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Abstract: One of the biggest problems in AT programming 
is the difficulty of specifying control. Meta-level 
architecture is a knowledge engineering approach to 
coping with this difficulty. The key feature of the 
architecture is a declarative control language that allows 
one to write partial specifications of program behavior. 
This flexibility facilitates incremental system dcvclopment 
and the integration of disparate architectures like demons, 
object-oriented programming, and controlled deduction. 
This paper presents the language, describes an appropriate, 
and cliscusses the issues of compiling. It illustrales the 
architecture with a variety of examples and reports some 
experience in using the architecture in building expert 
systems. 

1. Introduction 

The actions of most Artilicial Intelligence programs can 
be divided into distinct “base-level” and “meta-level” 
categories. Base-level actions are those which when strung 
together achieve the program’s goals. Meta-level actions 
are those involved in deciding which base-level actions to 
perform. t’or example, in the Blocks World, all physical 
movements of a robot arm would be base-level actions, 
atid all planning \vculd be meta-level. In a data base 
management system, data base accesses and modifications 
would be base-level actions, and :;ll query optimiTation 
would be mcta-level. In an autonralcd deduction system, 
inf2rencc steps would be base-level, and the activity of 
deciding the order in which to perform infcrencc steps 
would be meta-level. 

A good w:iy of keeping this distinction clear is to view the 
b:lse-le!~cl and mcta-!cvel components as separate agents, 
as suggested in figure 1. The base-lcvcl agent perceives 
and modifies a given environment. The meta-level agent 
operates in an enlarged environment that includes the 
base-level agent. Its goal is to observe the base-level agent, 
decide the ideal actions for it to perform in order for it to 
achieve its goals efliciently, and finally to modify the base- 
level agent so that it performs those aclions. 

l’hc role of the mcta-level agent is Yiriiilar to that of an 
“ii7strllClion-fetch unit” in many computer systems. The 
primal y Jil‘fercnce is that for Al prograIns tl~e instruction- 
fetch can be quitI. complex. R?cta-lc\cl architc~ture is a 
knowlcclge cnsinccring approach to coping with t!lis 
cornplcxity. 

1 tie central idea in meta-level architecture is the use of a 
declarative language for describing behavior. Within this 
language one can write sentences about lhc state of the 
base-level agent, its actions, and its goals; and the mcta- 
level agent can reason wirh these senteliccs in deciding the 
idcal action for the base-lcvcl to perform. 
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Figure 1 - Relationship of base-level and mcta-level 

A key fcaturc of the control language is that it allows 
partial spccilications of bchavi~~r. One ndvantagc 01’ this is 
incremental system cl~vclop~r~enl. For cx;m~plc, wc cocltl 

start from a (pxsibiy sCLi!ch-intCJKiVe) k)giC [?fOgI‘:IlJl alld 

incrcmt2nlnlly add control informution ui,Lil one c)llL;lilli a 
(possibly search-free) tradiiional program. Another 
advantage is the inlegration 01‘ dit‘fcrent Al architcclurcs, 
c.g. demons, olljcct-oricntcd prograIl!rning, and controllcct 
deduction. In the ab:;~~w of a language in whi~‘h partial 
specilicalions of behavior can be expressecl, ninny arbitrary 
decisions must be ma~!c in implcmcnting an archilccture, 
thus inhibiling inrcgrnlion. A partial spcci fication 
langl~? c gc allows an :lrchitcctural idea to bl: formalized 
without this arbitrary detail. 

The idea of m&~-level architecture is not a new one. 
McCarlhy dcscribcd a similar idea in 1959 [McCarthy]; 
and, over the years a n[;mber of other rcscnrchcrs [Brown, 
Ko~2;rlski) [Dax:is] [l?o)~lc 198U] \Gallairc, Lasscrrc], [Hayes 
19731 [S~lntl~\~~illJ [I<. Smith] [W;JtTcll] [We) IIrauctl] have 
followed suit. I-lowcver, to dale explicit introspective 
reasoning has met with liltlc serious application, This 
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paper is concerned with the proplems of putting the idea 
of mcta-level architecture to practical use. 

