
USING TEMPORAL ABSTRACTION TO UNDERSTAND RECURSIVE PROGRAMS
INVOLVING SIDE EFFECTS

Joachim Laubsch

Universitaet Stuttgart
Stuttgart
W. GERMANY

ABSTRACT

This paper develops the notion of temporal
abstraction, used originally for the automatic
understanding of looping constructs, to account for
a class of recursive programs involving side
effects upon a relational data base. The programs
may involve compositions of several side effects,
and these side effects can occur either during
descent or upon ascent from recursive calls.

I INTRODUCTION

The concept of 'temporal abstraction' was
developed by Waters [5], and Rich & Shrobe [4] to
describe the variables enumerated in loops as a set
of objects which could be manipulated as a who=
We apply this principle to recursive procedures
operating on threaded data structures and use it to
understand compositions of several side effects.
Our analysis is part of a larger project designed
to help novice programmers understand their buggy
programs ml, [IsI>. The novices are students
learning a LOGO-like language called SOLO [I], in
which a procedure can only side effect a global
data base which is a labelled, directed graph. Here
is a sample problem, of the kind posed to our
students: "Define a procedure INFECT which would
convert a data base such as the one shown in Fig. 1
to the one shown in Fig. 2 if invoked as INFECT
ANDY."

I --a-----> INOCULATED <-mm.;
lis Ii.9

kisses I kisses kisses 1
ANDY-------->BARBARA-------->COLIN-------->DIANA

Fig. 1

;---------> INOCUJ,ATED <-----;
[is /is

kisses I I kisses kisses 1
ANDY-------->BARBARA-------->COLIN-------->DIANA
I I I
I
I gets

I
Igets

---------> FLU <-----------~

Fig. 2

Marc Eisenstadt

The Open University
Milton Keynes

ENGLAND

The primitives for storing, deleting, and
retrieving relational triples are called NOTE,
FORGET, and CHECK. CHECK provides for conditional
branching depending upon its success, and also
allows simple pattern matching, as the example
below illustrates:

SOLUTION-l:

TO INFECT /X/
1 EXAMINE /X/
2 CHECK /X/ KISSES ?Y
2A If present: INFECT "Y; EXIT
2B If absent: EXIT

TO EXAMINE /X/
1 CHECK /X/ IS INOCULATED
IA If present: EXIT
1B If absent: NOTE /X/ GETS FLU; EXIT

INFECT recursively generates successive nodes
along the thread of 'kisses' relations (steps 2 and
2A), and invokes EXAMINE at each node. EXAMINE
conditionally side effects each node, i.e.
asserting that /X/ GETS FLU only when the triple
/X/ IS INOCULATED is absent.

This problem is typical of a large class of
tasks given to beginning SOLO users. Students may
adopt a variety of methods for tackling the stated
problem, combining side effects to achieve the
desired result. The next two sections describe how
we cope with different varieties of recursion and
how the accumulation of side effects is
represented. Section IV then illustrates how
deviant cases are handled.

II A CLASS OF RECURSION SCHEMATA ---

In a recursive procedure such as INFECT, a
side effect (conditional or unconditional) may
occur logically at any of five locations, depending
on the juxtaposition of the side effect, the
recursive call, and the termination test. Here is
a skeleton of the INFECT procedure, with the five
possible locations of side effect occurrences shown
underlined (not all five can coexist, and the SOLO
user must make careful use of the control-flow
keywords CONTINUE and EXIT to obtain certain
combinations):

400

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

TO INFECT /X/
. . .
<initial>

The effect steps can be classified according
to time of execution and range of nodes on which
the effect occurs:

. . .
CHECK /X/ KISSES ?Y
If present: <pre-ret>; INFECT *Y; <post-ret>
If absent: <termination>
. . .
<final>

These occurrences are depicted schematically
in Fig. 3, which shows a recursive procedure P
partitioned into its possible constituents. The
effect of each .solid box in the figure, in
accordance with the notion of temporal abstraction,
is to add or delete some set of triples. The
overall effect of P will be the composition of
these, as described in section III. 'Ret' is short
for 'recursion', 'self' is the actual recursive
invocation of P, and 'get-next' is an implicit
enumeration function which retrieves the next node
in the thread (this happens automatically during
pattern-matching in SOLO, e.g. when Y is bound to
BARBARA, then COLIN, then DIANA).

