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ABSTRACT 

This paper develops the notion of temporal 
abstraction, used originally for the automatic 
understanding of looping constructs, to account for 
a class of recursive programs involving side 
effects upon a relational data base. The programs 
may involve compositions of several side effects, 
and these side effects can occur either during 
descent or upon ascent from recursive calls. 

I INTRODUCTION 

The concept of 'temporal abstraction' was 
developed by Waters [5], and Rich & Shrobe [4] to 
describe the variables enumerated in loops as a set 
of objects which could be manipulated as a who= 
We apply this principle to recursive procedures 
operating on threaded data structures and use it to 
understand compositions of several side effects. 
Our analysis is part of a larger project designed 
to help novice programmers understand their buggy 
programs ml, [IsI>. The novices are students 
learning a LOGO-like language called SOLO [I], in 
which a procedure can only side effect a global 
data base which is a labelled, directed graph. Here 
is a sample problem, of the kind posed to our 
students: "Define a procedure INFECT which would 
convert a data base such as the one shown in Fig. 1 
to the one shown in Fig. 2 if invoked as INFECT 
ANDY." 
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The primitives for storing, deleting, and 
retrieving relational triples are called NOTE, 
FORGET, and CHECK. CHECK provides for conditional 
branching depending upon its success, and also 
allows simple pattern matching, as the example 
below illustrates: 

SOLUTION-l: 

TO INFECT /X/ 
1 EXAMINE /X/ 
2 CHECK /X/ KISSES ?Y 
2A If present: INFECT "Y; EXIT 
2B If absent: EXIT 

TO EXAMINE /X/ 
1 CHECK /X/ IS INOCULATED 
IA If present: EXIT 
1B If absent: NOTE /X/ GETS FLU; EXIT 

INFECT recursively generates successive nodes 
along the thread of 'kisses' relations (steps 2 and 
2A), and invokes EXAMINE at each node. EXAMINE 
conditionally side effects each node, i.e. 
asserting that /X/ GETS FLU only when the triple 
/X/ IS INOCULATED is absent. 

This problem is typical of a large class of 
tasks given to beginning SOLO users. Students may 
adopt a variety of methods for tackling the stated 
problem, combining side effects to achieve the 
desired result. The next two sections describe how 
we cope with different varieties of recursion and 
how the accumulation of side effects is 
represented. Section IV then illustrates how 
deviant cases are handled. 

II A CLASS OF RECURSION SCHEMATA --- 

In a recursive procedure such as INFECT, a 
side effect (conditional or unconditional) may 
occur logically at any of five locations, depending 
on the juxtaposition of the side effect, the 
recursive call, and the termination test. Here is 
a skeleton of the INFECT procedure, with the five 
possible locations of side effect occurrences shown 
underlined (not all five can coexist, and the SOLO 
user must make careful use of the control-flow 
keywords CONTINUE and EXIT to obtain certain 
combinations): 

400 

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved. 



TO INFECT /X/ 
. . . 
<initial> 

The effect steps can be classified according 
to time of execution and range of nodes on which 
the effect occurs: 

. . . 
CHECK /X/ KISSES ?Y 
If present: <pre-ret>; INFECT *Y; <post-ret> 
If absent: <termination> 
. . . 
<final> 

These occurrences are depicted schematically 
in Fig. 3, which shows a recursive procedure P 
partitioned into its possible constituents. The 
effect of each .solid box in the figure, in 
accordance with the notion of temporal abstraction, 
is to add or delete some set of triples. The 
overall effect of P will be the composition of 
these, as described in section III. 'Ret' is short 
for 'recursion', 'self' is the actual recursive 
invocation of P, and 'get-next' is an implicit 
enumeration function which retrieves the next node 
in the thread (this happens automatically during 
pattern-matching in SOLO, e.g. when Y is bound to 
BARBARA, then COLIN, then DIANA). 

.--A.- 
I--+ 'self: !---r -' 

FINAL L-l EFFECT 

Fig. 3: The recursion schema for thread enumeration 

Any of the effect steps may be conditional, 
composite, or missing altogether. The restrictions 
for recognizing a program as an instance of this 
schema are: (1) P has a parameter x which is the 
beginning of a thread; recursive invocations of P 
thus enumerate successive nodes along the thread; 
(2) the recursion and termination steps involve the 
enumerated node and relation R, where R is 
non-cyclic and one-to-one or many-to-one in the 
database (we don't deal with one-to-many mappings 
of R, which would exist if, say, the triples ANDY 
KISSES BARBARA and ANDY KISSES DIANA were both 
present in the data base); (3) the side effects do 
not alter the thread and the side effected node can 
only be reached from the enumerated node via 
one-to-one relations. 
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The important insight of temporal abstraction is 
that the nodes enumerated during recursion can be 
dealt with as a set. Thus, any of these steps has 
an effect which can be represented as a set of 
triples (which we call 'db-set'). The termination 
step is the degenerate case of a singleton set. We 
describe db-sets as follows: 

[db-set 
typical member: (<filter> => <side effect>) 
init: (<enumerated node> . <first value>) 
ret rel: <thread link> 
termination: (ABSENT [<ref> <thread link> ?I)] 

where 
<filter> ::= T 1 

<simple filter> 1 
(OR <conjunctive filter> . ..) 

