotate. If it can rotate then the grown obstacles must be em- 
bedded in a higher dimensional space - one extra dimension 
for each degree of rotational freedom. Furthermore the grown 
obstacles have non-planar surfaces, even when the original prob- 
Icm was completely polygonal or polyhedral. Typically im- 
plementors have approximated the grown obstacles in order to 
be able to deal with rotations. 

Moravcc [6] had to solve the find -path problem in two dimen- 
sions. He bounded all obstacles and the moving object by circles. 
Then the grown obstacles were all perpendicular cylinders and 
the problem colild be projected back into two dimensions where 
rotations could be ignored. This method missed all paths that 
reqtiircd rotational manoucvcring. 

Lozano-Pkrez [5] split the rotation range into a fixed number 
of slices, and within each slice bounded the grown obstacles by 
polyhedra. Earlier Udupa [S] had used much cruder bounding 
polyhedra in a similar way. 

Recently Brooks and Loznno- Perez [3] developed a method 
for computing more directly with the curved surfaces of the 
grown obstacles. The algorithm can bc quite expensive although 
given enough time and space it can find a path if one exists. 

The algorithm presentcci in this paper is based on a different 
idea; that of using representations of space which capture the 
essential effects of translating and rotating a body through space. 
Free space is represented as overlapping generalized cones since 
they are descriptions of swept volun~cs. The coues provide a 
high level plan for moving the object through space. The volume 
swept by the particular object as it is translated and rotated is 
characterized as a function of its orientation. Find-path then 
reduces to comparing the swept volume of the object with the 
sweepable volumes of free space. This is done by inverting the 
characterization of the volume swept by an object, to determine 
its valid orientations as it moves through a generalized cone. 

Throughout this paw we restrict our attention to the two- 
dimensional problem where the object to be moved is a convex 
polygon and the obstacles are represented as unions of convex 
polygons. 

II. DESCRIBING FREE SPACE ,4S GENERALIZED CONES ~__ 

Generalized cones are a commonly used representation of 
volume for modelling objects in artificial intelligence based com- 
puter vision systems. They were first introduced by Binford [2]. 
A generalized cone is formed by sweeping a two dimensional cross 
section along a curve in space, called a spine, and deforming it 
according to a sweeping rule. In this paper we will consider a 
two dimensional specialization of generalized cones (although we 
will still refer to them as voIumes). The spines will be straight 
and the cross sections wil! be line segments held perpendicular 
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to the spine with left and right radii. The sweeping rule will 
independently control the magnitudes of the left and right radii 
as piecewise linear functions. 

Free space is reprcscnted as overlapping generalized cones. 
Natural “freeways”, elongated regions through which the ob- 
ject might be moved, are represented as generalized cones. The 
generalized cones overlap at intersections of these natural free- 
ways. Figure 1 illustrates a few of the gcneralizcd cones describ- 
ing the free space around two obstacles in a confined workspace. 
The representation of free space is constructed by examining all 
pairs of edges of obstacle polygons. If the edges define a natural 
“freeway” through space they are used to construct a generalized 
cone. 

A. Candidate generalized cones. 

Each edge has a “free” side and a “full” side, where the 
“free” side is the outside of the particular polygon with which 
it is associated. Each edge has an outward pointing normal, 
pointing into the “free” side. Two edges arc accepted as defining 
a candidate gerlerajizcci cone if the-v meet the following two re- 
quirements. (1.) At least one vertex of each cdgc should be on 
the “free” side of the other. (2.) Tile dot product of the outward 
poiming normals should be negative. The second condition en- 
sures that the “free” sides of the twci edges essentially face each 
other. Thus in this initial stage there is a complexity factor of 
O(n”), where n is the number of edges of obstacle polygons. 

Given a candidate pair of edges, a spine is constructed for 
the generalized cone. It is the bisector of the space which is on 
the “free” side of bot,h edges. (Thus if the edges are parallel the 
spine is parallel to them both, and equidistant, or if the edges 
are not parallel then the spine bisects the angle they form.) The 
generalized cone occupies the volume between the two defining 
edges. At each vertex of the two edges (if the vertex is on the 
“free” side of the other edge) the cone is extended parallel to 
the spine. 

