
An Overview of Meta-Level Architecture

Michael R. Genesereth
Stanford University

Computer Science Department
Stanford, California 94305

Abstract: One of the biggest problems in AT programming
is the difficulty of specifying control. Meta-level
architecture is a knowledge engineering approach to
coping with this difficulty. The key feature of the
architecture is a declarative control language that allows
one to write partial specifications of program behavior.
This flexibility facilitates incremental system dcvclopment
and the integration of disparate architectures like demons,
object-oriented programming, and controlled deduction.
This paper presents the language, describes an appropriate,
and cliscusses the issues of compiling. It illustrales the
architecture with a variety of examples and reports some
experience in using the architecture in building expert
systems.

1. Introduction

The actions of most Artilicial Intelligence programs can
be divided into distinct “base-level” and “meta-level”
categories. Base-level actions are those which when strung
together achieve the program’s goals. Meta-level actions
are those involved in deciding which base-level actions to
perform. t’or example, in the Blocks World, all physical
movements of a robot arm would be base-level actions,
atid all planning \vculd be meta-level. In a data base
management system, data base accesses and modifications
would be base-level actions, and :;ll query optimiTation
would be mcta-level. In an autonralcd deduction system,
inf2rencc steps would be base-level, and the activity of
deciding the order in which to perform infcrencc steps
would be meta-level.

A good w:iy of keeping this distinction clear is to view the
b:lse-le!~cl and mcta-!cvel components as separate agents,
as suggested in figure 1. The base-lcvcl agent perceives
and modifies a given environment. The meta-level agent
operates in an enlarged environment that includes the
base-level agent. Its goal is to observe the base-level agent,
decide the ideal actions for it to perform in order for it to
achieve its goals efliciently, and finally to modify the base-
level agent so that it performs those aclions.

l’hc role of the mcta-level agent is Yiriiilar to that of an
“ii7strllClion-fetch unit” in many computer systems. The
primal y Jil‘fercnce is that for Al prograIns tl~e instruction-
fetch can be quitI. complex. R?cta-lc\cl architc~ture is a
knowlcclge cnsinccring approach to coping with t!lis
cornplcxity.

1 tie central idea in meta-level architecture is the use of a
declarative language for describing behavior. Within this
language one can write sentences about lhc state of the
base-level agent, its actions, and its goals; and the mcta-
level agent can reason wirh these senteliccs in deciding the
idcal action for the base-lcvcl to perform.

+-------------------+
I I

Meta-Level 1
I I +-------------------+

I I
I I +-------------------+

+---------------+ 1

I I i

I
Base-Level 1 I

I I +---------------+ 1

/ E
i i

nvironment I 1
I I +---------------+ I

Figure 1 - Relationship of base-level and mcta-level

A key fcaturc of the control language is that it allows
partial spccilications of bchavi~~r. One ndvantagc 01’ this is
incremental system cl~vclop~r~enl. For cx;m~plc, wc cocltl

start from a (pxsibiy sCLi!ch-intCJKiVe) k)giC [?fOgI‘:IlJl alld

incrcmt2nlnlly add control informution ui,Lil one c)llL;lilli a
(possibly search-free) tradiiional program. Another
advantage is the inlegration 01‘ dit‘fcrent Al architcclurcs,
c.g. demons, olljcct-oricntcd prograIl!rning, and controllcct
deduction. In the ab:;~~w of a language in whi~‘h partial
specilicalions of behavior can be expressecl, ninny arbitrary
decisions must be ma~!c in implcmcnting an archilccture,
thus inhibiling inrcgrnlion. A partial spcci fication
langl~? c gc allows an :lrchitcctural idea to bl: formalized
without this arbitrary detail.

The idea of m&~-level architecture is not a new one.
McCarlhy dcscribcd a similar idea in 1959 [McCarthy];
and, over the years a n[;mber of other rcscnrchcrs [Brown,
Ko~2;rlski) [Dax:is] [l?o)~lc 198U] \Gallairc, Lasscrrc], [Hayes
19731 [S~lntl~\~~illJ [I<. Smith] [W;JtTcll] [We) IIrauctl] have
followed suit. I-lowcver, to dale explicit introspective
reasoning has met with liltlc serious application, This

119

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

paper is concerned with the proplems of putting the idea
of mcta-level architecture to practical use.

