
GIST English Generator 

Bill Swartout 

USC/information Sciences Institute 
4676 Admiralty Way 

Marina del Rey, CA 90291 

Abstract 

This paper describes a prototype English 
generator which can produce English descriptions of 
program specifications written in Gist, a program 
specification language being developed at ISI. 
Such a facility is required because although Gist 
is a high level specification language, 
specifications written in it, like those in all 
other formal specification languages, are 
unreadable. There are several reasons for this 
unreadability: strange syntax; redundancy 
elimination; lack of thematic structure; implicit 
remote interactions; m representation of the 
motivation or rationale behind the specification; 
and a strict reliance on textual presentation. The 
current generator deals with the first two problems 
ard part of the third. Our plans for dealing with 
the rest are outlined after a description of the 
current generator. 

1. Introduction 

Gist has been extensively described elsewhere 
[l, 21; only a brief overview will be given here. 

Gist attempts to ease the burden of software design 
and maintenance by allowing the user to indicate 
what behavior he wants without requiring him to 
state how it is to be achieved. Gist frees its 
users from typical implementation concerns such as 
cwutational efficiency, method selection, and 
explicit data structure choice. We are exploring 
ways of producing efficient programs fran Gist 
specifications by using a library of 
transformations which map out the specification 
freedoms Gist ,permits [6]. It is envisioned that 
the user will select the transformations to apply 
and the computer will apply them and keep a record 
of the applications. We expect that systems 
developed in this fashion will be easier to 
maintain because it is the specification that will 
be modified, rather than the highly tuned and 

This research is supported by the Air Force 
Systems -and, F&me Air Development Center under 
contract No. F30602 81 K 0056. Views and 
conclusions contained in this report are the 
author's and should not be interpreted as 
representing the official opinion or policy of 
RADC, the U.S. Government, or any person or agency 
connected with them. 

optimized implementation code. Furthermore, the 
computer record of the original development will 
not only document that development, but also allow 
substantial portions of the original development to 
be recovered and reused after the modifications are 
made, thereby substantially speeding up the re- 
development of a working system. 

2. Gist English Generator 

Given a Gist specification and a small amount of 
additional grammatical information needed for 
translation (detailed below), the Gist English 
Generator produces an English description of the 
specification. There are several reasons why such 
a capability is important for Gist or any 
specification language. First, since a 
specification is often used as a "contract" between 
a custcxner ard an implementor, it is important that 
all those concerned be able to understand the 
specification. Since custaners will frequently be 
unfamiliar with the formal specification language, 
a capability for making such formal specifications 
understandable is needed. Second, an English 
translation capability can provide an alternate 
view of a formal qpecification and, hence, be 
useful as a debugging aid even for those familiar 
with the formalism such as the specifier himself. 
Although the English generator has been operational 
for only a short time, it has already made several 
specification errors more apparent to us. Third, 
since good high level specification languages 
embody constructs and make default assumptions that 
are unfamiliar to those trained to use traditional 
programming languages, an English generator can 
serve as a pedagogical aid by re-casting a 
specification in English, thereby shortening the 
time required for familiarization with both the 
specification language and specifications written 
in it. 

A goal for the generator was to have it produce 
English directly from the specification as much as 
possible, as opposed to requiring the specification 
writer to supply substantial amounts of additional 
information about how the specification should be 
translated into English. Achieving this goal has 
two major benefits. First, the translation will 
depend more on the specification itself than on 
separate information required for translation, thus 
there is more certainty that changes in the 
specification will appear in the translation. 
Second, only minimal additional effort will be 

404 

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved. 



required on the part of the specification writer 
for his specifications to 'be translated into 
English. Given the generally dismal history of 
program documentation, this is an important 
consideration in assuring that the generator can be 
used with most specifications. 