Section 2 describes the control language and shows how it 
can be LIS~C\ to encode various othci architectllrcs. Section 
3 presents an interpreter for the language, and section 4 
discusses the kres of compiling. The conclusion 
describes some expcricrlce using mcta-level architecture, 
mentions some directions for future work, and summarizes 
the key points of the paper. This paper is an abridged 
version of a previous paper [Genesereth, Smith]. 

2. Control Language 

In this paper the syntax oT predicate calculus is used for 
writing mcta-level axioms, though any other language with 
equivalent expressive power would do as well. Several 
syntactic conventions are used to simplify the examples. 
Upper cast letters are used exclusively for constants, 
functions, and relations. Lower case letters are used [or 
variables. All free variables are universally quantified. 

When the base-level agent is a data base program, care 
musL be taken to avoid ccnfusion between base-level and 
meta-level expressions. In the examples below, 
expressions in the base-level language itself arc designated 
by enclosing quotation marks, e.g. t'F~T~E~( A, B) II. The 
examples arc sufficiently simple that variahIc5 occurring 
within quotation rrwks can be assumed to bc meta- 
variables, i.e. they range over expressions in the base-level 
language. 

The vocabulary of the language consists of the logical 
symbols of predicate calculus, a small application- 
independent vocabulary of actions, and all the application- 
dependent symbols necessary to describe the base-Icvel 
agent and its environment. The vocabulary of actions is 
listed below. In the descriptions of each symbol, the word 
“task” is used to refer to an individual occurrence of an 
action, e.g. the printing of a file or the computation of a 
sum. If an action is performed repeatedly, each 
occurrence is considered a separate task, even if the 
arguments are exactly the same. 

OPR( <k>) designates the operation of which the task <k> is 
an instance. 

IN(<i>,<k>) designates the <i>th input to the task <k>. 

NT ( < i > , <k> ) designates the < i >th output of the task <k> . 

BEG( <k>) designates the start time of the task <k>. 

ENU( <k>) designates the stop time of the task <k>. 

TIME(<t>) states that <t> is the current time. 

EXECUTED(<k>) states the the task <k> has taken place or 
definitely will take pIace. 

HECOMMENDED(<k>) states that task <k> is the 
recommendccl action for a program to take. During 
inference, it’s typical for more than one task to be 
applicable, and tlscr-supplied ordering information can be 

used to dctcrminc which of these is rccommcndcd. If 
more than one task is recommended, it can be assumed 
that they arc: all equally good. 

While this small vocabulary allows one to formally si)ccify 
a wide variety of control structures, it isn’t particularly 
perspicuous. Expressive power and cuprcssive l‘acility 
aren’t always cornpatiblc. On the other hand, the Innguage 
does provide: a fi~undation for more perspicuous langunges, 

and control specifications cxprcsscd within these Innguages 
can be automatically I-c-expressed in terms of the 
vocabulary above and thereby intcl rllingled. 

3. Interpreting Control Specifications 

An interpreter for this Iangt!age can be written in LISP as 
shown in figure 2. Fach time around the loop, the 
program updales the timc and computes a subroutine: Tar 
the base Icvel to perform. The s\lbroutine is then 
cxccutcd, the execution is noted, and the cycle rcpcats. 

(DEFINE SCtlEDlJLER () 
(REPEAT (SETQ rIME (FIND ‘t ‘(TIME t))) 

(UNASSERT '(TIME ,TIME)) 
(ASSERT ‘(TIME ,(+ TIME 1))) 
(SETQ TASK (FIND 'z '(RECOMMENDED z))) 
(APPLY (GETOPR TASK) (GETARGS TASK)) 
(ASSERT '(EXECUTED ,TASK)))) 

Figure 2 - An interpreter for meta-level architecture 

In deciding on a base-level action, SCHEDULER uses the 
inference procedure FIND to obtain 2 binding for the 
variable z that makes the proposition (R~CDMMENDED Z) 
true. This is the only way in which the mcta-level is 
called; and so, to be useful, all control axioms must 
contribute either directly or indirectly to this deduction. A 
good choice of inference procedure for the axioms in this 
paper would be some version of forward or backward 
chaining, with a nonmonotonic treatment of NOT. 
Efficiency could be enhanced through the use of caching 
[Lenat] to avoid recomputation and truth maintenance 
[Doyle 19791 to handle changes in state. 

