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Abstract: One of the biggest problems in AT programming
is the difficulty of specifying control. Meta-level
architecture is a knowledge engineering approach to
coping with this difficulty. The key feature of the
architecture is a declarative control language that allows
one to write partial specifications of program behavior.
This flexibility facilitates incremental system development
and the integration of disparate architectures like demons,
object-oriented programming, and controlled deduction.
This paper presents the language, describes an appropriate,
and discusses the issues of compiling. It illustrates the
architecture with a variety of examples and reports some
experience in using the architecture in building expert
systems.

1. Introduction

The actions of most Artificial Intelligence programs can
be divided into distinct "base-level” and "meta-level”
categories. Base-level actions are those which when strung
together achieve the program’s goals. Meta-level actions
are those involved in deciding which base-level actions to
perform. For example, in the Blocks World, all physical
movements of a robot arm would be base-level actions,
and all planning weuld be meta-level. In a data base
management systcm, data base accesses and modifications
would be base-level actions, and all query optimization
would be meta-level. In an automated deduction system,
inference steps would be base-level, and the activity of
deciding the order in which to perform inference steps
would be meta-level.

A gocd way of keeping this distinction clear is to view the
basc-level and meta-level components as separale agents,
as suggested in figure 1. The basc-level agent perceives
and modifies a given environment. The meta-level agent
operates in an enlarged cnvironment that includes the
base-level agent. lts goal is to observe the base-level agent,
decide the ideal actions for it to perform in order for it to
achieve its goals cfficiently, and finally to modify the base-
level agent so that it performs thosg actions.

The role of the meta-level agent is similar to that of an
"instiuction-fetch unit” in many computer systcms.  The
primary difference is that for Al programs thie instruction-
fetch can be quite complex.  Meta-level architecture is a
knowledge cngineering approach to coping  with  this
complexity.
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I'he central idea in meta-level architecture is the use of a
declarative tanguage for describing behavior. Within this
language one can write sentences about the state of the
base-level agent, its actions, and its goals; and the meta-
leve!l agent can reason with these sentences in deciding the
idcal action for the basc-level to perform.
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Figure 1 - Relationship of base-level and meta-level

A key feature of the contiol language is that it allows
partial specifications of bchavior. One advantage of this is
incremental system development. For example, one could
start from a (possibly scurch-intensive) logic program and
incrementally add control information until one obtains a
(possibly  search-free)  traditional  program. Another
advantage is the integration ol different Al architectures,
¢.g. demons, object-oriented programming, and controlled
deduction. In the absence of a language in which partial
specifications of behavior can be expressed, many arbitrary
decisions must be made in implementing an architecture,
thus inhibiting integration, A partial specification
langriage allows an architectural idea to be formalized
without this arbitrary detail.

The idea of meta-level architecture is not a ncw one,
McCarthy described a similar idea in 1959 [McCarthy};
and, over the years a number of other rescarchers [Brown,
Kowalski] {Davis] [Doyle 1980) [Gallaire, Lasscrre], [Hayes
1973] [Sandewall] [B. Smith] [Warren] [Weyhrauch] have
followed suit.  However, to date explicit introspective
reasoning has met with littic serious application.  This



paper is concerned with the problems of putting the idea
of meta-level architecture to practical use.

Section 2 describes the control language and shows how it
can be used to encode various other architectnres, Section
3 presents an interpreter for the language, and scction 4
discusses the issucs of compiling.  The conclusion
describes some experience using mcta-level architecture,
mentions some directions for future work, and summarizes
the key points of the paper. This paper is an abridged
version of a previous paper [Genesereth, Smith].

2. Control Language

In this paper the syntax of predicate calculus is used for
writing meta-level axioms, though any other language with
equivalent expressive power would do as well.  Several
syntactic conventions are used to simplify the examples.
Upper case letters are used exclusively for constants,
functions, and relations. Lower case letters arc used for
variables. All frec variables are universally quantified.

When the base-level agent is a data base program, care
must be taken to avoid confusion between base-level and
meta-level  expressions, In the examples below,
expressions in the base-level language itself arc designated
by enclosing quotation marks, €.g. "FATHER(A,B)". The
examples are sufficiently simple that variables occurring
within quotation marks can be assumed to bc meta-
variables, i.e. they range over expressions in the base-level
language.