We recognized that to achieve this goal, 
specifications would have to be written following a 
certain style. To aid us in defining this style 
and to assure that it be as natural as possible, we 
examined existing Gist specifications to determine 
haw the constructs of Gist were being used, and 
what were appropriate English translations for 
them. We found that most Gist forms could be 
mapped into English using the information supplied 
by the specification alone, but that relations 
(particularly attribute relations) and action 
declarations were used in several ways with 
differing English translations (described below). 
The generator uses heuristics to attempt to 
determine what translation should be employed for 
these constructs. When the heuristics are 
insufficient, the user can indicate the proper 
translation by providing additional information 
with the specification. 

2.1. Generator Organization 

The Gist English generator uses three passes and 
an intermediate case grammar representation [4]. 
The first pass of the generator examines the Gist 
specification and creates a case grammar 
representation of the English to be produced. The 
second pass performs inter-sentence transformations 
on the case grammar representation to improve the 
quality of the English description that will be 
produced. For example, this pass conjoins 
sentences where possible ti reduce the wordiness of 
the explanation. The third pass uses the 
transformed case grammar to produce actual English. 
The third pass also performs some intra-sentence 
optimizations. One such transformation was 
motivated by the observation that sentences which 
mention a definite reference first followed by an 
indefinite are clearer than those in which the two 
are reversed. For example, "A pier of the 
manager's port must be the pier p'-isnot arclear 
as "JI'he pier E must be a pier of the manager's .- - - - 
,port". 

This organization has some distinct advantages. 
The multiple representations provide appropriate 
points for making transformations. For example, 
transformations which are primarily concerned with 
English, such as conjunction insertion, are most 
appropriately made on the case grammar. It would 
be much more awkward to make such transformations 
during the first pass. Another advantage is that 
the case gramnar and passes twc and three of the 
generator are independent of the particular 
representation used for Gist specifications. Thus, 
the portions of the generator that embody English 
knowledge can be exported to other applications. 

Text generation has been investigated by a 
number of researchers (see [7] for a current 
bibliography). Doris Katz has produced a generator 

which is perhaps most similarly structured to the 
one presented here [5]. He has concentrated more 
on pass two, that is, on transforming the primitive 
English description formed in pass one into a more 
fluent explanation. In the Gist generator, the 
most difficult task has been forming the primitive 
explanation, since Gist and English are often quite 
different in terms cf what they can represent 
easily. 
2.2. Translating Attribute Relations 

Attribute relations and action declarations 
require a richer set of translations than other 
Gist constructs. This section and the next outline 
how their English translation is performed. 

Attribute relations are binary relations 
declared as part of type declarations. For 
example, the type declaration: 

type ship (Destination 1 port); 

declares the type ship and a relation Destination 
between ships and ports. When used elsewhere in 
Gist, :Destination is used to indicate the mapping 
from ships to ports, and ::Destination is used for 
the back-mapping from ports to ships. For example, 

(1) ship:Destination 

refers to the destination of a ship, and 

(2) port::Destination 

refers to a ship whose destination is the port. 

2.2.1. Kinds of Attribute Relations 

We have identified three major uses of attribute 
relations which have different 
translations. 

English 
The first use is illustrated by the 

example given above. To translate the forward 
mapping, the relation name may be used as a noun 
modified by a genitive form of the declared tvne. 
Thus (1) above- translates as "the destinatioG&of 
J& ship" or "the ship's destination'. % 
translate the back-mapping-m qenerate a noun 
phrase whose head noun-is the type of object being 
referred to (in this case, ship) modified by a 
relative clause indicating the relationship. Thus, 
(2) translates as 
the port". 

"the ship whose destination is 
In the absence of other informatioz 

this kind of translation is employed by the 
generator. 