<simple filter> ::= (PRESENT <triple>) 1 
(ABSENT <triple>) 

<conjunctive filter> ::= 
(AND <simple filter> . ..) 

<side effect> ::= 
(+ <enumerated node> <link> <node> ) 1 

E 3 (- <enumerated node> <link> <node> ) 
<ref> ::= <enumerated node> ( (get <ref> <link>). 

By (get <node> <link>) we denote the reference 
from <node> via <link>. Thus <ref> is the n-fold 
composition of the reference from the <enumerated 
node> (called e) along <link>. For example, the 
node BARBARA in Fig. 1 can be referenced by 

(get ANDY KISSES), 
whereas the node DIANA can be referenced by the 
composition 

(get (get (get ANDY KISSES) KISSES) KISSES) 
An instantiated schema does not, of course, refer 
to specific nodes in the data base, but rather to a 
generalised description of a typical node along the 
thread. 

How, then, are db-sets derived from an 
instantiated recursion schema? We fill the slot 
'typical member' from the effect of the step (e.g. 
a NOTE of some triple is a + with its first 
argument replaced by a <ref> involving e). If the 
effect is unconditional, the filter is T, otherwise 
the condition is taken as the filter. The 'init' 
slot is the first value that e will take. 
Enumeration stops when termination is true. Steps 
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which work on the entire thread have 
(ABSENT [e <thread link> ?I) 

as their termination condition, whereas those 
working on the butlast of the thread have 

(ABSENT [(get e <thread link>) <thread link> ?I) 
as their termination condition. 

Consider the instantiated schema for 
SOLUTION-l above, which contains only an initial 
(conditional) effect. Its effect description is as 
follows: 

[db-set 
typical member: ( (ABSENT [e Is mocuhmm] ) => 

(+ [e GETS FLU])) 
init: (e . x) 
ret rel: KISSES 
termination: (ABSENT [e KISSES ?])I 

III COMPOSITION OF RECURSIVE SETS 
BY SYMBOEC EVALUATION - 

In general, a recursive procedure may comprise 
some combination of effect steps. To describe the 
net effect of the entire procedure, the individual 
effects must be composed. For instance, the 
addition of a set of triples followed by the 
conditional deletion of some elements should have 
the composite effect of asserting some elements of 
the set conditionally upon the negation of the 
condition for deletion (e.g. see SOLUTION-2 
below). This simplification is done during 
symbolic evaluation. 

Although the db-set for each step is a 
temporal abstraction (and hence ignores the order 
in which the nodes are enumerated), compositions of 
side-effects are sensitive to temporal order. 
Thus, we first compose those effects which occur on 
the descent and then those which occur on the 
ascent. The effects are still dealt with as 
db-sets, i.e. the inner details of the enumeration 
sequence are ignored. All we need to worry about 
is whether the db-set is of the 'descending' or 
'ascending' variety, which we know from its postion 
in the instantiated schema. 

Composition proceeds as follows: At a node in 
the symbolic evaluation tree (called S-node) where 
a db-set is to be asserted, we grow a branch with a 
description of the range of values that could be 
taken by the enumerated node. The range (e 1 e in 
R*(x) 1 says that e can take the value of all the 
nodes in the transitive closure of R starting at x. 
At the S-node at the end of this branch, the 
typical member of the db-set is asserted. If there 
is a (non-T) filter, we split into two branches, 
one with the condition and the other with its 
negation, and add the side effect to the S-node at 
the end of the branch where the condition is true. 

The next db-set is dealt with in the same way 
at all terminal S-nodes grown so far. If it has a 
filter, we test it at each S-node: if the sets 
have the 'same range, it may be possible to show 
either that the condition must always hold or that 
it can never hold, thus saving the split. If the 
ranges overlap, we introduce one branch for the 

overlapping range and others for the 
non-overlapping parts. On the overlapping sets it 
is then possible to test conditions or apply rules 
for cancellation (i.e. a NOTE followed by a FORGET 
of the same triple has no net effect) and 
overwriting (i.e. a NOTE following another NOTE 
with the same triple has no further effect). 