The generalized cone so defined may not lie entirely in free 
space. There may be other obstacles which intersect it. Each 
obstacle is compared to the generalized cone. A polygon can be 
intersected with the cone in time O(n) where n is the number of 
edges of the polygon. If the intersection is empty then nothing 
further need be done. If not then the intersection is projected 
normally onto the the spine of the generalized cone. This is 
illustrated in figure 2. Again this is an O(n) operation in the 
number of vertices (and hence edges). The result of comparing 
all obstacles to the gcneralizcd cone is a set of regions of the 
spine where there is no obstacle which intersects the cone in a 
slice normal to the spine. Each disjoint slice which includes parts 
of the original two edges is then accepted as a generalized cone 
describing part of free space. Clearly the complete operation of 
describing free space is at most O(d) in the number of edges in 
the obstacle polygons. 

I3. The representation used for generalized cones. -- 

Figure 3 shows the complete representation used for cones 
describing parts of free space. There is a straight spine, param- 
eterized over the range i! E [0, l] where 1 is the length of the cone. 
If the sides of the cone are not parallel to the spine then t = 0 
corresponds to the wider end. On both the left and right the 
maximal radii achieved over the length of the cone occurs at 
t = 0 and are denoted bl and b, respectively, describing the “big” 
end of the cone, The minimal radii achieved occur at t = I and 
are denoted Q and sr, describing the “small” end of the cone. If 

Figure 1 
boundary. 

Spine 
L 

A few of the generalized cones generated by two obstacles and the workspace 

Figure 2. Slices of the generalized cone removed due to obstacles. 

bi = s/ and b, = s, then the two sides of the cone arc parallel to 
the spine. If not, then lherc is a symmetric thinning of the cone 
(which may start, and end, at different values of t on the left 
and right) where the left nnd right radii of the thinning parts of 
the cone are both given by the expression ml + c where m and 
c are constants. Note that it is always the case that m 5 0 and 
c > 0. - 

In summary, the seven constants I, bl, b,, sl, s,, m and c 
completely specify the shape and size of the generalized cone. 
In addition its location and orientation must be detcrmincd con- 
currently with computing these parameters. 

III. 11ETI3RRlINING LEGAL ORIENTATIONS 

Let the moving object be called A. It is a convex polygon 
and has vertices al, ~2, . , a,,. Choose an origin and z and 
y axes. Let d, be the distance of vertex u, from the origin. 
For optimal performance of the find -path algorithm the origin 
should be chosen so that maxI 5-,(,, d, is minimized over possible 
origins. The direction of the *-axis can be chosen arbitrarily. 
Orientations relative to A are defined in terms of an angle rela- 
tive to A’s z-axis. Thus a point’s angle relative to A is the angle 
made by a ray from the origin to the point, relative to the Z- 
axis. A direction relative to A is the angle made by a vector in 
that direction with n’s s-axis. Let ~1, ~2, . . . , v,~ be the angles 
of ihe vertices al, u2, . . . , arZ. 

A. The radius function of a polygon. ~~ 

Consider first the problem of determining the volume swept 
by a polygon as it is moved in a straight lint with fixed orienta- 
tion. Let the object be moving in direction 0. The swept volume 
depends on the object’s cross section perpendicular to that angle. 



The cross section can be broken into two components; that on 
the left of the direction of movement, and that on the right. 
Figure 4 illustrates. 

Define a radios function r?(c) to be the infimum of the dis- 
tance from the origin that a line which is normal to a ray at 
angle 6 can be witlrout intersecting the interior of A. Figure 
5 illustrates, (The radius function is closely related to the sup- 
port of a convex polygon - e.g. see [l].) The magnitudes of 
the left and right cross sections of figure 4 can then be denoted 
R(O + a/Z) and R(0 - n/2) respectively. Figure 6 shows the 
geometric construction ol R(c) for a given object n and angle t. 
The darkened oulline in figure 7 shows the radius function R in 
polar coordinates for the same object. Thus I2 can be defined by 

The major interest in functions of this form will be in their 
inverse images of intervals of the form (-00, r]. Let 

Thus RI-(r) is the range of angles at which the cross section of 
object A is no more than r. The inverse imnge can be easily 
computed by using the two values possible for arccos(r/di) for 
each i to form an interval containing qZ and subtracting it from 
the interval IO, 2x1. We restrict our attention to moving objects 
which are convex polygons precisely because their radius func- 
tions can be so easily inverted. 

If we write R,,(E) = R(E + a) then the legal orientations of 
A relative to the direction of its movement down the center of 
a strip of diameter d can bc written as 

L = R$(d/2) n R&,,(d/2). 