The vocabulary of the language consists of the logical
symbols of predicate calculus, a small application-
independent vocabulary of actions, and all the application-
dependent symbols necessary to describe the base-level
agent and ils environment. The vocabulary of actions is
listed below. In the descriptions of each symbol, the word
"task" is used to refer to an individual occurrence of an
action, e.g. the printing of a file or the computation of a
sum. If an action is performed repeatedly, each
occurrence is considered a separate task, even if the
arguments are exactly the same.

OPR(<k>) designates the operation of which the task <k> is
an instance.

IN(<i>,<k>) designates the <i>th input to the task <k>.
QUT(<1i>,<k>) designates the <i>th output of the task <k>.
BEG(<k>) designates the start time of the task <k>.
END(<k>) designates the stop time of the task <k>.
TIME(<t>) states that <t> is the current time.

EXECUTED(<k>) states the the task <k> has taken place or
definitely will take place.

RECOMMENDED(<k>) states that task <k> is the
rccommended action for a program to take. During
inference, it's typical for more than one task to be
applicable, and uscr-supplied ordering information can be
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used to determine which of these is recommended. If
more than onc task is recommended, it can be assumed
that they arc all equally good.

While this small vocabulary allows one to formally specify
a wide variety of control structures, it isn't particularly
perspicuous.  Expressive power and expressive facility
aren’t always compatible. On the other hand, the language
does provide a foundation for more perspicuous languages,
and control specifications expressed within these languages
can be automatically re-cxpressed in terms of the
vocabulary above and thereby intcrmingled.

3. Interpreting Control Specifications

An interpreter for this language can be written in LISP as
shown in figure 2. Fuach time around the loop, the
program updates the time and computes a subroutine for
the base level to perform.  The subroutine is then
cxecuted, the execution is noted, and the cycle repeats.

(DEFINE SCHEDULER ()
(REPEAT (SETQ TIME (FIND 't '(TIME t)))
(UNASSERT ' (TIME ,TIME))
(ASSERT '(TIME ,(+ TIME 1)))
(SETQ TASK (FIND 'z '(RECOMMENDED z)))
(APPLY (GETOPR TASK) (GETARGS TASK))
(ASSERT ' (EXECUTED ,TASK))))

Figure 2 - An interpreter for meta-level architecture

In deciding on a base-level action, SCHEDULER uses the
inference procedure FIND to obtain & binding for the
variable z that makes the proposition (R:COMMENDED z)
true. This is the only way in which the meta-level is
called; and so, to be useful, all control axioms must
contribute either directly or indirectly to this deduction, A
good choice of inference procedure for the axioms in this
paper would be some version of forward or backward
chaining, with a nonmonotonic treatment of NOT.
Efficiency could be enhanced through the use of caching
[Lenat] to avoid recomputation and truth maintenance
[Doyle 1979] to handle changes in state.

In order for FIND to draw proper conclusions from the
control axioms, all information about the state of the base-
level agent and its environment must be correct. There are
several practical ways of keeping this information up-to-
date.  One approach is for the meta-level to have an
explicit model of the base-level program and its
environment. To do this, it must have a description
(axiomatization) of the initial state of the world and a
description of all the cffects and non-effects of the base-
level actions. After each action the meta-level can use
these axioms to update its model of the world. A second
approach is to cquip the meta-level component with
sensory capabilitics and allow it to examine the base-level
when neccssary. For example, if the meta-level needs to
know whether a proposition is in the base-level’s data base,
it can be given a sensory action which examines the base-
level data basc. The appropriate sensory action for each
proposition can be determined at system-building time and
can be recorded by an appropriate meta-meta-level
procedural attachment  (or "semantic  attachment”  as
described in [Weyhrauch}). A third approach is to modify



the actions of the base-level so that they automatically
updatc the data base of the meta-level. The advantage of
this approach is that the addition of facts to the meta-level
data base can trigger whatever demons depend on them,
The choice of approach to use in a given application
depends on the domain and the type of control axioms one
intends to write.  In many situations a combination of
approaches is best.

4. Examples

The examples in this section illustrate how a variety of
different control structures can be implemented within
meia-level architecture. The examples are not meant to be
complete, only suggestive. For more detail, the reader
should see [Genesereth, Smith].

4.1 Demon Systems

The characteristic control feature of the blackboard
architecture [Erman, Lesser] is the use of demons, or
"knowledge sources”, to specify program activity. A
demon consists of a set of trigger conditions and an action.
Whenever the data base, or "blackboard", satisfies the
trigger conditions for a demon, its action becomes
applicable.  The system then selects an applicable action
and executes it.