Section 2 describes the control language and shows how it
can be LIS~C\ to encode various othci architectllrcs. Section
3 presents an interpreter for the language, and section 4
discusses the kres of compiling. The conclusion
describes some expcricrlce using mcta-level architecture,
mentions some directions for future work, and summarizes
the key points of the paper. This paper is an abridged
version of a previous paper [Genesereth, Smith].

2. Control Language

In this paper the syntax oT predicate calculus is used for
writing mcta-level axioms, though any other language with
equivalent expressive power would do as well. Several
syntactic conventions are used to simplify the examples.
Upper cast letters are used exclusively for constants,
functions, and relations. Lower case letters are used [or
variables. All free variables are universally quantified.

When the base-level agent is a data base program, care
musL be taken to avoid ccnfusion between base-level and
meta-level expressions. In the examples below,
expressions in the base-level language itself arc designated
by enclosing quotation marks, e.g. t'F~T~E~(A, B) II. The
examples arc sufficiently simple that variahIc5 occurring
within quotation rrwks can be assumed to bc meta-
variables, i.e. they range over expressions in the base-level
language.

The vocabulary of the language consists of the logical
symbols of predicate calculus, a small application-
independent vocabulary of actions, and all the application-
dependent symbols necessary to describe the base-Icvel
agent and its environment. The vocabulary of actions is
listed below. In the descriptions of each symbol, the word
“task” is used to refer to an individual occurrence of an
action, e.g. the printing of a file or the computation of a
sum. If an action is performed repeatedly, each
occurrence is considered a separate task, even if the
arguments are exactly the same.

OPR(<k>) designates the operation of which the task <k> is
an instance.

IN(<i>,<k>) designates the <i>th input to the task <k>.

NT (< i > , <k>) designates the < i >th output of the task <k> .

BEG(<k>) designates the start time of the task <k>.

ENU(<k>) designates the stop time of the task <k>.

TIME(<t>) states that <t> is the current time.

EXECUTED(<k>) states the the task <k> has taken place or
definitely will take pIace.

HECOMMENDED(<k>) states that task <k> is the
recommendccl action for a program to take. During
inference, it’s typical for more than one task to be
applicable, and tlscr-supplied ordering information can be

used to dctcrminc which of these is rccommcndcd. If
more than one task is recommended, it can be assumed
that they arc: all equally good.

While this small vocabulary allows one to formally si)ccify
a wide variety of control structures, it isn’t particularly
perspicuous. Expressive power and cuprcssive l‘acility
aren’t always cornpatiblc. On the other hand, the Innguage
does provide: a fi~undation for more perspicuous langunges,

and control specifications cxprcsscd within these Innguages
can be automatically I-c-expressed in terms of the
vocabulary above and thereby intcl rllingled.

3. Interpreting Control Specifications

An interpreter for this Iangt!age can be written in LISP as
shown in figure 2. Fach time around the loop, the
program updales the timc and computes a subroutine: Tar
the base Icvel to perform. The s\lbroutine is then
cxccutcd, the execution is noted, and the cycle rcpcats.

(DEFINE SCtlEDlJLER ()
(REPEAT (SETQ rIME (FIND ‘t ‘(TIME t)))

(UNASSERT '(TIME ,TIME))
(ASSERT ‘(TIME ,(+ TIME 1)))
(SETQ TASK (FIND 'z '(RECOMMENDED z)))
(APPLY (GETOPR TASK) (GETARGS TASK))
(ASSERT '(EXECUTED ,TASK))))

Figure 2 - An interpreter for meta-level architecture

In deciding on a base-level action, SCHEDULER uses the
inference procedure FIND to obtain 2 binding for the
variable z that makes the proposition (R~CDMMENDED Z)
true. This is the only way in which the mcta-level is
called; and so, to be useful, all control axioms must
contribute either directly or indirectly to this deduction. A
good choice of inference procedure for the axioms in this
paper would be some version of forward or backward
chaining, with a nonmonotonic treatment of NOT.
Efficiency could be enhanced through the use of caching
[Lenat] to avoid recomputation and truth maintenance
[Doyle 19791 to handle changes in state.

