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Abstract 

Current approaches to inductive concept learning suffer 
from a fundamental difficulty; if a fixed language is chosen 
in which to represent concepts, then in cases where that 
language is inappropriate, the new concept may be 
impossible to describe (and therefore to learn). We 
suggest a framework for automatically extending the 
language in which concepts are to be expressed. This 
framework includes multiple sources of knowledge for 
recommending plausible language extensions. 

I Introduction 

We consider concept learning problems in which there is a 
domain of instances over which concepts (generalizations) 
are to be learned. A trainer presents a sequence of 
training instances, each labelled as a positive or negative 
instance of the concept. The task of the learner is to 
acquire the ability to correctly state, for every instance in 
the domain, whether that instance is an example of the 
concept. For any instance which has not been presented 
by the trainer, the learner must therefore inductively infer 
whether the instance is an example of the concept. 

II Problem and Related Work 

The inductive inference process is driven by two kinds of 
information. The first kind of information is classifications 
of training instances given by the trainer. The second kind 
of information, which we call bias, is broadly defined as 
anything which influences how the concept learner draws 
inductive inferences based on the observed training 
instances. Without such bias, the inductive inference 
process can perform no better at classifying unobserved 
instances than random guessing [S]. We are interested 
here in the issue of how an “appropriate” bias for inductive 
learning can be acquired automatically. 

Bias can be built into a learning system in many ways. For 
example, Mitchell [4] and Vere [ 101 encode bias via an 
incomplete concept description language in which only 
certain partitions of the domain of instances are 
expressible. Waterman [ 1 11 encodes bias both in his 
concept description language and in his learning algorithm. 
Michalski [2, 31 encodes bias, not by limiting his concept 
description language, but by having a human user state the 
bias as rules for preferring one concept description to 
another. 

*This work was supported by National Science 
Foundation grant GMCS80-08889. 

I I I Approach 

In this paper, we consider concept learning where the bias 
resides solely in the concept description language. To do 
this, we impose the constraint that a hypothesis can be 
described if an only if there exists a corresponding 
concept description in the learner’s concept description 
language. Thus, we represent a particular bias by a 
particular set of describable concepts: the concept 
description language. This equivalence between the 
language and bias allows us to operate on bias by operating 
on the concept description language. Figure Ill- 1 illustrates 
a framework for revising bias by revising the concept 
description language. 

FigurewIll -1: Model of Inductive Concept Learner 

A. Detecting Inappropriate Bias 

Bias is appropriate to the extent that it causes the concept 
learner to draw correct inductive inferences. Bias is strong 
to the extent that the set of hypotheses to be considered 
by the concept learner is small. We are examining the 
process of revising bias by adding new concept 
descriptions to the learner’s concept description language. 
Thus the revision process can be viewed as weakening 
strong bias in an appropriate manner. 
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Our method of detecting inappropriate bias is to detect 
incorrect inductive inferences which could have been drawn 
as a result of the bias. Accordingly, to detect that no 
consistent description of the observed instances exists in 
the concept description language is to prove that the bias 
is inappropriate, assuming that the training instances have 
been correctly classified by the trainer. 

B. Revising Inappropriate Bias 

When the existing concept description language has been 
identified as providing inappropriate bias, the bias must be 
revised by adding a new concept description to the 
language. For the purpose of induction, and to avoid the 
need for future revisions of bias, it is desirable to 
formulate a revision which corrects the discovered error 
and correctly anticipates the classif ications of the 
unobserved instances. 

1. Knowledge Sources for Recommending Revisions 

We define a knowledge source as a procedure which uses 
available information (e.g. training instances, existing 
concept description language, context of concept learning 
problem) to recommend revisions to the concept 
description language which will render the concept 
description language more appropriate. Below, we consider 
two classes of knowledge sources. 

One class of knowledge source for recommending language 
extensions is characterized as “syntactic” because the 
proposed recommendations are derived only by considering 
boolean combinations of currently describable concept 
descriptions. For example, it would be possible to specify 
a new concept description by creating a disjunction of 
concept descriptions (A v B v . ..I which correctly classifies 
the training instances. Various researchers have discussed 
data-driven methods for describing such disjunctive 
concepts [ 1, 4, 21. Similarly, it may be possible to 
specify a new concept description by creating a 
counterfactual, as per Vere [ 101, of concept descriptions 
(A A -(B A -...)I which correctly classifies the training 
instances. 

derivable via the grammar is a concept description in the 
concept description language and describes (i.e. matches) 
the set of terminal strings derivable from tne sentential 
form. We refer to the grammar as the generalization 

state 1: Scos7(x)dx 

I 
op 1: f’(x+f [r- ’ l(x)f(x) 

state2: Icos’(x)cos(x)dx 

1 
op2: fr(x\-(f2(x))[r’21 

state3: &cos2(xN3cos(x)dx 

1 
0~3: cos2(xw( 1 -sin2(x)) 

state4: I( 1 -sin2(x))3cos(x)dx 

1 
0~4: Ig(f(x))f’(x)dxeJg(u)du, u=f(x) 

state5: I( 1 -u213du, u=sin(x) 

1 

op5: polyk(xH Cpoly(x)* ,...*,poly(x)l 

state6: J 1 -3u2+3u”-u6du, u=sin(x) 

Figure 111-3: Solution Path for Jcos7(x)dx 

hierarchy. Suppose the concept to be learned is “situations 
for which the solution method shown in figure Ill-3 should 

be applied to solve a symbolic integration problem”. If 

-fcos’(x)dx and -fcos7(x)dx are positive instances of this 

arg) 1 

I& 
uvwxy 

id k)) 

Figure Ill -2: A grammar for a concept description language for symbolic integration 

Let us consider a hand-generated example of a concept 
learning problem from the task of learning problem-solving 
heuristics in the domain of symbolic integration [S]. The 
concept description language is specified by the formal 
grammar shown in figure - 111-2. Every sentential form 

concept, and .fcos’(x)dx is a negative instance, then there 
does not exist a concept description in the concept 
description language which is consistent with these 
observed instances. In this situation, a knowledge source 

KS, which produces succinct disjunctions may recommend 
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that the concept description language be revised to allow 
-5 v 

describing the disjunction Jcos 
7 (x)dx. Similarly, a 

knowledge source KS, which searches for consistent 

counterfactuals may suggest revising the language to allow 

describing Jcosk * ?x)dx. 