.--A.-
I--+ 'self: !---r -'

FINAL L-l EFFECT

Fig. 3: The recursion schema for thread enumeration

Any of the effect steps may be conditional,
composite, or missing altogether. The restrictions
for recognizing a program as an instance of this
schema are: (1) P has a parameter x which is the
beginning of a thread; recursive invocations of P
thus enumerate successive nodes along the thread;
(2) the recursion and termination steps involve the
enumerated node and relation R, where R is
non-cyclic and one-to-one or many-to-one in the
database (we don't deal with one-to-many mappings
of R, which would exist if, say, the triples ANDY
KISSES BARBARA and ANDY KISSES DIANA were both
present in the data base); (3) the side effects do
not alter the thread and the side effected node can
only be reached from the enumerated node via
one-to-one relations.

RANGE OF
ENUMERATION

entire
thread

butlast
of thread

last of
thread

I

I
I

I-

I

TIME OF EXECUTION OF EFFECT -- --

descent ascent

INITIAL FINAL
EFFECT EFFECT

PRE-REC POST-REC
EFFECT

TERMINATION
EFFECT

EFFECT

The important insight of temporal abstraction is
that the nodes enumerated during recursion can be
dealt with as a set. Thus, any of these steps has
an effect which can be represented as a set of
triples (which we call 'db-set'). The termination
step is the degenerate case of a singleton set. We
describe db-sets as follows:

[db-set
typical member: (<filter> => <side effect>)
init: (<enumerated node> . <first value>)
ret rel: <thread link>
termination: (ABSENT [<ref> <thread link> ?I)]

where
<filter> ::= T 1

<simple filter> 1
(OR <conjunctive filter> . ..)

<simple filter> ::= (PRESENT <triple>) 1
(ABSENT <triple>)

<conjunctive filter> ::=
(AND <simple filter> . ..)

<side effect> ::=
(+ <enumerated node> <link> <node>) 1

E 3 (- <enumerated node> <link> <node>)
<ref> ::= <enumerated node> ((get <ref> <link>).

By (get <node> <link>) we denote the reference
from <node> via <link>. Thus <ref> is the n-fold
composition of the reference from the <enumerated
node> (called e) along <link>. For example, the
node BARBARA in Fig. 1 can be referenced by

(get ANDY KISSES),
whereas the node DIANA can be referenced by the
composition

(get (get (get ANDY KISSES) KISSES) KISSES)
An instantiated schema does not, of course, refer
to specific nodes in the data base, but rather to a
generalised description of a typical node along the
thread.

How, then, are db-sets derived from an
instantiated recursion schema? We fill the slot
'typical member' from the effect of the step (e.g.
a NOTE of some triple is a + with its first
argument replaced by a <ref> involving e). If the
effect is unconditional, the filter is T, otherwise
the condition is taken as the filter. The 'init'
slot is the first value that e will take.
Enumeration stops when termination is true. Steps

401

which work on the entire thread have
(ABSENT [e <thread link> ?I)

as their termination condition, whereas those
working on the butlast of the thread have

(ABSENT [(get e <thread link>) <thread link> ?I)
as their termination condition.