In order for FIND to draw proper conclusions from the
control axioms, all information about the state of the base-
level agent and its environment must be correct. There are
several practical ways of keeping this infc)rmation up-to-
date. One approach is for the meta-level to have an
explicit modci of’ the base-level program and its
environment. To do this, it must have a c!escription
(axiomatiration) of the initial state of the world and a
description of all the effects and non-effects of the base-
level actions. After each action the meta-level can LIX

these axioms to update its model of the world. A second

approach is to equip the meta-level component with
sensory capabilities and allow it to examine the base-level
when ncccssary. For example, if the meta-level needs to
know whether a proposition is in the base-level’s data base,
it can be given a sensory action which examines the base-
level data base. The appropriate sensory action for each
proposition can be determined at system-building time and
can be recorded by an appropriate meta-meta-level
procccIuraI att,lcillncnt (a “scn1;In:ic attuchlllcnt” as

described in [Weyhrauch]). A third approach is to modify

the actions of the base-level so that they automaticaily
update the data base of the mcta-level. The advantage of
this approach is that the addition of facts to the meta-level
data base can trigger whatever clcmons depend on them.
The choice of approach to use in a given application
depen~is on the donlain and the type ol’contrul a\if:lms one
inlcnds to write. 111 many situations a conibiiution of
approaches is best.

4. Examples

The examples in this section illustrate how a variety of
different coiltrol structures can be implemented within
meLa-level architecture. The examples are not meant to be
complete, only suggestive. For more detail, the reader
should see [Genesereth, Smith].

4.1 Demon Systems

The characteristic control feature of the blackboard
architecture [Erman, Lesser] is the use of demons, or
“knowledge sources”, to specify program activity. A
demon consists of a set of trigger conditions and an action.
Whenever the data base, or “blackboard”, satisfies the
trigger conditions for a demon, its action becomes
applicable. The system then selects an applicable action
and executes it.

The encoding of demons in a meta-level architecture is
quite simple. The action associated with the demon is
given a name, and its conditions are expressed on the left
hand side of a corresponding applicability axiom. The
axioms below are the control axioms for a simple
consultation system. Axiom AI states that, if a proposition
is proved and there is a base-level axiom that mentions it
on the lcfi har~d side, the system should forward chain on
that rule. ‘The second axiom states that, if there is a
proposition to be proved and there is a rule that mentions
it on the right hand side, then the system should backchain
on that rule. The third axiom states that, if there is a
projjosition to be proved, it is okay to ask the user so long
as the proposition is “askable”.

Al : PROVED(p) & INDB("p=>q")
=> APPLICABLE(ADDINDB(q,p,"p=)q"))

A2: WANTPROVED & INDB("p=>q")
=> APPLICABLE(ADDGOAL(p,q,"p=>q"))

A3: WANTPROVED & ASKABLE
q > APPLICABLE(ASK(q))

Axiom A4 below guarantees that every applicable demon
is recommcndcd. For applications where a delnon should
be run olily once after being triggered, axiom A4 can be
replaced by axiom A5.

A4: APPLICABLE(k) => RCCOMMENDED(k)
A5: APPLICABLE & NOT f-XECUrED(k) => RECOMMENDED(k)

4.2 Search Control

In many AI programs it is common for more than one
task to be applicable at each point in time. Axiom 81
shows how ordering axioms catI be used in determining
which applicable task is rccommcnded. It states that an
applicable task is recommended only if no other applicable
task is “preferred” to it.

Bl: APPLICABLE(k) &
NOT(Ex APPLICABLE(x) & PREFERRED(x,k))
q > RECOMMENDED(k)

The axioms below are some examples of how this
capability might be used. Axiom 82 constrains a program
to perform all backward chaining before asking its user
any questions. Axiom B3 states that a program should use
r~~lcs of greater certainty before rules of lesser certainty.
Axiom ~4 states that, whenever a program has a choice of
backchaining tasks to perform, it should work on the one
with fewer solutions.

82: OPR(kl)=ADDGOAL & OPR(k2)=ASK
=> PREFERRED(kl,k2)

B3: OPR(kl)=ADDGOAL & OPR(k2)=ADDGOAL &
CF(IN(3,kl))>CF(IN(3,k2))

=> PREFERRED(kl,k2)
Bfl: OPR(kl)=ADDGOAL &

NlJMOf SOLNS(IN(1, kl))iNlJMOFSOLNS(IN(1, k2))
=> PREFERRED(kl,k2)

The axioms below show how depth-first and breadth-first
search can be clcbc*ribed. Axioms B5 and BB define the
depth of a goal in turns of its “clistancc” from an initial
goal. Axiom B7 expresses a prcfercnce f’or deeper goals
and hence implements depth-first search. k\XiOIn B8
ex p rcsscs a preli:rence for shallow goals and hence
implements breadth-first starch.