The encoding of demons in a meta-level architecture is
quite simple. The aclion associated with the demon is
given a name, and its conditions are expressed on the left
hand side of a corresponding applicability axiom. The
axioms below are the control axioms for a simple
consultation system. Axiom A1 states that, if a proposition
is proved and there is a base-level axiom that mentions it
on the left hand side, the system should forward chain on
that rule. The second axiom statcs that, if there is a
proposition to be proved and there is a rule that mentions
it on the right hand side, then the system should backchain
on that rule. The third axiom states that, if there is a
proposition to be proved, it is okay to ask the user so long
as the proposition is "askable".

Al: PROVED(p) & INDB("p=>q")
=> APPLICABLE(ADDINDB(q,p,"p=>q"))
A2: WANTPROVED(q) & INDB("p=>q")
=> APPLICABLE(ADDGOAL(p.q,"p=>q"))
A3: WANTPROVED(q) & ASKABLE(q)

=> APPLICABLE(ASK(q))

Axiom A4 below guarantecs that every applicable demon
is recommended.  For applications where a detnon should
be run only once after being triggered, axiom A4 can be
replaced by axiom As.

A4: APPLICABLE(k) => RECOMMENDED(K)
A5: APPLICABLE & NOT EXLCUTED(k) => RECOMMENDED(k)

4.2 Search Control

In many Al programs it is common for more than one
task to be applicable at each point in time. Axiom 81
shows how ordering axioms can be used in determining
which applicable task is recommended. [t states that an
applicable task is recommended only if no other applicable
task is "preferred” to it
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B1: APPLICABLE(K) &
NOT(Ex APPLICABLE(x) & PREFERRED(x,k})

=> RECOMMENDED(K)

The axioms below are some examples of how this
capability might be used. Axiom B2 constrains a program
to perform all backward chaining before asking its user
any questions. Axiom B3 statcs that a program should use
rules of greater certainty beforc rules of lesser certainty.
Axiom B4 states that, whenever a program has a choice of
backchaining tasks to perform, it should werk on the one
with fewer solutions.

B2: OPR(k1)=ADDGOAL & OPR(k2)=ASK
=> PREFERRED(k1,k2)
B3: OPR(k1)=ADDGOAL & OPR({k2)=ADDGOAL &
CF(IN(3,k1))>CF(IN(3,k2))
=> PREFERRED(k1,k2)
B4: OPR(k1)=ADDGOAL &

NUMOFSOLNS(IN(1,k1))<HUMOFSOLNS(IN(1,k2))
=> PREFERRED(K1,k2)

The axioms below show how depth-first and breadth-first
search can be described.  Axioms 85 and 86 define the
depth of a goal in terms of its "distance” from an initial
goal. Axiom B7 expresses a preference for decper goals
and hence implements depth-first search.  Axiom 88
expresses a prelerence for shallow goals and hence
implements breadth-first scarch.

B5: DESIRE(g) => DEPTH(g)=0

B6: SUBGOAL(g1.92,e,j) & DEPTH(g2)=n
=> DEPTH(gl)=n+1

B7: DEPTH(IN(1,k1)) > DEPTH(IN(1,k2))
=> PREFERRED(k1,k2)

B8: DEPTH(IN{(1,k1)) > DEPTH(IN(1,k2))

=> PREFERRED{k2,k1)

Obviously these examples do not exhaust the space of
possibilitics.  Breadth-tapering, guiescence, and a large
varicty of other scarch techniques can be specified in
similar fashion.

4.3 Traditional Programming

In certain situations it is desirable to specify control in
procedural terms. The vocabulary below, along with the
vocabulary for tasks, allows the description of incompletely
specified programs (having arbitrary concurrency).

FIRST(<k1>,<k>) states that the task <k1> is the first
subtask of the composite task <k>.

CPATH(<k1>,<k2>) means that there is a direct control
path from task <k1> to task <k2>. After <k1> is executed,
<k2> becomges executable.

LAST(<kn>,<k>) states that task <kn> is the last subtask of
task <k>. Due to control branching, a composite task may
have more than one last subtask.

PRIMITIVE (<op>) states that the action <op> is a base-level
subroutine.