Note that while L may consist of more than one interval, the set 
of orientations taken by F!, in some trajectory along the length 
of the cone, must form a connected set -- i.c. it must be a single 
interval, and so must be contained in a single interval of L. 

Finally note that the sum of two radius functions has the 
same form as a radius function, and so the “1” operation can 
bc computed just as easily on the sums of such functions as on 
single functions. I.e. with R as above and 

-. max 
l<i<?x,l-Cj<m 

(4 cos(E - vi) + eJ cos(( - pj)) 

and each term inside the “max” can be written in the form 

JlJ cos(C - 4.J. 

l3. 13ounding polygons with an appropriate rectangle. -___ -__-___ -- 
111 general we wish to find the legal orientations for object 

A whell its origin is at a point wilir spine parameter t on the 
spine of a generalized cone C. A conservative set of orientations 
can be found by enclosing A in a rectangle which has two of 
its sides parallel to the spine of C. When A is oriented so that 
the spine has angle B rclativc to it, the bounding rectangle has 

Figure 3. A generalized cone defined by I, bi, b,, 8, s,, m and c. 

Figure 4. Volume swept by an object during pure translation. 

Figure 5. Dcfnition of R(E). 

a4 

R(E) = 4 cos(E - m) 

Figure 6. Geometric constructlon of R(e) 

Figure 7. R(c) in polar coordinates. 
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the following properties. Its extent forward (in the direction of 
increasing spine parameter) from the origin is n(0). Its extents 
left and right are n(U + x/2) and 11(0 - 7r/2) respectively. Its 
extent to the rear is (rather conservatively) d = maxi~i~7zdi. 
Figure 8 illustrates. The problem now is to invert this bounding 
operation - i.e. to find for what range of 0 the bounding rectangle 
is within the generalized cont. That is for each t E [O,l] we wish 
to find a range of valid 0, denoted V(t) for orientations of the 
object A. 

The rear of the bounding rectangle simply implies V(t) = 0 
outside of the interval [d, I]. The forward bound implies 

V(t) 5 RL(l - t). 

The parallel sides of the “big” part of the generalized cone imply 
upper bounds on the width of the bounding rectangle. Thus 

V(t) C (@(S) - r/2) n (J+(h) + 7r/2). 

Note that the terms on the right involve adding a constant to a 
subset, of [0, 2?r] in the obvious way. Let V’ be defined as 

v’(t) = RL(l - t) n (R-L(bi) - r/2) n (Rl(b,) + r/2) 

over the interval [d, I]. 

Subject to the above three constraints the rectangle can 
everywhere be as big as one which will fit in the “small” part of 
the generalized cone. Thus 

(@l(s) - $2) n (R%r) + 7d2)) n V’(t) C V(t). 
Furthermore, subject to V’(t), any orientation of A is valid which 
results in a bounding rectangle that is within the bounds given by 
the decreasing boundaries of the generalized cones. Recall that 
at each point, of the spine, with parameter t, these boundaries 
have both left and right radius of wc! + c and that m ( 0. Thus 
sufficient conditions are that 

RP + 7a 2 m x (t + fw)) + c 
R(O - 7r/2) < m x (t + R(0)) + c 

are both true. These can be expressed as 

IR n/2 - mW) 5 (mt + c) 
P--n/2 - n*l(Q 5 W + 4 

whence 

([R~p-mR]L(mt+c)n[R-.,~p-mR]~(mt-+-c))nV’(t) c V(t). 

In summary then, over the range t E [d,d], a valid subset 
of orientations for A can be expressed as 

V(t) =R*(l - t) n (R+) - w/2) n (Rl(b,) + 42) 

n ( (F-(4 - 42) n WL(4 + r/2)) 

U ([&,Q - mR]l(mt + c) 

n kLp - mRIL(mt + 4)) 

and elsewhere V(t) = 0. The key property of V(t) is the following. 

LEMMA: For ti, fz f [d, 11, t1 _( t2 implies V(t,) C V(t& 

Note that V(t) d oes not necessarily include all possible orien- 
tations for object A to be contained in cone C at point with 

paremeter t along the spine. IIowevcr it the set of possibilities 
which the find-path algorithm described here is willing to con- 
sider. Its key property is that as stated by the lemma the set 
of valid orientations (amongst those to be considered) does not 
increase as the object is moved from the “big” end to the “small” 
end of a generalized cone. 