65: DESIRE(g) => DEPTH(g)=0
BB: SUBGOAL(gl,y2,e,j) & DEPTH(g2)=n

=> DEPTH(gl)=n+l
B7: DEPTH(IN(l,kl)) > DF?Tti(IN(l,k2))

=> PREFFRRED(kl,k2)
B8: DtPItI(IN(l,kl)) > DEPIIi(IN(l,k2))

=> PREFERRED(k2, kl)

Obviously thcsc examples do not exhaust the space of
possibilities. Breadth-tnpcring, yuicsccncc, and a lnrgt‘
variety of other search techniques can be spccilied in
similar fashion.

4.3 Traditional Programmirlg

In certain situations it is desirable to specify control in
procedural terms. The vocabulary below, along with the
vocabulary for tasks, allows the description of incompletely
specified programs (having arbitrary concurrency).

FIRST(<kl>,<k>) states !liat the task <kl> is the first
subtask of the composite task <k>.

CPATH(<kl> ,<k2>) means that there is a direct control
path from task <kl> to task <k2>. After <kl> is executed,
< k2 > becomes executable.

LAST(<~~>,<~>) states that task <kn> is the last subtask of
task <k>. Due to control branching, a composite task may
have more than one last subtask.

PRIMITIVE(COP>) states that the action COP> is a base-level
subroutine.

As an example, consider ;I simple blocks world program to
build a tower of three blocks. A I.isl' version is shown
below.

(DEFUN TOWER (X Y Z)
(PUTON Y Z)
(PUTON X Y))

Using the voca’oulary above, this program can be specified
as shown below. The axiom states that an action k is an
instance of' TOWER if it has substeps kl and k2 ~1s shown.
One should remember in looking at thi:; description that
its size is due to the ract that all control inlbrrnation is
stated explicitly. This explicit slatcmcnt is ~,vhat enables
the partial description of programs. Such partial
descriptions are not possible in traditional progrnmming
languages because much of the control and data llow is
implicit in the code.

OPR(k)=TOWER <=>
E kl,k2

OPR(kl)=PUTON & IN(l,kl)=B & IN(2,kl)=C s(
OPR(k2)=I'UTON & IN(l,k2)=A & IN(2,kZ)=B &
CPATH(kl,kZ) & FIRST(kl,k) & LAST(k%,k)

The axioms that enable the execution of this code are
shown below. With these axioms the substeps of the
TOWER p-ogtm~ woulcl be executed in the proper order.
For example, if the task of building a tower of b!ocks A, R,
and C becnmc applicable, axiom cl wouid make the call to
PUTON with arguments U and C applicable. Ttlcn by axioms
c2 and c5 it would bc recommended as well. Once that is
executed, the call to PUTON with arguments A and B would
bccmc applicable by axiom ~3. Axiom ~4 guarantees that
when all of the subactions of a procedure are executed, the
procedure is also considered executed.

Cl: APPLICABLE(k) & FIRST(kl,k) => APPLICABLE(k1)
C2: APPLICABLE(k) & PRIMITIVE(k) & -EXECUTED(k)

=> RECOMMENDED(k)
C3: CPATH(kl,k2) & EXECUTED(k1) => APPLICABLE(k)
C4: EXECUTED(kn) & LAST(kn,k) => EXECUTED(k)
C5: PRIMITIVE(PUTON)

4.4 Object-Oriented Prograrnming and Procedural
Attachment

From the point of view of implementation, the primary
difl’erence between traditional programming and object-
oriented programming lies in the way one’s code is
organized. In traditional programming the code to
perform an operation on an object is associated with the
operation and is usually conditional on the object or its
lY Pea In object-oriented programming the code is
associated with the object, its class or some superclass, and

,it is usually conditional on the type of operation involved.
This orientation allows one to interpret objects as active
agents and operations as the results of passing messages to
those agents.

A typical application is in the world of graphics. One can
define each desired shape as a distinct type of object, each
with its own methods for redisplay, rotation, panning, etc.
The speci fit subroutine for each object-operation pair can
be recorded by writing meta-level axioms. For example,
the sentences below specify the subroutines for
mnnipulating squares.