As an example, consider a simple blocks world program to
build a tower of threc blocks. A LiSP version is shown
below.



(DEFUN TOWER (X Y Z)
(PUTON Y Z)
(PUTON X Y))

Using the vocabulary above, this program can be specified
as shown below. The axiom states that an action k is an
instance of ToweRr if it has substeps k1 and k2 as shown.
One should remember in looking at this description that
its size is due to the fact that all control information is
stated explicitly. This explicit statement is what cnables
the partial description of programs. Such  partial
descriptions are not possible in traditional programming
languages because much of the control and data {low is
implicit in the code.

OPR(k)=TOWER <=>
E k1,k2
OPR(k1)=PUTON & IN(1,k1)=B & IN(2,k1)=C &
OPR(k2)=PUTON & IN(1,k2)=A & IN(2,k2)=B &
CPATH(k1,k2) & FIRST(k1,k) & LAST(k2,k)

The axioms that enable the execution of this code are
shown below. With these axioms the substeps of the
TOWER program would be executed in the proper order.
For example, if the task of building a tower of blocks A, B,
and C beecame applicable, axiom ¢1 would make the call to
PUTON with arguments B and ¢ applicable. Then by axioms
c2 and c5 it would be reccommended as well. Once that is
executed, the call to puTon with arguments A and B would
beeme applicable by axiom ¢3. Axiom c4 guarantees that
when all of the subactions of a procedure are executed, the
procedure is also considered executed.

C1:
C2:

APPLICABLE (k) & FIRST(k1,k) => APPLICABLE(k1)
APPLICABLE(k) & PRIMITIVE(k) & ~EXECUTED(k)
=> RECOMMENDED(K)

C3: CPATH(k1,k2) & EXECUTED(k1) => APPLICABLE(k)
C4: EXECUTED(kn) & LAST(kn,k) => EXECUTED(k)
C5: PRIMITIVE(PUTON)

4.4 Object-Oriented Programming and Procedural

Attachment

From the point of view of implementation, the primary
difference between traditional programming and object-
oriented programming lies in the way one’s code is
organized.  In traditional programming the code to
perform an operation on an object is associated with the
operation and is usually conditional on the object or its
type. In object-oriented programming the code is
associated with the object, its class or some superclass, and
it is usually conditional on the type of operation involved.
This orientation allows one to interpret objects as active
agents and operations as the results of passing messages to
those agents.

A typical application is in the world of graphics. One can

-define each desired shape as a distinct type of object, each
with its own methods for redisplay, rotation, panning, etc.
The specific subroutine for cach object-operation pair can
be recorded by writing meta-level axioms. For example,
the sentences below specify the subroutines for
manipulating squares.

D1:
D2:

SQUARE (x)
SQUARE {x)

=> TODO(DTSPLAY,x,DRAWSQUARE)
=> POLYGON(x)
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D3: POLYGON(x) => TODO(ROTATE,x,ROTATEPQOLYGON)
D4: POLYGON(x) => PLANAR(x)
D5: PLANAR(x) => TODO(PAN,x,PANPLANE)

Note that this formulation is a slight gencralization of
object-oriented programming. First of all, subroutines are
not associated primarily with objects or operations but
rather  with  operation-object  tuples. Sccondly, thc
handling of multi-argument operations is simpler than in
pure object-oricnted programming.  Axioms 16 and D7
operationalize the above axioms.

D6: APPLICABLE(g(x)) & TODO(g,x,f)
=> APPLICABLE(f(x))
APPLICABLE (k) & ~EXECUTED(k)
=> RECOMMENDED(k)

D7:

4.5 Planning

The fundamental characteristic of meta-level architecture
is that it allows a programmer to exert an arbitrary amount
of control over a program’s operation. The inference
procedures defined above exhibit a moderate amount of
programmer control. Programming clearly represents an
extreme in which the programmer makes all of the
decisions.  Planning represents the other extreme in which
the programmer specifics only the program’s goal and the
program must decide for itself what actions to take to
achieve that goal.

The axioms for a planning program consist of those for
object-oricnted programming together with those for
traditional programming. The difference from object-
oriented programming is the that the computation of the
T0DO relation is more claborate. Once a plan has been
found, the traditional programming axioms are nccessary
to execute it,

5. Compiling Control Specifications

The primary advantage meta-level architecture is that it
allows one to give a program an arbitrary amount of
procedural advice. In some cases this can lead to
substantial (possibly cxponential) savings in runtime.
Unfortunately, there is a cost in using a meta-level
architecture.  Meta-level reasoning can be at least as
expensive as reasoning about an application arca; and even
when this reasoning is minimal, therc is some overhead.
The problem is particularly aggravating in situations where
meta-level control yields no computational savings.