- 

Attribute relations are also used to indicate 
"part of" relations. In the specifications we 
examined, this type of relationship was usually 
indicated by giving the relation the same name as 
the attribute type, as in: 

type auto (Engine 1 engine); 

405 



This declares that every object of type auto has an 
attribute called Engine, whose type is e+e. The 
translation for part-of relations is similar to 
those described -above, but the verb "have" or 
"belong" is used in place of "is". Thus, the type 
declaration itself would translate as "Each auto 
has an engine", and forward mappings auto:Eqj -- 
fran autos to engines would translate as "the 
auto's engine", 7 while backmappings auto::Engine -- 
fran engines to autos would translate as "the auto 
that has the engine". The "part of" translaoz 
used by the generator whenever the name of the 
relationship is the same as its attribute type. 

Finally, attribute relations are scmetimes used 
as verbs, as in: 

type pier (Handle / cargo); 

The translation for this type declaration is "Each 
pier handles a cargo". The type being declardx 
taken to be the subject and the attribute type is 
the object. 

pier:Handle 

translates as "The cargo which is handled 4 the ---- 
pier", and - 

cargo::Handle 

translates as "The pier which handles the cargo". 7 --- 
One problem with the verb forms that the 
translation can be very awkward if it appears 
deeply embedded within other forms. The generator 
recognizes such situations and uses several 
sentences to describe these embedded forms, 
automatically introducing intermediaries as needed 
(an example appears below). The specifier must 
indicate that an attribute relation is to be 
translated as a verb by placing a verb property on 
the name of the relation. This is one of the small 
grammatical additions required for natural language 
generation. 

2.3. Translating Actions 

Actions correspond to verbs. In the 
specifications wa have encountered so far, the name 
given to an action is either an English verb, or it 
is a ccqoun3 name (e.g. P%oveShip or Replace- Line) 
where the first element of the compound corresponds 
to the verb. If a name is not a compound, the 
generator assumes that it is an English verb. If 
it is a compound," the generator assumes that the 
first element of the coqound is the verb. 

*The generator knaws about stylized ways of 
creating ccmpounds, including separating by upper 
and lower case, hyphens and underscores, and it can 
break these coqounds apart. 

The parameters in an action correspond to cases 
in a case grammar. The generator knows hew to map 
a fixed set of cases into English. The user must 
supply the generator with annotations for each 
action declaration telling it the action's 
parameter/case correspondences. This is the second 
(and final) grammatical addition required for 
natural language generation. 

Currently the generator allows six cases for 
parameters. We eqect this number to grow slightly 
as we gain more experience with a wider variety of 
specifications. The current cases include: 

Agent, the thing or person performing the 
action. BecOllES the subject of 
declarative sentences. - (The manager 
moves the ship.) 

Object, the thing or person upon which 
the action is performed. Becomes the 
subject of passive sentences. (John 
kicked the ball.) -- 

Instrument, the thing used to perform the 
action. When translated to English, an 
Instrument is preceded by the preposition 
"with". (I dug the hole with a shovel.) ---- 

Dative, corresponds to the indirect 
object. When translated, the Dative case 
is preceded by "to". (I gave the ball to - 
the boy.) 

Directional, indicates the object toward 
which the action is proceeding. This 
case is also preceded by "to". (Move the 
ship to the pier.) -- . 
Locative, nouns in this case indicate the 
location of 
supplies the 
be used with 
at the pier.) -- 

For exarrp?le, tc ) 

the action. The user 
appropriate preposition to 
this case. (The ship sank 

translate the action: 

action MoveShip[s 1 ship, p 1 pier] 

The user muld inform the generator that the first 
parameter was the Object and the second was the 
Directional. The action would then translate as: 

"Move the ship s to the pier p." -- --- 

2.4. Examples 

This section presents some examples of English 
produced by the generator. The first example is a 
preliminary specification for a harbor manager. 
(The reader is not expected to understand the Gist 
specifications before reading their English 
paraphrases.) 