Dl: SQUARE(x) => TODO(DISPLAY,x,DRAWSQUARE)
D2: SQUARE(x) => POLYGON(x)

D3: POLYGON(x) => ~ODO(ROTATE,x,ROTATEPOlYGON)
04: POLYGON(x) => PLANAR(x)

D5: PLANAR(x) => TODO(PAN,x,PANPLANE)

Note that this formulation is a slight gcncralization of
object-oriented programming. First of all, subroutines are
not associated l)rimarily with objects or operations but
rather with opcralion-object tuples. Second I y, the
handling of mu!ii-nrgurnct~t operations is sim;)tcr than in
pure object-oricntcd programming. Axiotns 126 and D7
operationalize the above axioms.

D6: APPLICABLC(g(x)) & TODO(g,x,f)
=> APPLICABLE(f(x))

D7: APPLICABLE(k) & -EXECUTED(k)
=> RECOMMENDED(k)

4.5 Planning

The fundamental characteristic of meta-level architecture
is that it allows a programmer to exert an arbitrary amount
of control over a program’s operation. The inference
procedures defined above exhibit a moderate amount of
programmer control. Programming clearly reprcscnts an
extreme in which the programmer makes all of the
decisions. Planning rcprescnts the other extreme in which
the programmer specifies only the program’s goal and the
program must decide for itself what actions to take to
achieve that goal.

The axioms for a planning program consist of those for
object-oriented programming together with those for
traditional programming. The clifference from object-
oriented programming is the that the computation of the
TODO relalion is more elaborate. Once a plan has been
found, the traditional programming axioms are necessary
to execute it.

5. Compiling Control Specifications

The primary advantage me&level architecture is that it
allows one to give a program an arbitrary amount of
procedural advice. In some cases this can lead to
substantial (possibly exponential) savings in runtime.
Unfortunately, there is a cost in using a mcta-level
architecture. Meta-level reasoning can be at least as
expensive as reasoning about an application area; and even
when this reasoning is minimal, there is some overhead.
The problem is particularly aggravating in situations where
meta-level control yields no computational savings.

One way to cnhancc program cflicicncy is to rcwritc the
control axioms in a I'om that lessens meta-level overhead.
Given an appropriate inference procedure for the meta-
lcvcl, the least expensive control structure is that of a
traditional program. Therefore, the idcal is to reformulate
an axiom set as a tradition:11 program. This can frequently
be done, iT information about the application area is used.

A more clrastic approach to incrcnsing the cfliciency of a
meta-level architecture is to eliminate meta-level
processing whenever possible, e.g. in the execution of a
fully specified deterministic program. Given an adequate
set of base-level actions, any procedure described at the

mcta-level can be “compiled” into a base-level program.
This sort of compilation is more complex than that done in
logic programming systems like PliOl.OG because the
compiler must take into account arbitrary control
specifications.

me possibility of partial compilation is particularly
interesting. In some cases it is possible to compile part of
a program into base-level subroutines while retaining a few
meta-level “hooks”. A good example of this is an
interpreter for an object-oriented programming langllage.
The code for each subroutine can be written as shown
below.

(DEFINE DRAW (X) (FINDMETtiOD ‘DRAW X))

(DEFINE ROTATE(X) (FINDMETHOD ‘ROTATE X))

(DEFINE PAN (X) (FINDMETHOD ‘PAN X))

(DEFINE FINDMETHOD (OP ARG)
(CALL (FIND ‘z ‘(TODO ,OP ,ARG z)) ARG))

Each subroutine “traps” to the metn-level to find out
which specific subroutine to KX. Answering this qllestion
may involve inheritance over a type hierarchy or a more
general inference. However, it is more efficient than the
standard mela-level architecture because there is a built in
assumption that only one subroutine is relevant.
Furthermore, the trap can be omitted where the flexibility
of meta-level deduction is unnecessary.

6. Conclusions

The feasibility of meta-level architecture for practical
programming has been tested by its use in the construction
of a number of different systems. These include an
automated diagnostician for computer !larc!warc fat~lts
(DAIU [Gencscrcth g/82]), a ca!cu!us program (1\JI INlhlA
[Brown]), a simulator for digilal hardware (SlIAM [Singh]),
a mini-tax consultant (111\VONNA [Barnes, Joyce, Tstlji]),
and an imp!ementat.ion of the NI’OMYCIN infectious
disease diagnosis/tutoring system [Bock, Clanccy]. All of
these programs were built with the help of MKS
[Genesereth, Greiner, Smith] [Clayton] [Genesercth
1 l/82], a knowledge representation system aimed at
facilitating the construction of meta-level programs.