In order for FIND to draw proper conclusions from the 
control axioms, all information about the state of the base- 
level agent and its environment must be correct. There are 
several practical ways of keeping this infc)rmation up-to- 
date. One approach is for the meta-level to have an 
explicit modci of’ the base-level program and its 
environment. To do this, it must have a c!escription 
(axiomatiration) of the initial state of the world and a 
description of all the effects and non-effects of the base- 
level actions. After each action the meta-level can LIX 

these axioms to update its model of the world. A second 

approach is to equip the meta-level component with 
sensory capabilities and allow it to examine the base-level 
when ncccssary. For example, if the meta-level needs to 
know whether a proposition is in the base-level’s data base, 
it can be given a sensory action which examines the base- 
level data base. The appropriate sensory action for each 
proposition can be determined at system-building time and 
can be recorded by an appropriate meta-meta-level 
procccIuraI att,lcillncnt (a “scn1;In:ic attuchlllcnt” as 

described in [Weyhrauch]). A third approach is to modify 



the actions of the base-level so that they automaticaily 
update the data base of the mcta-level. The advantage of 
this approach is that the addition of facts to the meta-level 
data base can trigger whatever clcmons depend on them. 
The choice of approach to use in a given application 
depen~is on the donlain and the type ol’contrul a\if:lms one 
inlcnds to write. 111 many situations a conibiiution of 
approaches is best. 

4. Examples 

The examples in this section illustrate how a variety of 
different coiltrol structures can be implemented within 
meLa-level architecture. The examples are not meant to be 
complete, only suggestive. For more detail, the reader 
should see [Genesereth, Smith]. 

4.1 Demon Systems 

The characteristic control feature of the blackboard 
architecture [Erman, Lesser] is the use of demons, or 
“knowledge sources”, to specify program activity. A 
demon consists of a set of trigger conditions and an action. 
Whenever the data base, or “blackboard”, satisfies the 
trigger conditions for a demon, its action becomes 
applicable. The system then selects an applicable action 
and executes it. 

The encoding of demons in a meta-level architecture is 
quite simple. The action associated with the demon is 
given a name, and its conditions are expressed on the left 
hand side of a corresponding applicability axiom. The 
axioms below are the control axioms for a simple 
consultation system. Axiom AI states that, if a proposition 
is proved and there is a base-level axiom that mentions it 
on the lcfi har~d side, the system should forward chain on 
that rule. ‘The second axiom states that, if there is a 
proposition to be proved and there is a rule that mentions 
it on the right hand side, then the system should backchain 
on that rule. The third axiom states that, if there is a 
projjosition to be proved, it is okay to ask the user so long 
as the proposition is “askable”. 

Al : PROVED(p) & INDB( "p=>q") 
=> APPLICABLE(ADDINDB(q,p,"p=)q")) 

A2: WANTPROVED & INDB( "p=>q") 
=> APPLICABLE(ADDGOAL(p,q,"p=>q")) 

A3: WANTPROVED & ASKABLE 
q  > APPLICABLE(ASK(q)) 

Axiom A4 below guarantees that every applicable demon 
is recommcndcd. For applications where a delnon should 
be run olily once after being triggered, axiom A4 can be 
replaced by axiom A5. 

A4: APPLICABLE(k) => RCCOMMENDED(k) 
A5: APPLICABLE & NOT f-XECUrED(k) => RECOMMENDED(k) 

4.2 Search Control 

In many AI programs it is common for more than one 
task to be applicable at each point in time. Axiom 81 
shows how ordering axioms catI be used in determining 
which applicable task is rccommcnded. It states that an 
applicable task is recommended only if no other applicable 
task is “preferred” to it. 