Consider the instantiated schema for
SOLUTION-l above, which contains only an initial
(conditional) effect. Its effect description is as
follows:

[db-set
typical member: ((ABSENT [e Is mocuhmm]) =>

(+ [e GETS FLU]))
init: (e . x)
ret rel: KISSES
termination: (ABSENT [e KISSES ?])I

III COMPOSITION OF RECURSIVE SETS
BY SYMBOEC EVALUATION -

In general, a recursive procedure may comprise
some combination of effect steps. To describe the
net effect of the entire procedure, the individual
effects must be composed. For instance, the
addition of a set of triples followed by the
conditional deletion of some elements should have
the composite effect of asserting some elements of
the set conditionally upon the negation of the
condition for deletion (e.g. see SOLUTION-2
below). This simplification is done during
symbolic evaluation.

Although the db-set for each step is a
temporal abstraction (and hence ignores the order
in which the nodes are enumerated), compositions of
side-effects are sensitive to temporal order.
Thus, we first compose those effects which occur on
the descent and then those which occur on the
ascent. The effects are still dealt with as
db-sets, i.e. the inner details of the enumeration
sequence are ignored. All we need to worry about
is whether the db-set is of the 'descending' or
'ascending' variety, which we know from its postion
in the instantiated schema.

Composition proceeds as follows: At a node in
the symbolic evaluation tree (called S-node) where
a db-set is to be asserted, we grow a branch with a
description of the range of values that could be
taken by the enumerated node. The range (e 1 e in
R*(x) 1 says that e can take the value of all the
nodes in the transitive closure of R starting at x.
At the S-node at the end of this branch, the
typical member of the db-set is asserted. If there
is a (non-T) filter, we split into two branches,
one with the condition and the other with its
negation, and add the side effect to the S-node at
the end of the branch where the condition is true.

The next db-set is dealt with in the same way
at all terminal S-nodes grown so far. If it has a
filter, we test it at each S-node: if the sets
have the 'same range, it may be possible to show
either that the condition must always hold or that
it can never hold, thus saving the split. If the
ranges overlap, we introduce one branch for the

overlapping range and others for the
non-overlapping parts. On the overlapping sets it
is then possible to test conditions or apply rules
for cancellation (i.e. a NOTE followed by a FORGET
of the same triple has no net effect) and
overwriting (i.e. a NOTE following another NOTE
with the same triple has no further effect).

A special case arises if two consecutive
assertions of sets are interleaving (i.e. they
have the same time of execution of effect), and the
second set's enumerated node (e2) 'runs ahead of'
the first set's enumerated node (el). We say that
e2 'runs ahead of' el if e2 is an n-fold
composition of the reference from el along the
thread-link. Since the effect on e2 occurs before
the effect on el, we reverse the order of
composition of both sets and apply the
simplifications described above. Finally, starting
from the terminal S-nodes we collect effects and
conditions for all nodes with the same net-effect
into one db-set with the appropriate filter. The
result is the description of the program used for
comparison with the ideal effect description.

IV EXAMPLES

Here are two alternative solutions to the
problem posed in section 1. One has a bug.

SOLUTION-2 (Successive sweeps):

TO INFECT /X/
1 CONTAMINATE /X/
2 DECONTAMINATE /X/

TO CONTAMINATE /X/
1 NOTE /X/ GETS FLU
2 CHECK /X/ KISSES ?Y
2A If present: CONTAMINATE "Y; EXIT
2B If absent: EXIT

TO DECONTAMINATE /X/
1 CHECK /X/ IS INOCULATED
IA If present: FORGET /X/ GETS FLU; CONTINUE
1B If absent: CONTINUE

2 CHECK /X/ KISSES ?Y
2A If present: DECONTAMINATE "Y; EXIT
2B If absent: EXIT

SOLUTION-3 (Ascending conditional side effect): --

TO INFECT /X/
1 CHECK /X/ KISSES ?Y
1A If present: INFECT *Y; CONTINUE
IB If absent: EXIT