IV. SEARCIRNC FOR A PATH_ 

The algorithm to find a collision free path proceeds as fol- 
lows. First the generalized cones which describe free space are 
computed (this can be done in time O(~L:‘)). Next the cones are 
pairwisc examined to determine if and where their spines inter- 
sect. Up to this stage the algorithm is independent of the object 
A to be moved through the cnviroinmcnt. Each spine interscc- 
tion point for each cone is now annotated with the subset of 
[0,2x] which describes the orientations for the object A in which 
it is guaranteed to bc completely contained in the generalized 
cone The final stage of the algorithm is to find a path from 
the initial position to the goal position following the spines of 
the generalized cones and changing from cone to cone at spine 
intersection points. If t,hr object is kept. at valid orientations at 
each point on each spine then the path will bc collision free. 

.4. .4 searchable mrnph. p-p-sL - 

A graph is built then searched with the A’ algorithm (see 
Nilsson [7]), The cost function used is the distance traveled 
through space. The nodes of the graph consist of points on 
generalized cone spines which correspond to points of intersec- 
tion, along with a single orientation subinberval of 10, 27r] (except 
that intervals may wrap around frown 27r to 0). Thus for an 
intersection point with parameter t on the spine of cone C, a 
node for each interval in V(t) is built. 

The arcs in the graph arise in two ways; those that cor- 
respond to transfer from one intersection point on a spine to 
another, and those that correspond to transfer from one spine to 
another at their common intersection point. All such candidate 
pairs of nodes are checked for connectivity. The lemma of section 
3 guarantees that it sullices to check if the orientation intervals 
of the two nodes, for intra-cone arcs, have a non-empty inter- 
section. If so, then it is certainly possible to move the object A 
from one point to the other using any orientation within that 
intersection. For inter-cone pairs of nodes it also suffices to check 
for non-empty intersection of their 
points are coincident in space. 

an 

13. Intermixing rotations and translations. 

The graph can now be searched to find a path consisting of 
ordered set of nodes from initial position to goal position. 

orientation intervals, as the 

If the graph search is successful it indicates a whole class of 
collision free paths. It remains to chose one particular trajectory. 

The class of paths found share a common trajectory for the 
origin of the moving object. The orientation interval associated 
with each node of the path through the graph constrains the 
valid orientations at that point. It is also necessary to ensure 
that no invalid orientation is assumed during translation and 
rotation along the spine of a generalized cone. 

It may well be the case that rotations are expensive, and 
it is worth searching the class of paths resulting from the graph 
search to find the optimal path in terms of least rotation neces- 
sary. This could be carried out using the A* algorithm. Every 
node in the path found in the first search would be turned into a 
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collection of nodes. Each pair of adjacent nodes in the path found 
;,bove would have their orientation ranges intersected. Combine 
each end value of each intersection, and the initial and final 
orientations into a set of possible orientations. Each orientation 
which is valid for a particular path node, along with that node, 
gcncratcs a node in the new graph. Adjacency would bc inherited 
from adjacency of generating nodes in the original path. The A’ 
algorithm is used to search this new graph. 

Figures 9 and 10 illustrate two paths found by a much 
simpler method. Rotations are rcstriclctl to points corresponding 
to nodes of the path - i.e. tllc object is held with fixed orientation 
during cnch translation. Thr orientation at each point is the 
midpoint of the orientations given by intersecting the allowed 
orlcntation intervals of the corresponding path node, and the 
subsequent node. Thus traversal of intra-cone arcs of the graph 
built above are rotation free, and traversal of inter-cone arcs 
arc pure rotatiolle. The lemma of section 3 guarantees that this 
strategy leads to valid collision free paths. 

V. IjS-E!;‘UI,NESS AND Al’PLICAl~lLITY 

The major drawback of the find-path algorithm presented 
in this paper is that paths arc restricted to follow the spines of 
the gencralizrd cones chosen to rcprcscnt free space. It typically 
does not work well in tightly constrained spaces as there are 
insulfcient generalized cones to provide a rich choice of paths. 
Furthermore, in a tight space the interior points of spines are 
alv;a~s near to the spine ends. Thcrcforc the need to extend the 
bounding rectangles rearward to the maximum possible distance 
for the moving object (so that the lemma of section 3 will hold) 
means that typically there are very few points of intersections of 
generalized cones where the object’s bounding rectangle in each 
orientation is contained within the appropriate generalized cone. 
Tllis situation could bc improved significantly by developing 
a better algorithm for decomposing free space into generalized 
cones. The current pruning tcchniquc is often too drastic - if an 
obstacle intersects a gencralizcd cone it may be better to simply 
reduce the cone radius, rather than the current practice of slicing 
out all of the spine onto which the obstacle projects. 