A special case arises if two consecutive 
assertions of sets are interleaving (i.e. they 
have the same time of execution of effect), and the 
second set's enumerated node (e2) 'runs ahead of' 
the first set's enumerated node (el). We say that 
e2 'runs ahead of' el if e2 is an n-fold 
composition of the reference from el along the 
thread-link. Since the effect on e2 occurs before 
the effect on el, we reverse the order of 
composition of both sets and apply the 
simplifications described above. Finally, starting 
from the terminal S-nodes we collect effects and 
conditions for all nodes with the same net-effect 
into one db-set with the appropriate filter. The 
result is the description of the program used for 
comparison with the ideal effect description. 

IV EXAMPLES 

Here are two alternative solutions to the 
problem posed in section 1. One has a bug. 

SOLUTION-2 (Successive sweeps): 

TO INFECT /X/ 
1 CONTAMINATE /X/ 
2 DECONTAMINATE /X/ 

TO CONTAMINATE /X/ 
1 NOTE /X/ GETS FLU 
2 CHECK /X/ KISSES ?Y 
2A If present: CONTAMINATE "Y; EXIT 
2B If absent: EXIT 

TO DECONTAMINATE /X/ 
1 CHECK /X/ IS INOCULATED 
IA If present: FORGET /X/ GETS FLU; CONTINUE 
1B If absent: CONTINUE 

2 CHECK /X/ KISSES ?Y 
2A If present: DECONTAMINATE "Y; EXIT 
2B If absent: EXIT 

SOLUTION-3 (Ascending conditional side effect): -- 

TO INFECT /X/ 
1 CHECK /X/ KISSES ?Y 
1A If present: INFECT *Y; CONTINUE 
IB If absent: EXIT 

2 CHECK /X/ IS INOCULATED 
2A If present: EXIT 
2B If absent: NOTE /X/ GETS FLU; EXIT 

In SOLUTION-2, the plan diagram for INFECT 
matches a schema for a conjoined effect. The plan 
diagram for the first of these, CONTAMINATE, 
matches the recursion schema for thread 
enumeration: an unconditional side effect 
occurring only in the 'initial effect' slot of the 
schema. It thus has the net effect: 
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for all {e 1 e in KISSES*(x)] 
(+ [e GETS FLU]) 

The second of the conjoined effects, DECONTAMINATE, 
matches the same schema, except that the side 
effect in the 'initial effect' slot is conditional. 
This yields the following net effect description: 

for all {e 1 e in KISSES*(x)] 
(PRESENT [e Is INocuixm]) => (- [e GETS FLU]) 

During symbolic evaluation, the two S-nodes are 
recognized as having the same range, so the 
evaluator simplifies their combined effect to be: 

for all {e 1 e in KISSES*(x)1 
(ABSENT [e IS INOCULATED]) => (+ [e GETS FLU]) 

which is precisedly the intended effect of the 
ideal INFECT procedure. 

SOLUTION-3 has a plan diagram which matches 
that of the recursion schema with just a 
(conditional) 'post-ret' effect. The reader may 
wish to verify that this conforms with the skeleton 
depicted at the beginning of section II and the 
schema shown in Fig. 3 (the CONTINUE at step lA in 
effect places step 2 in the 'post-ret' position). 
Notice that in this solution the first thing that 
normally happens is the recursive invocation of 
INFECT (step lA), which means that the side effect 
only happens when ascending. Our schema knows that 
a 'post-ret' effect on its own fails to reach the 
final node in the thread (in this case it is due to 
the EXIT at step IB). This is instantiated from 
the schema's canned effect description as follows: 

for all {e f (get e KISSES) in KISSES*(x)! 
(ABSENT [e IS INOCULATED]) => (+ [e GETS FLU]) 

That is, the conditional side effect is perpetrated 
only on the butlast of the thread running from x 
via KISSES. For the example of Fig. 1, SOLUTION-3 
happens to work. However, a counter-example can be 
generated for the student in the following way: 
generate a thread in which the final node (f) of 
the thread satisfies the condition specified in the 
schema's effect description, i.e. 
INOCULATED]). For Fig. 

(ABSENT [f IS 
1, this would amount to 

deleting the IS link between DIANA and INOCULATED. 
In such a case, SOLUTION-3 will fail. This 
counter-example can be used to point out the 
inherent flaw in the student's solution. 

V CONCLUSION 

Temporal abstraction provides us with a 
powerful mechanism for reasoning about side effects 
on sets of data objects. Our method of composing 
several such sets lets us analyse recursive 
procedures involving side effects on threaded data 
structures. Static set descriptions, which are the 
essence of temporal abstraction, can be combined 
using simplification rules derived from symbolic 
evaluation techniques. A library of recursive 
schemata enables us to analyse a range of students' 
programs, to combine set descriptions in a sensible 
way (e.g. composing descending and ascending 

effects in the right order), and to generate 
tailor-made counter-examples for programs which 
might 'work' by accident. 
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