Bl: APPLICABLE(k) & 
NOT(Ex APPLICABLE(x) & PREFERRED(x,k)) 
q  > RECOMMENDED(k) 

The axioms below are some examples of how this 
capability might be used. Axiom 82 constrains a program 
to perform all backward chaining before asking its user 
any questions. Axiom B3 states that a program should use 
r~~lcs of greater certainty before rules of lesser certainty. 
Axiom ~4 states that, whenever a program has a choice of 
backchaining tasks to perform, it should work on the one 
with fewer solutions. 

82: OPR(kl)=ADDGOAL & OPR(k2)=ASK 
=> PREFERRED(kl,k2) 

B3: OPR(kl)=ADDGOAL & OPR(k2)=ADDGOAL & 
CF(IN(3,kl))>CF(IN(3,k2)) 

=> PREFERRED( kl,k2) 
Bfl: OPR(kl)=ADDGOAL & 

NlJMOf SOLNS( IN( 1, kl))iNlJMOFSOLNS( IN( 1, k2)) 
=> PREFERRED(kl,k2) 

The axioms below show how depth-first and breadth-first 
search can be clcbc*ribed. Axioms B5 and BB define the 
depth of a goal in turns of its “clistancc” from an initial 
goal. Axiom B7 expresses a prcfercnce f’or deeper goals 
and hence implements depth-first search. k\XiOIn B8 
ex p rcsscs a preli:rence for shallow goals and hence 
implements breadth-first starch. 

65: DESIRE(g) => DEPTH(g)=0 
BB: SUBGOAL(gl,y2,e,j) & DEPTH(g2)=n 

=> DEPTH(gl)=n+l 
B7: DEPTH(IN(l,kl)) > DF?Tti(IN(l,k2)) 

=> PREFFRRED(kl,k2) 
B8: DtPItI(IN(l,kl)) > DEPIIi(IN(l,k2)) 

=> PREFERRED(k2, kl) 

Obviously thcsc examples do not exhaust the space of 
possibilities. Breadth-tnpcring, yuicsccncc, and a lnrgt‘ 
variety of other search techniques can be spccilied in 
similar fashion. 

4.3 Traditional Programmirlg 

In certain situations it is desirable to specify control in 
procedural terms. The vocabulary below, along with the 
vocabulary for tasks, allows the description of incompletely 
specified programs (having arbitrary concurrency). 

FIRST(<kl>,<k>) states !liat the task <kl> is the first 
subtask of the composite task <k>. 

CPATH(<kl> ,<k2>) means that there is a direct control 
path from task <kl> to task <k2>. After <kl> is executed, 
< k2 > becomes executable. 

LAST(<~~>,<~>) states that task <kn> is the last subtask of 
task <k>. Due to control branching, a composite task may 
have more than one last subtask. 

PRIMITIVE( COP>) states that the action COP> is a base-level 
subroutine. 

As an example, consider ;I simple blocks world program to 
build a tower of three blocks. A I.isl' version is shown 
below. 



(DEFUN TOWER (X Y Z) 
(PUTON Y Z) 
(PUTON X Y)) 

Using the voca’oulary above, this program can be specified 
as shown below. The axiom states that an action k is an 
instance of' TOWER if it has substeps kl and k2 ~1s shown. 
One should remember in looking at thi:; description that 
its size is due to the ract that all control inlbrrnation is 
stated explicitly. This explicit slatcmcnt is ~,vhat enables 
the partial description of programs. Such partial 
descriptions are not possible in traditional progrnmming 
languages because much of the control and data llow is 
implicit in the code. 

OPR(k)=TOWER <=> 
E kl,k2 

OPR(kl)=PUTON & IN(l,kl)=B & IN(2,kl)=C s( 
OPR(k2)=I'UTON & IN(l,k2)=A & IN(2,kZ)=B & 
CPATH(kl,kZ) & FIRST(kl,k) & LAST(k%,k) 

The axioms that enable the execution of this code are 
shown below. With these axioms the substeps of the 
TOWER p-ogtm~ woulcl be executed in the proper order. 
For example, if the task of building a tower of b!ocks A, R, 
and C becnmc applicable, axiom cl wouid make the call to 
PUTON with arguments U and C applicable. Ttlcn by axioms 
c2 and c5 it would bc recommended as well. Once that is 
executed, the call to PUTON with arguments A and B would 
bccmc applicable by axiom ~3. Axiom ~4 guarantees that 
when all of the subactions of a procedure are executed, the 
procedure is also considered executed. 