The work on DAR’I’ best illustrales the way in which one
uses m&-level architecture. The first step was to build a
data base of facts about digital electronics, e.g. the
behavior of an “and” gate, and the circuit to be diagnosed,
e.g. its part types and their interconnections. A general
inference procedure (linear inplrt resolution) was then
applied to these propositions to generate tests. in order to
enhance efficiency, a variety of control axioms were then
added. Finally, many of the axioms were compiled (partly
by hand) into the resolution procedure.

While the architecture described here answers many of
the questions concerned with the practical use of meta-
level control, there remain enormous opportunities for
significant further research. The most important of these
is the development of a compiler able to translate arbitrary
control specifications into reasonable LISP code. Also
important is the discovery of powerful domain-

indcpenclcnt control rules, e.g. the ordering 01 conjtincts in
problem solving, the choice of problem solving method,
knowing when to cache, etc. Finally, the architecture
needs to bc extended to the handling of mtlltiple agt‘nts.

In summary, the purpose of this paper is to present the
details of a practical meta-level architecture for programs.
A program written in this style includes a set of base-level
actior!s and a set of mcta-level axioms that constrains how
these actions are to be used. ‘I’hc mcta-level axioms are
written in an expressive meta-level language and arc used
by a general infercncc procedure in computing the ideal
action to perform at each point in time. The arAitecture
is suf’ficicntly gcncral that a wide variety of traditional
control structures can be written as sets of metn-level
axioms. While this gcncralily engenders a certain amount
of inefficiency in any straightforward implementation, a
variety of specialized techniques can be used to avoid
inordinate overhead. I-inally, experience with meta-level
architectures indicates that it makes programs more
aesthetic, simpler to build, and easier to modify.

Acknowlcdgcmcnts

Over the past two years WC have !)cnetittzd by interactions
with numerous people. In particular, Jon Doyle, Pat
Hayes and Doug I-enat have had considerable impact on
our thinking. Spcci:l! thanks to Danny Robrow, Bill
Clar~cey, Lcc Errnan, and Kick Hayes-Roth for comments
on carlicr drafts of tllis paper. Sil~>~~o~‘I for this lvork was
provided by ONI< contract NOOOi4-SI-K-0004.

‘1’. Barnes, R. Joyce, S. ‘I’suji: “A Simple Income Tax Consultant”,
Stanford University 1 leuristic Programming Project, 1982.

J. A. nnrnctt, I,. Ilrman: “Making Control Decisions in an Itxpert
System is a Problem-Solving ‘i’ask”, USC/IS1 Technical Report, April
1982.

C. Rock, W. J. Clanccy: “MRS/NI!OMYClN: Representing mcta-
control in predicate calculus”, Ill+82-31, Stanford University
IIcuristic Programming Project, Dcccmbcr 1982.

D. Ijrown: “MINIMA”, Tcknowlcdge Inc., 1982.

K. Rrown, R. Kowalski: “Amalgamating Language and Mctalanguage
in 1,ogic Programming”, I&c f’rogrotnmittg: K. Clark, S. Tarnlund’
(cds), Academic Press, New York, 1982, pp 153-172.

J. Clayton: “Welcome to the MRS Tutor!!!“, HPP-82-33, Stanford
University Heuristic Programming Project, November 1982.

R. Davis,: “Mcta-Rules: Reasoning about Control”, Artificial
Itrielligettce, Vol. 15, 1980, pp 179-222.

J. Doyle: “A Truth Maintenance System”, Arltjkial lntel!igcttce, Vol.
12, 1979, pp 231-272.

J. Doyle: “A Model for Deliberation, Action, and Introspection”,
TR-581, M.I.T. Artificial Intelligence Laboratory, May 1980.

I,. Erman, V. J,esscr: “A Multi-I,cvcl Organization for Problem-
Solving Using many Diverse, Cooperating Sources of Knowledge”,
Proceeditlgs of the Fourlh Ittlcrttnliottal Joint Cottfcretlce otl A rltjiciczl
Itilclligrtxe, 1975, pp 483490.

H. G&ire, C. I.asscrre: “Mctalcvcl Control for Logic Programs”,
Z.ogic I’rogrclmttzittg: K. Clark, S. Tarnlund (cds), Academic Press,
New York, 1982, pp 173-185.

M. R. Gcnescrcth, R. Grcincr, D. IT. Smith: “The MKS Dictionary”,
I IPP-80-24, Stanford University Heuristic Programming Project,
November, 1982.