One way to cnhance program cfficiency is to rewrite the
control axioms in a form that lessens meta-level overhead.
Given an appropriate inference procedure for the meta-
level, the lcast expensive control structure is that of a
traditional program. Thercfore, the ideal is to reformulate
an axiom set as a traditional program, This can [requently
be done, il information about the application area is used.

A more drastic approach to increasing the efficiency of a
meta-level architecture is to eliminatc meta-level
processing whenever possible, e.g. in the execution of a
fully specified deterministic program. Given an adequate
set of base-level actions, any procedure described at the



mcta-level can be "compiled” into a base-level program.
This sort of compilation is more complex than that done in
logic programming systems like PROI.OG because the
compiler must take into account arbitrary control
specifications.

The possibility of partial compilation is particularly
interesting. In some cases it is possible to compile part of
a program into base-level subroutines while retaining a few
meta-level "hooks”. A good example of this is an
interpreter for an object-oriented programming language.
The code for each subroutine can be written as shown

below.

(DEFINE DRAW (X) (FINDMETHOD 'DRAW X))
(DEFINE ROTATE(X) (FINDMETHOD 'ROTATE X))
(DEFINE PAN (X) (FINDMETHOD 'PAN X))

(DEFINE
(CALL

FINDMETHOD (OP ARG)
(FIND 'z '(TODO ,0P ,ARG z)) ARG))

Each subroutine "traps" to the meta-level to find out
which specific subroutine to use. Answering this question
may involve inheritance over a type hicrarchy or a more
general inference. However, it is more cfficient than the
standard meta-level architeclure because there is a built in
assumption that only one subroutine is relevant.
Furthermore, the trap can be omitted where the flexibility
of meta-level deduction is unnecessary.

6. Conclusions

The feasibility of meta-level architecture for practical
programming has been tested by its use in the construction
of a number of different systems. These include an
automated diagnostician  for computer hardware faults
(DART [Genesereth 8/82]), a calculus program (MINIMA
[Brown]), a simulator for digital hardware (SHAM [Singh]),
a mini-tax consultant (IDWONNA [Barnes, Joyce, Tsuiji]),
and an implementation of the NEOMYCIN infectious
disease diagnosis/tutoring system [Bock, Clancey]. All of
these programs were built with the help of MRS
[Genesereth, Greiner, Smith] [Clayton] [Genesercth
11/82], a knowledge representation system aimed at
facilitating the construction of meta-level programs.

The work on DART best illustrales the way in which one
uses meta-level architecture. The first step was to build a
data base of facts about digital clectronics, e.g. the
behavior of an "and” gate, and the circuit to be diagnosed,
e.g. its part types and their interconnections. A general
inference procedure (linear input resolution) was then
applied to these propositions to generate tests. In order to
enhance efficiency, a variety of control axioms were then
added. Finally, many of the axioms were compiled (partly
by hand) into the resolution procedure.

While the architecture described herc answers many of
the questions concerned with the practical use of meta-
level control, there remain enormous opportunities for
significant further resecarch. The most important of these
is the development of a compiler able to translate arbitrary
control specifications into reasonable LISP code. Also
important is the discovery of powerful domain-
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independent control ruies, e.g. the ordering of conjuncts in
problem solving, the choice of problem solving method,
knowing when to cache, ete.  Finally, the architecture
needs to be extended to the handling of multiple agents.

In summary, the purpose of this paper is to present the
details of a practical meta-level architecture for programs.
A program written in this style includes a set of base-level
actions and a set of meta-level axioms that constrains how
these actions are to be used. Thc meta-level axioms are
written in an expressive meta-level language and arc used
by a general inference procedure in computing the ideal
action to perform at cach point in time. The architecture
is sufficiently general that a wide variety of traditional
control structures can be written as scts of meta-level
axioms. While this generality engenders a certain amount
of inefficiency in any straightforward implementation, a
variety of specialized techniques can be used to avoid
inordinate overhead. Finally, experience with meta-level
architectures indicates that it makes programs more
aesthetic, simpler to build, and easier to modify.
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