406 



begin 
type port(Pier I ier ::unique); 
type pier(Handle P 
type slip0 ; 

cargo, Slip I slip ::unique); 

type ship(Carry 
berth 

cargo, Destination I port, 
slip :optional ::optional); 

type ---go0 ; 
agent manager(Port I port :unique ::unique) 
where action JkloveShip[s I ship, p I pier] 

precondition s :berth ::Slip ::Pier= 
manager :Port 

precondition manager :Port :Pier-=p 
definition update :berth of s to p:Slip; 
action LoadShip[s I ship, c I cargo] 
precondition s :berth ::Slip :Handle=c 
precondition s :berth ::Slip ::Pier= 

manager :Port 
definition insert s :Carry=c; 

action AssignCargo[c I cargo, p I port] 
definition LoadShip[p ::Destination, c] 

end 
end 

To create an English description for this spec, 
the specifier had to inform the generator that the 
attribute relations Carry and Handle should be 
translated as verbs, ard he had to indicate the 
appropriate-.cases for each of the parameters of the 
action declarations. The English that resulted 
appears below: 

There are ports, ships, cargos and managers. 
Each port has one pier. Each pier belongs to 
one port. 
Each pier handles one cargo and has one slip. 
Each slip belongs to one pier. 
Each ship carries one cargo, has one 
destination which is a port and may have a 
berth which is a slip. A slip optionally is 
the berth of a ship. 
Each manager has one port. Each port belongs 
to one manager. A manager can assign a cargo, 
load a ship or move a ship. 

To m3ve a ship s to a pier p: 
Action: The berth of the ship s is 
updated to the slip of the pier p. 
Preconditions: The pier of the 
manager's port must be the pier 
p. The slip of the pier of the 
manager's port must be the berth of 
the ship s. 

To load a cargo c on a ship s: 

Action: Assert: The ship s carries 
the cargo c. 
Preconditions: The slip of the pier 
of the manager's port must be the 
berth of the ship s. The pier that 
has the berth of the ship s must 
handle thecargoc. 

To assign a cargo c to a port p: 
Action: Ioad the cargo c on a ship 

whose destination is the port p. 

When the person who wrote this specification saw 
the English description of it, he immediately 
realized that he had made a mistake, because ports 
should have more than one pier and piers should 
have more than one slip. This mistake had been 
hidden in the Gist spec because Gist defaults the 
mapping for an attribute relation to unique in the 
forward direction (i.e. from ports to piers and 
piers to slips). After correcting those bugs and 
making scme additions, a new specification and 
English description were produced: 

begin 
type port(Pier I 

harbor 
type pier(Handle f 

ier :multiple ::unique, 
ship :any ::optional); 
cargo :multiple, 

Slip I slip :multiple ::unique); 
type slip0 ; 
type ship(Carry cargo :any,Destination 1 port, 

berth slip :optional ::optional); 
always required Berths Are In Ports 
for all s 1 ship 11 - - - 
s :berth=$=>s ~:harbor :Pier :Slip=s : berth; 

type cargo()optional 
supertype of<grain(); 

fuel()> ; 
always prohibited Fuel And Grain 

there exists s I shz, g7 grain, f 1 fuel I I 
s :CarryT and s :Carry=f ; 

agent manager(Port 1 port :unique ::unique) 
where action MoveShip[s 1 ship, p I pier] 

precondition s ::harbor=manager :Port 
precondition manager :Port :Pier=p 
definition update :berth of s to 

p :Slip; 
action LoadShip[s I ship, c I cargo] 
precondition s:berth::Slip:Handle=c 
precondition s ::harbor=manager :Port 
definition insert s :Carry==c; 

action AssignCargo[c I cargo, p 1 ,port] 
definition LoadShip[p::Ikstination,c] 

end 
end 

The English description for the above spec: 
(Comments appear underlined.) --~- 
(The generator "sets the stage" by first -- 
creating a summary statement of the toplevel 
types that will be descri&k,- =Ei 
types are tho~thZ&YiXZther subtype? 
z part-of sane other type.) --- 
There are ports, ships, cargos and managers. 