A second class of knowledge sources for suggesting 
language revisions is characterized as “analytic” because the 
proposed recommendations are derived by analyzing the 
context in which the concept learning problem appears. 
For example, when the concepts to be learned are 
problem-solving heuristics, then a knowledge source based 
on analyzing solution traces (e.g. as suggested recently in 

[7]) is relevant to the task of generating new language 
terms. This knowledge source KS, uses knowledge about 

the set of available problem-solving operators, an explicit 
definition of the expected performance of heuristics, 
knowledge about heuristic search in general (e.g., definitions 
of concepts such as “solvable”), and knowledge about the 
task domain itself. 

The solution trace analysis from KS, first produces a set 

of statements about various nodes in the search tree, which 
characterize reasons why the training instance is positive. 
These statements are then propagated through the problem- 
solving operators in the search tree to determine which 
features of the training instance were necessary to satisfy 
these statements. It is during this propagation and 
combination of constraints that new descriptive terms may 
be suggested. 

For example, in the case of the solution path shown in 
figure 111-3, suppose that the analysis determines that the 
solution path leads to a solution because state6 is of the 
form 

which , 
state. 

Spoly(x)* , . ..*.poly(x)dx 

in turn, satisfies the learner’s definition of a solvable 
Then we can compute the set of states S, for 

application of op5 leads to such a solvable state as 

S ,+-op5- ’ upoly(xP, . ..*.poly(x)dx) 

which i 

giving 

5 = Jpolyk(x)dx. 

In turn, we can compute the set of states 

application of op4 leads to a state in S, as 

S, for which 

S2+op4- ‘(intersection(rangelop4),S, 1) 

giving 

s2 = Jpolyk(f(x))f’(xldx. 

By this repeated backward propagation of constraints 
through the solution tree, it can be determined that 
application of the solution method of figure Ill-3 leads to a 
solvable state when the initial state (in this case state11 is 

of the form ScosC(x)dx where c is constrained to satisfy 
the predicate “real(c) A integer((c- lV2I”. better known as 
“odd integer” The complete derivation is shown in [9]. 
Because the current language has no term corresponding to 
this predicate, the predicate can be used as the definition 
of a useful term to be added. 

The approach sketched here is discussed further in [9, 71. 
We believe this kind of analysis can provide strong 
guidance for revising the concept description language, and 
expect that studying this kind of knowledge source will 
continue to be a major focus of our future work. 

2. Using Multiple Knowledge Sources 

A knowledge source may produce any number of 
recommendations. Notice that a knowledge source such as 

KS, which can recommend a disjunctive description of a 
given set of positive training instances will always produce 
at least one recommendation. When several 
recommendations are available from one or more 
knowledge sources, a merging process must compare and 
weigh the recommendations against each other. This 
merging process may be based on many factors, including 
1) the probability that a recommendation from a given 
source is correct, 2) whether the set of recommendations 
from one knowledge source intersects the set of 
recommendations from another source, and 3) the strength 
of the justification provided by the knowledge source for 
the recommended change (e.g. whether any of the concepts 
recommended for inclusion in the concept description 
language has been proven to be a sufficient condition for 
(subset of) the concept being learned). 

For the example considered above, it is known that the 
analysis of the analytical knowledge source KS, computes a 

sufficient condition for concept membership. Therefore the 
merging routine can reject the recommendation from KS, in 

favor of the recommendation from KS, because the 

recommendation from KS, is a sufficient condition for 

concept membership and it is more general than that 
recommended by KS ,. 

3. Assimilating a Proposed Change 

When assimilating recommended changes to the concept 
description language, revisions of varying strengths may be 
possible. For example, to add a concept description which 

describes Scos5(x)dx v Jcos7(x)dx, the disjunction itself 
could be added to the language as a permitted concept 
description. Alternatively, a term “k-new” could instead be 
added which represents the disjunction 5 v 7. This latter 
revision causes the disjunction 5 v 7 to be considered by 

the concept learner in contexts other than Scos’(x)dx, and 
thus provides a more sweeping change to the language. 

A major difficulty in assimilating new language terms lies in 
determining where a new term fits relative to existing 
terms in the generalization hierarchy. The ease with which 
a new term can be assimilated depends strongly on the 
form of its definition, It is relatively easy to assimilate a 
new term which is defined as a boolean combination of 
existing terms. For example, the new term “trig A -tan” 
could be assimilated by placing it into the generalization 
hierarchy below “trig”, and above all descendants of trig 
except “tan”. As long as the number of descendants of 
“trig” and “tan” is finite, such expressions can be easily 
assimilated. In contrast, terms such as “odd integer” 
present considerable difficulty. While it is clear from the 
form of the definition that this term is a specialization of 
the term “r” (real number), it is not readily apparent that it is 
a specialization of “k” (integer). In order to determine this 
fact, the assimilator will require some knowledge about the 
meanings of the terms in this domain, and about the plus 

416 



and times functions used to define the new term, so that it 
can determine that every instance of the new term must 
also be an instance of k. 
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