2 CHECK /X/ IS INOCULATED
2A If present: EXIT
2B If absent: NOTE /X/ GETS FLU; EXIT

In SOLUTION-2, the plan diagram for INFECT
matches a schema for a conjoined effect. The plan
diagram for the first of these, CONTAMINATE,
matches the recursion schema for thread
enumeration: an unconditional side effect
occurring only in the 'initial effect' slot of the
schema. It thus has the net effect:

402

for all {e 1 e in KISSES*(x)]
(+ [e GETS FLU])

The second of the conjoined effects, DECONTAMINATE,
matches the same schema, except that the side
effect in the 'initial effect' slot is conditional.
This yields the following net effect description:

for all {e 1 e in KISSES*(x)]
(PRESENT [e Is INocuixm]) => (- [e GETS FLU])

During symbolic evaluation, the two S-nodes are
recognized as having the same range, so the
evaluator simplifies their combined effect to be:

for all {e 1 e in KISSES*(x)1
(ABSENT [e IS INOCULATED]) => (+ [e GETS FLU])

which is precisedly the intended effect of the
ideal INFECT procedure.

SOLUTION-3 has a plan diagram which matches
that of the recursion schema with just a
(conditional) 'post-ret' effect. The reader may
wish to verify that this conforms with the skeleton
depicted at the beginning of section II and the
schema shown in Fig. 3 (the CONTINUE at step lA in
effect places step 2 in the 'post-ret' position).
Notice that in this solution the first thing that
normally happens is the recursive invocation of
INFECT (step lA), which means that the side effect
only happens when ascending. Our schema knows that
a 'post-ret' effect on its own fails to reach the
final node in the thread (in this case it is due to
the EXIT at step IB). This is instantiated from
the schema's canned effect description as follows:

for all {e f (get e KISSES) in KISSES*(x)!
(ABSENT [e IS INOCULATED]) => (+ [e GETS FLU])

That is, the conditional side effect is perpetrated
only on the butlast of the thread running from x
via KISSES. For the example of Fig. 1, SOLUTION-3
happens to work. However, a counter-example can be
generated for the student in the following way:
generate a thread in which the final node (f) of
the thread satisfies the condition specified in the
schema's effect description, i.e.
INOCULATED]). For Fig.

(ABSENT [f IS
1, this would amount to

deleting the IS link between DIANA and INOCULATED.
In such a case, SOLUTION-3 will fail. This
counter-example can be used to point out the
inherent flaw in the student's solution.

V CONCLUSION

Temporal abstraction provides us with a
powerful mechanism for reasoning about side effects
on sets of data objects. Our method of composing
several such sets lets us analyse recursive
procedures involving side effects on threaded data
structures. Static set descriptions, which are the
essence of temporal abstraction, can be combined
using simplification rules derived from symbolic
evaluation techniques. A library of recursive
schemata enables us to analyse a range of students'
programs, to combine set descriptions in a sensible
way (e.g. composing descending and ascending

effects in the right order), and to generate
tailor-made counter-examples for programs which
might 'work' by accident.

REFERENCES

hl

PI

[sl

[41

L.51

Eisenstadt, M. Artificial intelligence
project. Units 3/4 of Cognitive psychology: a
third level course. - - - Milton Keynes: Open
University Press, 1978.

Eisenstadt,
automated

M. &
debugging

Laubsch, J.
assistant

Towards
for

an
novice

programmers. Proceedings of the AISB-80
conference
Amsterdam, 1982

Artificial
--
Intelligence,

Laubsch, J. & Eisenstadt, M. Domain specific
debugging aids for novice programmers.
Proceedings of the Seventh International Joint ---
Conference Artificial Intelligence
(IJCAI-81). VaEouver, BC, CANADA, 1981.

Rich, C. & Shrobe, H. Initial report on a
LISP programmer's apprentice. IEEE
Transactions on Software Engineering, SE-4:6, -
1978.

Waters, R.C. A method for analyzing loop
programs. IEEE Transactions on Software -
Engineering, SE-5:3, 1979.

403