Cl: APPLICABLE(k) & FIRST(kl,k) => APPLICABLE(k1) 
C2: APPLICABLE(k) & PRIMITIVE(k) & -EXECUTED(k) 

=> RECOMMENDED(k) 
C3: CPATH(kl,k2) & EXECUTED(k1) => APPLICABLE(k) 
C4: EXECUTED(kn) & LAST(kn,k) => EXECUTED(k) 
C5: PRIMITIVE(PUTON) 

4.4 Object-Oriented Prograrnming and Procedural 
Attachment 

From the point of view of implementation, the primary 
difl’erence between traditional programming and object- 
oriented programming lies in the way one’s code is 
organized. In traditional programming the code to 
perform an operation on an object is associated with the 
operation and is usually conditional on the object or its 
lY Pea In object-oriented programming the code is 
associated with the object, its class or some superclass, and 

,it is usually conditional on the type of operation involved. 
This orientation allows one to interpret objects as active 
agents and operations as the results of passing messages to 
those agents. 

A typical application is in the world of graphics. One can 
define each desired shape as a distinct type of object, each 
with its own methods for redisplay, rotation, panning, etc. 
The speci fit subroutine for each object-operation pair can 
be recorded by writing meta-level axioms. For example, 
the sentences below specify the subroutines for 
mnnipulating squares. 

Dl: SQUARE(x) => TODO(DISPLAY,x,DRAWSQUARE) 
D2: SQUARE(x) => POLYGON(x) 

D3: POLYGON(x) => ~ODO(ROTATE,x,ROTATEPOlYGON) 
04: POLYGON(x) => PLANAR(x) 

D5: PLANAR(x) => TODO(PAN,x,PANPLANE) 

Note that this formulation is a slight gcncralization of 
object-oriented programming. First of all, subroutines are 
not associated l)rimarily with objects or operations but 
rather with opcralion-object tuples. Second I y, the 
handling of mu!ii-nrgurnct~t operations is sim;)tcr than in 
pure object-oricntcd programming. Axiotns 126 and D7 
operationalize the above axioms. 

D6: APPLICABLC(g(x)) & TODO(g,x,f) 
=> APPLICABLE(f(x)) 

D7: APPLICABLE(k) & -EXECUTED(k) 
=> RECOMMENDED(k) 

4.5 Planning 

The fundamental characteristic of meta-level architecture 
is that it allows a programmer to exert an arbitrary amount 
of control over a program’s operation. The inference 
procedures defined above exhibit a moderate amount of 
programmer control. Programming clearly reprcscnts an 
extreme in which the programmer makes all of the 
decisions. Planning rcprescnts the other extreme in which 
the programmer specifies only the program’s goal and the 
program must decide for itself what actions to take to 
achieve that goal. 

The axioms for a planning program consist of those for 
object-oriented programming together with those for 
traditional programming. The clifference from object- 
oriented programming is the that the computation of the 
TODO relalion is more elaborate. Once a plan has been 
found, the traditional programming axioms are necessary 
to execute it. 

5. Compiling Control Specifications 

The primary advantage me&level architecture is that it 
allows one to give a program an arbitrary amount of 
procedural advice. In some cases this can lead to 
substantial (possibly exponential) savings in runtime. 
Unfortunately, there is a cost in using a mcta-level 
architecture. Meta-level reasoning can be at least as 
expensive as reasoning about an application area; and even 
when this reasoning is minimal, there is some overhead. 
The problem is particularly aggravating in situations where 
meta-level control yields no computational savings. 

One way to cnhancc program cflicicncy is to rcwritc the 
control axioms in a I'om that lessens meta-level overhead. 
Given an appropriate inference procedure for the meta- 
lcvcl, the least expensive control structure is that of a 
traditional program. Therefore, the idcal is to reformulate 
an axiom set as a tradition:11 program. This can frequently 
be done, iT information about the application area is used. 