M. 1~. Gcncscrcth: “IXagnosis IJsing Hicrarchicnl Design Mod&“,
I’t~ocerditrgs of Ihe N~iliottul C’ottfercttce oti Arltjkicrl Itrlclligettce,
August 1982.

M. R. Gcncscrcth: “An Introduction to MRS for AI Experts”, IIPP-
82-27, Stanford University Efcuristic Programming Project,
November, 1982.

M. R. Gcncscrcth, D. E. Smith: “Mcta-Icvcl Architecture”, HPP-81-
6, Stanford IJnivcrsity IHeuristic Programming Project, December,
1982.

P. Hayes: “A L.ogic of Actions”, Muchine Intelligence, Vol 6,
American-Elsevicr, New York, 1970, pp 533-554.

P. Hayes: “Computation and Deduction”, Proceeditgs of the
Symposiwtl on .4latitettluGcal Foundations of Compukr Science,
Czechoslovakian Academy of Sciences, 1973, pp 105117.

K. Konolige: “A First Order Formalization of Knowledge and
Action for a Multisgcnt Planner”, Technical Note 232, SRI
International Artificial Intelligence Center, December, 1980.

1). B. I,cnat, F. Ifayes-Roth, P. I<lnhr: “Cognitive Economy”, FfPP-
79-15, Stanford University Heuristic Programming Project, June 1979.
J. McCarthy: “Pogrnms with Common Scnsc”, l’rocrrclttig.s of lhe
Teddirrglon Cottfercttce ot1 llre tliccltcrtrizntiott qf Thortxhr l’rocerses.
H. M. Stationery Oflicc, I,ondon, 1960. Rcprintcd in Settwiric
Informrriion l’rocessittg, M. Minsky (I’d), M 1 I’ t’rcsq, Cambridge,
1968, pp 403-410.

J. McCarthy: “First Order Theories of Individual Concepts and
Propositions”, in J. Hayes, I>. Michic, I.. Mikulich (cds), Addtitle
Ztz/el/igetzce 9, Ellis tlorwood, Chichcstcr, 1979, pp 120-147.

C. Rich: “Inspection Methods in Programming”,
Artificial Intelligence I <aboratory, June, 1981.

Al-‘1X-604. M.I.T.

E. Sandcwall: “Ideas about Management of 1.1% Data 11nscs”,
Working Paper 86, M.J.T. Artificial Intelligence I*ahoratory, January
1975.

N. Singh: “SHAM: A I licmrchical Simulator for Digital
Stanford University Ilcuristic Programming Project., 1982.

Circuits”,

B. Smith: “Reflection and Semantics in a Procedural I anguagc”, TR-
272, M.1.I’. Artificial Intclligcncc I sbor‘ttory, January 1982.

D. E. Smith, M. R. Gencscrcth: “Ordering Conjuncts in t’roblcm
Solving: Serious Applications of Mct,l-1 .cvel Rcasonillg I.“, I IPF-82-
9, Stanford University I Icuri%ic I’rogrammin~ Plojcct, April 1982.

D. F1. Smith, M. R. Gcncscrcth: “l:ill~ling All the Solutions to a
Problem: Serious Apy,lications of Mc~,I-1 .cvcl l<c,lsoillllg 1 I.“, H PP-
83-21, Stanford University I lcuristic Programming P~ojcct, 1)cccmbcr
1982.

M. St&k: “Planning ancl Mcta-Planning”, Arlificial Itilr;lli~ence, Vol.
16, 1981, pp 111-170.

W. VanMelle, A. Scott, J. Ijcnnctt, M. Pcairs: “I<&I’t’CIN Manual”,
HPP-81-16, Stanford University I Icuristic I’rogr,ln!ming Project,
October 1981.

1). Warren: “Efficient Processing of Interactive Rclation,il Database
Qucrics Expressed in Logic”, Proceedings of the seventh VI,DB
conference, 1981.

R. W. Wcyhrauch: “Prolegomcna to a Theory of Mechanized Formal
Reasoning”, Arlijicial Intelligettce, Vol 13, 1980, pp 133-170.

R. Wilensky: “Mctn-Planning: Representing and Using Knowledge
about Planning in Problem Solving and Natural Language
Understanding”, Cognitive Science, Vol. 5, 1981, pp 197-234.

R. Kowalski: “Algorithm = Logic+ Control”, Communications of the
ACM, Vol. 22, 1979, pp 424-436.

