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ABSTRACT 

Predicate completion is an approach to closed 
world reasoning which assumes that the given 
sufficient conditions on a predicate are also 
necessary. Circumscription is a formal device 
characterizing minimal reasoning i.e. reasoning 
in minimal models, and is realized by an axiom 
schema. The basic result of this paper is that 
for first order theories which are Horn in a 
predicate P, the circumscription of P logically 
implies P's completion axiom. 

Predicate completion [Clark 1978, Kowalski 
19781 is a device for "closing off" a first 
order representation. This concept stems from 
the observation that frequently a world descrip- 
tion provides sufficient, but not necessary, 
conditions on one or more of its predicates and 
hence is an incomplete description of that world. 
In reasoning about such worlds, one often appeals 
to a convention of common sense reasoning which 
sanctions the assumption - the so-called closed 
world assumption [Reiter 19781 - that the infor- 
mation given about a certain predicate is all 
and only the relevant information about that 
predicate. Clark interprets this assumption 
formally as the assumption that the sufficient 
conditions on the predicate, which are explicitly 
given by the world description, are also neces- 
sary. The idea is best illustrated by an example, 
so consider the following simple blocks world 
description: 

A and B are distinct blocks. 
A is on the table. 
B is on A. 

(1) 

These statements translate naturally into 
the following first order theory with equality, 
assuming the availability of general knowledge 
to the effect that blocks cannot be tables: 

BLOCK (A) BLOCK (B) 
0~ (A,TABLE) ON (B,A) (2) 
A#B A# TABLE B # TABLE 

Notice that we cannot, from (2), prove that 
nothing is on B, i.e., (2) /+ (x> -ON(x,B), yet 
there is a common sense convention about the 
description (1) which should admit this conclu- 
sion. This convention holds that, roughly 

speaking, (1) is a description of all and only 
the relevant information about this world. To 
see how Clark understands this convention, consid- 
er the formulae 

(x) .x = A V x = B ZJ BLOCK (x) (3) 
(xy).x = A 6 y = TABLE V x * B d y = A 3 ON(x,y) 

which are equivalent, respectively, to the facts 
about the predicate BLOCK, and the predicate ON 
in (2). These can be read as "if halves", or 
sufficient conditions, of the predicates BLOCK 
and ON. Clark identifies the closed world as- 
sumption with the assumption that these sufficient 
conditions are also necessary. This assumption 
can be made explicit by augmenting the representa- 
tion (2) by the "only if halves" or necessary 
conditions, of BLOCK and ON: 

(x). BLOCK(x) 1 x=A V x=B 
(xy). ON (x,y) 3 x=A & y=TABLE V x=B & y=A 

Clark refers to these "only if" formulae as 
the completions of the predicates BLOCK and ON 
respectively. It now follows that the first 
order representation (1) under the closed world 
assumption is 

(x). BLOCK(x) : x=A V x=B 
(xy). ON(x,y) = x=A & y=TABLE V x=B & y=A 
AfB A # TABLE B # TABLE 

From this theory we can prove that nothing 
is on B - (x)-ON(x,B) - a fact which was not 
derivable from the original theory (2). 

Circumscription [McCarthy 19801 is a dif- 
ferent approach to the problem of "closing off" 
a first order representation. McCarthy's intu- 
itions about the closed world assumption are es- 
sentially semantic. For him, those statements 
derivable from a first order theory T under the 
closed world assumption about a predicate P are 
just the statements true in all models of T which 
are minimal with respect to P. Roughly speaking, 
these are models in which P's extension is 
minimal. McCarthy forces the consideration of 
only such models by augmenting T with the fol- 
lowing axiom schema, called the circumscription 
of P in T: 

T(t) & b> .4(x) = P(x)] = (xl. P(x) = @(xl 
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Here, if P is an n-ary predicate, then $ is 
an n-ary predicate parameter. T(4) is the 
conjunction of the formulae of T with each occur- 
rence of P replaced by 9. Reasoning about the 
theory T under the closed world assumption about 
P is formally identified with first order deduc- 
tions from the theory T together with this axiom 
schema. This enlarged theory, denoted by 
CLOSUREp(T), is called the closure of T with 
respect to P. Typically, the way this schema 
is used is to "guess" a suitable instance of 4, 
one which permits the derivation of something use- 
ful. 

a fact which is not derivable from the original 
theory T. 

Notice that in order to make this work, a 
judicious choice of the predicate parameter 4, 
namely (5), was required. Notice also that this 
choice of $ is precisely the antecedent of the 
"if half" (3) of ON and that, by (6), the "only 
if half" - the completion of ON - is derivable 
from the closure of T with respect to ON. For 
this example, circumscription is at least as 
powerful as predicate completion. 

