From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

Finding Ali of the Soiutions to a Problem

David E. Smith
Computer Science Department
Stanford University
Stanford, California 94305

ABSTRACT

‘This paper describes a method of cutting off rcasoning when all of the answers to a
problem have been found. Briefly, the method involves keeping and maintaining
information about the sizes of important sets, and using this information to determine
when all of the answers to a problem have been found. We show how this information
can be dynamically calculated and kept accurate in a changing world. Additional
complexity is encouniered when this maintenance is mixed with independent meta-level
reasoning for pruning search spaces.

1. Introduction

Suppose that you were asked to find the names of the pareats for a
well known person such as Jerry Brown. Perhaps you already know
that Edmund Brown, Sr. is ferry's father (and by implication, onc of
Jerry’s parents). Some additional digging in a reference book would
determine Jerry’s mother, and hence another of Jerry’s parents. But
why stop here? Perhaps digging harder in the library would turi up a
few more of Jerry’s parents.

But a person has only two parents (a mother and a father), so once
they have been found, we can stop Jooking. This characteristic, of
knowing when all of the answers have been found, is something that
people are very good at. In contrast, current computer problem solvers
are quite deficient in this regard. Either the system relies on an
assumption that all of the answers are explicitly stored in the data base
(or will be found by the same inference path), or it must scarch
exhaustively to guarantee that all the answers will be found. There are
many situaticns for which these alternatives arce not acceptable. {f the
scarch space is very large then it may not be practical to scarch the
space exhaustively. Likewise, there are many problems where the
answers are not all available in the data base, and where many distinet
answers restlt from pursuing different fines of reasoning (i.e.: different
paths through the scarch space). As an exainple, in the problem above,
one of Jerry's parents was immediately available from memory (in the
data base, so o speak). but the second was obtained by consulting a
reference book. Similarly, one might query an clectronics system to
find out which transistors in a ciicuit were not operating in the active
region, Somce are not active because they are "saturated”. Others are
not active because they are "off”, Some oi these are "off because the
base-cmitter junction is reverse biased. Some are off because the
collector is low or reverse biased. In both these examples, answers must
be gathered by prirsuing more than one line of reasoning.

While problems of this sort often appear as top level queries to
expert systeius, they also frequently arise as subgoals in satisfying other
queries. for example, any query requesting a minimum or maximum
value involves a search through all of the solutions to the problem.
Equally troublesome, but less obvious, is when a conjunction is
cnicountered as a subprobicm of some (apparently innocuous) query.

*
This werk was supporteil in part by ONR condract NOGO14-81-K-GC0.

373

All of the solutions to one conjunct may have o be found and plugged
into the remuaining conjuncts in order to verify that theie is no solution
to that sct of conjuncts.

We have encountered problems with these characteristics in the
construction of scveral expert systems: a system for modefling renal
physiology (Kunz, 1983), a miniature tax consultant (Barnes, 1982), and
an intelligent front end for computer systems (I-cigenbaum, 1980).
What is required in all of these examples is the ability to reason about
the number of solutions to problems and to shut off the reasoning
process when all of the solutions to a problem have been found.

In section 2 a basic problem solving architecture is introduced. Tt
makes use of knowledge about the number of solutions to problems in
order to halt reasoning. Details of specifying, deriving, and maintaining
this knowledge are covered in scction 3. The subject of section 4 is the
rather surprising difficulty that ariscs when independent meta-level
reasoning is used to prunc the scarch space for a problem. Preliminary
results are discussed in section § and relationship to other work is
discussed in the final scction.

2. Basic Architecture

L.et us suppose, for the moment, that a problem solving system has
knowledge about the number of solutions to any problem it might be
given. Given such information it is a relatively simple matter to modify
a typical system to take advantage of the information. Normally a
problem solver (attempting to find all of the solutions to a problem)
charges blindly ahcad, discovering solutions and collecting or reporting
them. [t stops when it runs out of possible inferences. Instead, our
"smart" problem solver would first ask the meta-level question "how
many solutions does this problem have?” Then, while solving the
problem, it keeps a count of the number of solutions found. Whenever
this count recaches the total number expected, the problem solver can
stop. A flow chart of this procedure appears in figure 2-1.

Determine the number of solutions I

Find a new sc.lutionil(-———‘

Jail

solutions
foundy

Figure 2-1: Diagram of a problem solver

3. Knowledge Aboutl the Mumber of Answars

[English it is simple enough to state that a person has only two
parents, or that a quadratic equation has two solutions. But to cxpress
this knowledge in a form suitable for use by a problem solver, a precice
language is necessary.