A. Advantages. ~- 
In relatively uncluttered environments the algorithm is ex- 

tremely fast. Furthermore it has the following properties which 
are absenl, from some or all of the algorithms mentioned in section 
1. 

1. The paths found, and the amount of computation needed are 
completely independent of the chosen world coordinate system. 

2. Obstacles affect the representation of free space only in their 
own locality. Thus additional obstacles spatially separated from 
a free path found when they arc not present can riot affect the 
ability to find that free path then they arc present. (Resource 
linritcd, and approximating algorithms which cut fret: space into 
rectangloid cells often sulTcr from this problem.) 

3. Free space is represented explicitly rather than as the comple- 
ment of forbidden space. 

4. The paths tend to be equally far from all objects, out in truly 
free space, rather than scraping as close as possible to obstacles, 
making the instantiation of the paths by mechanical devices 
subject to failure due to mechanical imperfections. 

We plan to use this algorithm in conjunction with an im- 
plementation of an algorithm ([3]) which finds paths with rota- 
tions based on a configuration space approach. The generalized 

Figure 8. An object A is bounded by a rectangle aligned with the spine of cone C. 

Figure 9. A path found by the algorithm 

Figure 10. A path found by the algorithm. 
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cone method will be used to find the easy parts of the path (the 
other method is computationally expensive both for easy and 
hard paths) leaving the more expensive method for the hard 
parts. The algorithm presented here can also provide some direc- 
tion for the hard 
possible paths. 

parts as it can quickly compute all topologica1ly 

B. Three Dimensions. -~ 

Clearly the eventual goal of this work is to develop algo- 
rithms which solve the find-path problem in three dimensions 
with three rotational degrees of freedom for each link of general 
articulated devices. Ii1 this section we discuss approaches to ex- 
tending the presented algorithm to the case of a single convex 
polyhedron moving through a space of polyhedral obstacles. 

Three dimensional generalized cones can be constructed by 
considering all triples of faces of obstacle polyhedra. The con- 
struction algorithm (including intersection with obstacle poly- 
hedra) has complexity O(n’) in the number of obstacle faces. 
The generalized cones so construcled will have triangular cross- 
sections. It is not clear how to pair-wise intersect the generalized 
cones. as in general their spines will not intersect. The “path- 
class” idea presented below may solve this problem. 

Rathrr than a bounding rectangle; a right, triangular prism 
should be used where the triangle is similar to the cross section of 
the generalized cone being travcrscd. If more than one rotational 
degree of freedom is assumed there may be problems inverting 
this bounding volu me. Rather than L’(t) having a set of intervals 
as a value, it will have a set of t,hree~~dimensional polyhedra. 

Both for the two dimensional and three dimensional problems 
it is worth investigating using paths other than the spine through 
a generalized cone. Then V is parameterized in terms of t and 
the two end points of a whole class of paths through individual 
cones. This increases the complexity of the search but will lead 
to more paths than simply using the spine. 

C. Complexity Issues, __- 

In discussions with Tom6sI,ozano-Pbrez it became evident 
that there exists an O(n c ’ fig”) algorithm which can find the 
same gcnernlized cones as does the O(n”) algorithm presented 
here. The spines used for generalized cones correspond to the 
Voronoi boundaries between obstacles (see Drysdale [I] for a 
complete solution to the problem), and they can be found in 

O(YZC~“~ ‘I) time. There remains a factor of O(n) to do the . . 
intersection of the hypothesized generalized cones with other 
obstacles. It is unlikely that. such an algorithm would perform 
better than the O(n”) algorithm presented for practical sized 
problems. 

The complexity ofpairwise intersecting thegeneralizcd cones 
was not addressed in the body of the paper. An upper bound of 
O(?Z”) can easily be obtained as there are at most O(YX~) general- 
izcd cones to be considered. Iiowcver, it seems hard to find a 
constant where cn2 generalized cones can be acheived construc- 
tively as the number of obstacle polygons is increased. For any 
c It stems that space eventually tends to become too cluttered 
for all the cones to be constructed. Thus it seems likely that a 
better bound than O(n ‘) exists. (In fact the Voronoi complexity 

above suggests a bound of O(n2c2e).) 
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