Each port has multiple piers. Each pier 
belongs to one port. Each port harbors any 
number of ships. Each ship may be harbored by 
a port. 
(For each type, the generator constructs a 
description of its attribute relations. Note -- 
the change frcan the previous spec.) -- 
Each pier handles multiple carqos and has 
multiple slips. Each slip belongs to one 
pier. 

Each ship carries any number of cargos, has 
one destination which is a port and may have a 
berth which is a slip. A slip optionally is 
the berth of a ship. 

407 



(Wherever possible, the second pass of the -- 
generator conjoins sentences. Before pass 2, 
the above paragraph contained four sentences. 
mepass 2 the first three have been ---- 
conjoined into one.) 
Fuels and grainsare cargos. 

Each manager has one port. Each port belongs 
to one manager. A manager can move a ship, 
load a ship or assign a cargo. 
(The generator gives a s&y description of 
the actions an agent can perform before 
descr lb1 'ngthcin detail7 --- 

To move a ship s to a pier p: 
Action: The berth of the ship s is 
updated to a slip of the pier p. 

Preconditions: The pier p must be a 
pier of the manager's port. The 
manager#s port must harbor the ship 
S. 

To load a cargo c on a ship s: 
Action: Assert: The ship s carries 
the cargo c. 

Preconditions: The manager's port 
must harbor the ship s. The pier 
that has the berth of the ship s 
must handle the cargo c. 

To assign a cargo c to a port p: 
Action: Mad the cargo c on a ship 

whose destination is the port p. 
(In describing actions, preconditions 
d=cribed after the actions, because ~ - 
represent detailed --iGi 
description San%: action itself ) ----- 

are 

% - 

Fuel And Grain: 
A ship s must not carry a grain g and a 
fuel f. 

Berths Are In Ports: 
If: A ship s has any berth, 

Then: A port p harbors the ship s. The 
berth of the ship s is a slip of a pier 
of P. 

3. Current Research Issues 

While the generation capability described above 
has already demonstrated its usefulness in making 
Gist specifications more readable, there is much 
that can be done to improve it. There are four 
topics we are currently investigating which we 
expect will substantially improve the quality of 
the explanations that can be offered. These are: 
global- explanation descriptions, presentational 
form, level of abstraction, and sy&olic execution. -- 

One problem with the current English generator 
is that it makes its decisions based almost 
entirely on local information. That is, when 
translating a piece of a specification to English, 
decisions about hm that translation should be made 
depend just on the par titular piece of 
specification. Operations such as user modelling, 
choosing appropriate names for objects, and 
producing focused explanations which describe a 
subpart of the specification in relation to the 
rest all require a more global view of the 
explanation: the explanation itself must be viewed 
as a whole ati manipulated before being presented. 
Just as the use of a case granmar provides the 
English generator with an intermediate 
representation which is more appropriate for 
operations such as conjunction insertion that 
require a more global view than surface syntax 
provides, a global explanation description is 
required for the kinds of operations mentioned 
above. 

Currently, explanations are only available in 
one presentational form: English text. Yet text 
is often not the clearest way of presenting an 
explanation. For example, most machine-produced 
English explanations of highly interconnected 
structures (such as a causal network) became 
rapidly confusing. The same information is 
substantially clearer when illustrated by a 
drawing. This suggests that an explainer will 
benefit frcm an ability to inter-mix multiple 
presentation forms, choosing the most appropriate 
one given the nature of the information to be 
presented and kmJwledge of the capabilities and 
preferences of the user. A preliminary graphic 
capability has been designed for Gist and is 
currently being implemented. This will all- the 
user to display, enter, and modify same of the 
information in a Gist specification. The next 
stage will be to integrate this capability with the 
English generator ard a set of heuristics for 
choosing the most appropriate form, so that the 
explainer will be able to integrate graphic and 
text explanations. 