3.1. The Language

Base-level and meta-level propositions will be expressed in the
language of predicate calculus, but the techniques described here are
not dependent on this choice. Any other language with sufficient
expressive power would do as well. Several syntactic conventions are
used to simplify the examples. Upper case letters arc used cxclusively
for constants, functions, and relations. I.ower casc letters are used for
variables. All free variables are universally quantified. Braces arc used
to denote sets (c.g. {1,3,5}) and angle brackets are used to denote
ordered tuples of objects, (c.g. <1,3,55).

When it is nccessary to refer to a basc-level expression, we will
enclose it in quotation marks, ¢.g. PROVABLE (FATHER(A,B)'). Variables
occurring within quotation marks can be assumed to be meta-variables,
i.c. they range over cxpressions in the basc-level language. From
PROVABLE(' FATHER(x,y)'), it is legal to infer
PROVABLE(* FATHER(A,B)").

3.2. Knowledge About Set Sizes
A query to a problem solver (in which all the answers are desired)
can be characterized in general as:
find all values for the variables v that satisfy the proposition p.
Given querics of this form, the first step for the problem solver is to:
find n such that n=NUMBEROF (v,p),

where NUMBEROF is a meta-level function symbol (referentially opaque)
that denotes the number of solutions to a problem. Using this
clementary vocabulary it is casy to state that the problem of finding
Jerry Brown’s parents has only two solutions:

NUMBEROF ("y', ' PARENT(JERRY,y)') = 2 (3-1)
or more generally that all such problems have only two solutions:
NUMBEROF (*y*, "PARENT(x,y)") = 2 (3-2)

If this information were provided to our problem solver, it would be
able to stop reasoning after finding both of Jerry’s parents. It would be
a nuisance, however, if we had to specify this meta-knowledge directly
for cvery problem a system might encounter. Fortunately, such
information can be derived from simple basce-level knowledge about the
sizes of sets. 1 the members of a sct correspond to the solutions of a
problem, and the cardinality of the sct is known, then the number of
solutions to the problem will be the same as the cardinality of the set. A
formal statement of this "connection” axiom is:

As(TRUE(*vEs = p’) & CARD(s)=c) & NUMBEROF(v.p)=c (3-3)

Equation (3-4) shows two cxamples of base-level cardinality
information. Using such information, and the connection axiom given
above our simple problem solver can casily infer the number of
solutions to cach of the corresponding problems, cnabling it to halt
inference when all of the solutions have been found.

CARD(PARENTS(x))=2

(3-4)
YEPARENTS(x) &> PARENT(x,y)

CARD{SHIPSINROSTON)=14
xCSHIPSINBOSTON = SHIP(x) & DOCKED(x,BOSTON)

1t is impoertant to note that using plural relationships and functions,
like PARENTS instead of PARENT, would not alleviate the need for having
information about the size of a set. For example, knowing that:

EDMUNDE=PARENTS(JERRY) & AGNESEPARENTS(JERRY) (3-5)

is not enough. It is also necessary to have the information that Jerry
doesn’t have any other parents, a statement isomorphic to the
proposition about the size of the sct. Such siatemients arc often left
implicit in propositions like:

374

PARENTS(JERRY) = {EDMUND,AGNES} (3-86)

As a final note, there are two special cases where information about
the number of solutions to a problem can be derived without domain
specific information about set sizes. If the problem is to find out
whether or not a proposition is true, and the requestor doesn’t care
about any of the variable bindings, then there is (at most) one solution
to the problem. A common case of this is when the proposition p is a
ground clause, i.c., contains no variables.

NUMBEROF (<>,p) < 1. (3-7)
Ffunctional expressions also have at most one solution.
expressed as:

This can be

GROUND(f) & VARIABLE(z) = MUMBEROF(z,'f=2') < 1 (3-8)

3.2.1. Gathering Knowledge about Set Sizes Dynamically

There are many instances in which the addition of a priori knowledge
about the sizes of sets is sufficient to solve the problems in the domain
of interest. For example, in a system modelling human physiology, the
number of heart chambers, the nuinber of bones in the hand, and the
number of major arterics are all unlikely to change. There are also
many circumstances in which it is cither inconverient or impossible to
supply that knowledge. It would be unreasonable to require that a
system builder supply the cardinality of scveral thousand sets, cach
having thousands of members. Consider, for example, the number of
cmployecs for cach of the departments in a large corporation. [t would
be more than inconvenicent if this counting had to be done monthly,
weekly, or daily as the systems data base was upgraded.

The situation is worse when a problem solver is dealing with a
constantly changing world. Consider an cxpert system that serves as an
intelligent interface for an operating system. The Inteliigent Agent
must accept requests fromi the user, make appropriate plans for their
realization, perform the necessary system specific actions, and report
results to the user. Knowledge about the number of tape drives and
printers attached to the machine is (relatively) static and can be
specificd a priori. But the number of files in a given directory changes
frequently and cannot be specified beforehand.