A more clrastic approach to incrcnsing the cfliciency of a 
meta-level architecture is to eliminate meta-level 
processing whenever possible, e.g. in the execution of a 
fully specified deterministic program. Given an adequate 
set of base-level actions, any procedure described at the 



mcta-level can be “compiled” into a base-level program. 
This sort of compilation is more complex than that done in 
logic programming systems like PliOl.OG because the 
compiler must take into account arbitrary control 
specifications. 

me possibility of partial compilation is particularly 
interesting. In some cases it is possible to compile part of 
a program into base-level subroutines while retaining a few 
meta-level “hooks”. A good example of this is an 
interpreter for an object-oriented programming langllage. 
The code for each subroutine can be written as shown 
below. 

(DEFINE DRAW (X) (FINDMETtiOD ‘DRAW X)) 

(DEFINE ROTATE(X) (FINDMETHOD ‘ROTATE X)) 

(DEFINE PAN (X) (FINDMETHOD ‘PAN X)) 

(DEFINE FINDMETHOD (OP ARG) 
(CALL (FIND ‘z ‘(TODO ,OP ,ARG z)) ARG)) 

Each subroutine “traps” to the metn-level to find out 
which specific subroutine to KX. Answering this qllestion 
may involve inheritance over a type hierarchy or a more 
general inference. However, it is more efficient than the 
standard mela-level architecture because there is a built in 
assumption that only one subroutine is relevant. 
Furthermore, the trap can be omitted where the flexibility 
of meta-level deduction is unnecessary. 

6. Conclusions 

The feasibility of meta-level architecture for practical 
programming has been tested by its use in the construction 
of a number of different systems. These include an 
automated diagnostician for computer !larc!warc fat~lts 
(DAIU [Gencscrcth g/82]), a ca!cu!us program (1\JI INlhlA 
[Brown]), a simulator for digilal hardware (SlIAM [Singh]), 
a mini-tax consultant (111\VONNA [Barnes, Joyce, Tstlji]), 
and an imp!ementat.ion of the NI’OMYCIN infectious 
disease diagnosis/tutoring system [Bock, Clanccy]. All of 
these programs were built with the help of MKS 
[Genesereth, Greiner, Smith] [Clayton] [Genesercth 
1 l/82], a knowledge representation system aimed at 
facilitating the construction of meta-level programs. 

The work on DAR’I’ best illustrales the way in which one 
uses m&-level architecture. The first step was to build a 
data base of facts about digital electronics, e.g. the 
behavior of an “and” gate, and the circuit to be diagnosed, 
e.g. its part types and their interconnections. A general 
inference procedure (linear inplrt resolution) was then 
applied to these propositions to generate tests. in order to 
enhance efficiency, a variety of control axioms were then 
added. Finally, many of the axioms were compiled (partly 
by hand) into the resolution procedure. 

While the architecture described here answers many of 
the questions concerned with the practical use of meta- 
level control, there remain enormous opportunities for 
significant further research. The most important of these 
is the development of a compiler able to translate arbitrary 
control specifications into reasonable LISP code. Also 
important is the discovery of powerful domain- 

indcpenclcnt control rules, e.g. the ordering 01 conjtincts in 
problem solving, the choice of problem solving method, 
knowing when to cache, etc. Finally, the architecture 
needs to bc extended to the handling of mtlltiple agt‘nts. 

In summary, the purpose of this paper is to present the 
details of a practical meta-level architecture for programs. 
A program written in this style includes a set of base-level 
actior!s and a set of mcta-level axioms that constrains how 
these actions are to be used. ‘I’hc mcta-level axioms are 
written in an expressive meta-level language and arc used 
by a general infercncc procedure in computing the ideal 
action to perform at each point in time. The arAitecture 
is suf’ficicntly gcncral that a wide variety of traditional 
control structures can be written as sets of metn-level 
axioms. While this gcncralily engenders a certain amount 
of inefficiency in any straightforward implementation, a 
variety of specialized techniques can be used to avoid 
inordinate overhead. I-inally, experience with meta-level 
architectures indicates that it makes programs more 
aesthetic, simpler to build, and easier to modify. 
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