To see how this all works in practice, con- 
sider the blocks world theory (2), which we shall 
denote by T. To close T with repect to ON, 
augment T with the circumscription schema 

X,Y> = ON(x,y)l 
ON(x,y) = $(x,Y) (4) 

Here 4 is a 2-place predicate parameter. 
Intuitively, this schema says that if 4 is a 
predicate satisfying the same axioms in T as does 
ON, and if 4's extension is a subset of ON's, 
then ON's extension is a subset of 4's, i.e., ON 
has the minimal extension of all predicates 
satisfying the same axioms as ON. 

In fact, this example is an instance of a 
large class of first order theories for which cir- 
cumscription implies predicate completion. Let T 
be a first order theory in clausal form (so that 
existential quantifiers have been eliminated in 
favour of Skolem functions, all variables are 
universally quantified, and each formula of T is 
a disjunct of literals). If P is a predicate 
symbol occurring in some clause of T, then T is 
said to be Horn in P iff every clause of T con- 
tains at most one positive literal in the pred- 
icate P. Notice that the definition allows any 
number of positive literals in the clauses of T 
so long as their predicates are distinct from P. 
Any such theory T may be partitioned into two 
disjoint sets 

To see how one might reason with the theory 
CLOSUREON( consider the following choice of 
the parameter + in the schema (4): 

Tp: those clauses of T containing exactly one 
positive literal in P, and 

T-Tp: those clauses of T containing no positive 
$(x,y) q  x=A & y=TABLE V x=B 6 y=A (5) (but possibly negative) literals in P. 

Then T(4) is 

BLOCK(A) & BLOCK(B) & [A=A & TABLE=TABLE 
v A=B 6r TABLE=A] 6 CB=A 6 A=TABLE v B=B & A=AI 
& A# B & A# TABLE &B # TABLE 

so that, for this choice of $, 

CLOSUREON I-- T($) 

It is also easy to see that, for this choice of 

CLOSUREON j- (xy) .$(x,y> = ON(x,y) . 

Thus, the antecedent of (4) is provable, whence 

CLOSUREON t (XY> .ON(x,y) 3 $(x,y). 

1. * e. 

Clark (1978) provides a simple effective 
procedure for transforming a set of clauses of 
the form Tp into a single, logically equivalent 
formula of the form (x). A(x) = P(x). The con- 
verse of this formula, namely (x). P(x) = A(x), 
Clark calls the completion axiom for the predicate 
P, and he argues that augmenting T with P's com- 
pletion axiom is the appropriate formalization 
of the notion of "closing off" a theory with re- 
spect to P. Our basic result relates this notion 
of closure with McCarthy's, as follows: 

Theorem 

Let T be a first order theory in clausal 
form, Horn in the predicate P.Let (x).P(x) 3 A(x) 
be P's completion axiom. Then 

CLOSUREp(T) I- (x). P(x) 1 A(x) 

CLOSURE (T) I- (xy).ON(x,y) ' 
x=A & y%BLE V x=B & y=A (6) 

i.e. the only instances of ON are (A,TABLE) and 
@,A) l It is now a simple matter to show that 
nothing is on B, i.e. 

CLOSUREON t (x).-ON(x,B) 

i.e. P's completion axiom is derivable by cir- 
cumscription. 

Discussion 

Circumscription and predicate completion are 
two seemingly different approaches to the formal- 
ization of certain forms of common sense reason- 
ing, a problem which has recently become of major 
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concern in Artificial Intelligence (see e.g. [AI 
19801). That circumscription subsumes predicate 
completion for a wide class of first order 
theories is thus of some theoretical interest. 

Moreover, circumscription is a new formalism, 
one whose properties are little understood. 
Predicate completion on the other hand, has a 
solid intuitive foundation, namely, assume that 
the given sufficient conditions on a predicate 
are also necessary. The fact that predicate com- 
pletion is at least sometimes implied by cir- 
cumscription lends support to the hypothesis that 
circumscription is an appropriate formalization of 
the notion of closing off a first order represen- 
tation. 

Finally, the theorem has computational im- 
port. Notice that in order to reason with 
McCarthy's circumscription schema it is first 
necessary to determine a suitable instance of the 
predicate parameter Cp. This is the central 
computational problem with circumscription. With- 
out a mechanism for determining "good $'s", one 
cannot feasibly use the circumscription schema 
in reasoning about the closure of a represen- 
tation. This problem of determining useful 4's 
is very like that of determining suitable pre- 
dicates on which to perform induction in, say, 
number theory. Number theory provides an induc- 
tion axiom schema, but no rules for instantiating 
this schema in order to derive interesting 
theorems. In this respect, the circumscription 
schema acts like an induction schema. 

Now the above theorem provides a useful 
heuristic for computing with the closure of first 
order Horn theories. For we know a priori, with- 
out having to guess a $ at all, at least one non 
trivial consequence of the circumscription schema, 
namely the completion axiom. Clearly, one should 
first try reasoning with this axiom before invok- 
ing the full power of circumscription by "gues- 
sing $‘s". 
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