In this volatile cnvironment there is still much that can be done. For
problems where the cost of solution is high and the problem is often
repeated, it is worthwhile to cache information about sct sizes. To
illustrate the technique, suppose that an intelligent agent has the task of
finding all of the scrIBE files on some particular directory (perhaps as a
subproblem of transporting them to a new machine). The query is:

find all £ such that FORMAT(f,SCRIBE).

For purposes of illustration, assume the intclligent agent belicves that a
file contains scriBe text if the file’s extension is mss, or if the file
contains an "@make" statement at the beginning. This is stated
formally as:

NAME(f.n) & EXT(n,MSS) =5 FORMAT(f,SCRIBE)
CONTENTS(f,c) & WORD(1,c,BMAKE) = FORMAT(f,SCRIBE).

(3-9)

In this case it is not rcasonable for the system to have a priori
knowledge about the number of scr18E files in a particular directory. It
would, however, be simplc enough for the system to cache this
information after the problem has been solved once. Suppose then,
that such a query is posed to the intelligent agent, and it exhaustively
hunts through all of the files in the dircctory. Five scrige files are
found, three with the file extension Mss and two which do not have the
usual extension. but contain "@make” statements at the beginning.
After counting all of the answers, the problem solver can cache the
knowlcdge that there are exactly five such SCRIBE files (and hence five
answers to the problem):

i (3-10)
XE:SCRIBEFILES = FORMAT(f.SCRIBE)

If the query is posed again, (perhaps as a subgoal of some other

request) then, according to the simple problem solving scheme of

section 2, the cached information about the number of SCRIBE files
(3-10) will stop the problem solving process once those five SCRIBE files
are found. [f the answers to the problem are also cached, then the
solutions to any subsequent query would be found immediately (by
looking in the data basc). In this case the problem solver would not
have to disscct a single filename or look at the contents of a single file.
Counting the number of solutions to a problem, inferring the size of the
set. and caching this knowledge permits a quicker response to future
queries. just as the presence of a priori knowledge about set size would.,

As wc suggested in the previous scction, instcad of caching the
cardinality of the sct of SCRIBE files, it is also possible to cache the fact
that cach of the five files is a member of the set of SCRIBE files, and that
there are no other such files. “I'he difficultics of keeping this knowledge
accurate (the subject of the next section) are the same for cither of these
representations.

3.2.2. Maintaining the Accuracy of Cardinality Information
There is only one problein with the scheme of scction 3.2.1:
succeeding requests to the intelligent agent might cause files to be
added, deleted or modified. Cached knowledge about set sizes could
therefore become invalid, just as cached solutions might become
A standard solution to this dilemma is to keep justifications for
cached information, and use truth maintenance (Doyle, 1979) to remove
assertions that become invalid as a result of other actions. The same
technique can be used to keep track of cached knowledge about set
sizes, provided that justifications are kept for these statements. In the
example of the previous section, the statement “there are five SCRIBE
files” rested on the asscrtions that there are three files with the
extension Mss, and two files that begin with "@make" statements.
These statements, and their justifications can be recorded formally:

fmasalicd
invaia.

CARD(SCRIBEFILES) =
JUST('CARD(SCRIBEFILES)
{'CARD(MSSFILES) =

(3-11)
3° 'CARD(@MAKE FILES) = 2°})

CARD(MSSFILES) =
JUST(*CARO(MSSFILES)=3",{ CARD(FILE-NAME-PAIRS)=237"})

CARD(FILE-NAME-PAIRS) =

CARD(@MAKE-FILES) =

JUST("CARD(@MAKE-FILES)=2",
{"CARD({FILE-CONTENTS~PAIRS)=237"})

237

CARD(FILE-~CONTENTS-PAIRS) = 237

Given these justifications, knowledge about sct sizes can be kept
accurate when the data basce is changed. For example, suppose that the
intelligent agent is instructed to delete the file named BOOK.MSS.
Assuming that the intclligent agent was caching solutions as well as
information about sct size, its data base might contain:

NAME (FILE37,BOOK.MSS)

EXT(BOOK.MSS,MSS)

FORMAT (FILE37,SCRIBE)

JUST(*FORMAT(FILE37,SCRIBE)’
{*NAME(FILE37,BO0K.MSS)"

(3-12)

, "EXT(BOOK.MSS,M3S)"})

After performing the deletion the intelligent agent must update its data
base to reflect the cffects of the action. The fact
"NAME (FILE37,B00K.MSS)" is rtemoved, and then, using truth
raintenance, the fact "FORMAT(FILE37,SCRIBE)™ is removed since it
depends upon the former. In addition, the following inference must be
made: since the fact NAME(FILE37,B00K.MSS) has been removed, the
fict about the number of file-name pairs is no longer valid and must be
removed. By removing this cached cardinality assertion, the entire tree
of cached cardinality knowledge unravels, and the statement that there
are five SCRIBL files will be removed.