It is generally agreed that to give good 
explanations, it is necessary to be able to 
sumnarize the information to be presented so that 
the listener is not overwhelmed by detail. The 
current generator has a limited ability to 
summarize. For example, the actions an agent can 
perform are presented in an overview before they 
are described in detail. While such Gist-based 
heuristics can be valuable, they will probably not 
be powerful enough to solve the sumnarization 
problem by themselves. The problem is that such 
heuristics only examine the final version of the 
specification and frequently, there is not 
sufficient information available to determine 
appropriate sumnarizations. A record of how the 
specification itself was developed would be very 
valuable, because it could detail how the final 
specification was elaborated fran a more abstract 
initial specification and give the rationale behind 
those elaborations. This record could be used both 
in determining summarizations and in justifying the 



specification. The Gist language itself has no 
special features for representing these different 
levels of abstraction. We are currently designing 
a system for incrementally acquiring specifications 
fram the specification writer. This system will 
allcrw the writer to initially give a very high- 
level, abstract specification. This initial 
description will usually be incomplete. The 
initial specification will be repeatedly elaborated 
until it is as detailed as required. This process 
will be recorded. The record should give the 
explainer a needed additional source of knowledge 
for providing good explanations. 

Finally, we wish to be able to explain the 
dynamic behavior implied by a specification. 
Often, subtle aspects of a program's (or 
specification's) behavior only became apparent by 
executing it. A symbolic evaluator has been 
designed and partially implemented by Don Cohen [3] 
which allows the user to evaluate the specification 
with s*lic inputs, rather than with specific 
concrete inputs (although the user may supply 
concrete inputs if desired). In this way, the user 
can test a specification on a whole class of inputs 
at once, rather than laboriously iterating over all 
the possible instances of that class. While the 
general problem of symbolic evaluation is very hard 
(ccmplex loops, for example, present behaviors that 
can be very difficult to express in closed form) we 
have found that most of the forms which actually 
arise in specifications are relatively easy to deal 
with. Those few forms that present problems can 
then be evaluated concretely. The output of this 
evaluator is a trace which characterizes the 
implied behaviors of the specification. The trace 
is unreadable by people because it is too detailed 
and unfocused. A dynamic explanation capability is 
being designed to translate this trace into a more 
readable form. 

1. Balzer, R. M., and N. M. Goldman. Principles 
of good software specification and their 
implications for specification languages. 
Proceedings of the Specifications of Reliable 
Software Conference, Boston, Massachusetts, 
April, 1979, pp. 58-67. (Also presented at the 
National Computer Conference, 1981.) 

2. Balzer, R., Goldman, N. & Wile, D. Operational 
specification as the basis for rapid prototyping. 
Proceedings of the Second Software Engineering 
Symposium: Workshop on Rapid Prototyping, ACM 
SIGSOET, April, 1982. 

3. Cohen, D., Swartout, W. & Balzer, R. Using 
symbolic execution to characterize behavior. 
Proceedings of the Second Software Engineering 
Symposium: Workshop on Rapid Prototyping, ACM 
SIGSOET, April, 1982. 

4. Fillmore, C. The Case for Case. In Universals 
in Linguistic Theory, 7-- Holt, Rinehart and Winston, 
1968. 

5. Katz, B. A Three-Step Procedure for Language 
Generation. Tech. Rept. AI Memo 599, MIT, 
December, 1980. 

6. London, P. & Feather, M.S. Implementing 
specification freedoms. Tech. Rept. RR-81-100, 
ISI, 4676 Admiralty Way, Marina de1 Rey, CA 90291, 
1981. Submitted to Science of Computer Programming. 

7. Mann, W.C.,M. Bates,B. Grosz, D. McDonald,K. 
McKeown, W. Swartout. Text Generation: The State 
of the Art and the Literature. Tech. Rept. 
RR-81-101, ISI, December, 1981. 

409 