375

i e l" inme A
tion to \tIVlIIb Jll)lll cations and

pul"ounmrv [lulh m‘nntcn(mc») is the inference that a cached statenient
about the size of a set must be removed any time a proposition matching
(uitifying with) the set definition is added o or removed from the data
base.

This methodology is obviously not without cost. While the
additional reasoning required is minimal, caching all of the sct size
information and the associated justifications docs require some storage.
It is, however, often much less than the storage overhead of caching
base-fevel facts and their justifications. If a problem has two hundred
answers, then caching the results demands storing at least two hundred
propositions and two hundred justifications (many more if intermediate
results arc derived and cached). In contrast, only onc cardinality
asscrtion and its justification need be cached for cach subproblem
encountered.
3.2.3.Invariance

As a practical matter, it is often possible to cut down the overhead of
maintaining information about set sizes by specifying invariance for
static quantitics. In the case of the intclligent agent the number of tape
drives usually doesn’t change. Thus we could specify:

INVARIANT(' CARD(TAPEDRIVES)=n") (3-13)

If a cached statement is invariant (will not change over time) then
there is no need to keep its justification around. Thus if a problem
solver dynamically calculates the size of a set, but finds that there is an
invariance statement (like those db()\L) then the systcn an cache the

L V\lelUllL Storit E,

statcment and usc rate justification

U)

4. Interaction with other Meta-level Reasoning

It would be nice if all were as rosy as we have made it out to be in
section 3. Unfortunately, there are some very subtle interdependencies
that can arisc between statements about the number of solutions, and
independent meta-level reasoning used to prunc scarch spaces. We will
first give a somewhat sketchy description of the difficulty and then
illustrate the problem with an example.

Supposc that a problem solver is attempting to find the solutions for
a problem p. In so doing, it gencrates a subproblem Q, which generates
an additional subproblem r. Further suppose that, due to independent
meta-level reasoning (the details are not relevant) we decide that the
sub-sub-problem r cannot possibly contribute any new solutions to the
overall problem of finding the solutions to p. As a result the sub-sub-
problem R is pruned and the problem solving proceeds.

/ \

P
1
Q ..
R

R

Figure 4-1: Simple Subprobicm Tree

Consider what would have happened if we were keeping track of,
and caching, the number of solutions to cach of these subproblems, (as
in scctions 3.2.1 and 3.2.2). Supposc that there arc three soltiions to the
problem R, five solutions to the problem @, and ten solutions to the
original problem p. The number of solutions calculated (and cached)
for the problem p will still be correct, because we have not eliminated
any unique sotutions by our pruning. But consider what number will
be calculated for the subproblem Q. If both of the solutions to R
contribute to unique solutions for @, then only two of the solutions to
the problem @ will be found, rather than all five. This number is wrong,
and if cached, will cause difficultics when the problem Q is encountered
again, either in vacuo, or in the context of some other problem.

As a specific example consider two simple facts about familial
relationships:

CHILD(x,y) & MALE(x) & SON(x,y) (4-1)
CHILD(x,y) & FEMALE(x) = DAUGHTER(x,y),

together with the simple data base:
SON(STACEY,MARTHA) (4-2)
SON(BROOKS ,MARTHA)

DAUGHTER(JAN ,MARTHA)
Suppose that the query
find all x such that SON(x ,MARTHA)

is posed to the system. After discovering the two answers immediately
in the data basc (BRoOKS and STACEY), the subproblem

CHILD(x,MARTHA) & MALE(x) (4-3)
is generated, which generates the subproblem
CHILD(x,MARTHA). (4-4)

Backward reasoning on the second of the axioms produces onc answer
(aan) for this subproblem. The first axiom is also applicable to this
subproblem, and would produce two additional answers to the
subproblem. But because of the fact that the primary objective is to
find Martha’s sons, and the first axiom has just been applied in one
direction, there is absolutely no point in turning around and applying it
in the opposite direction. [t won’t lead to any new solutions. As a
result, that line of inference can be discarded, and only one solution is
produced for the subproblem of finding Martha's children.

SON(x,MARTHA)
|
CHILD(X,MARTHA) & MALE(x)

CHILD(x ,MARTHA)
/ \

DAUGHTER(x,MARTHA) SON(x,MARTHA)

Figure 4-2: Subproblem Trec for Kinship Problem

Ordinarily, this would cause no harm. We still get all of the answers
to the original query, and if any intermediate results are cached they
will still be correct, but perhaps incomplete. Consider, however, what
happens if we blindly apply the mcthods of section 3.2.2. We would
cnd up caching the following two meta-level facts:

CARD(MARTHAS-SONS) = 2

(4-5)
CARD(MARTHAS-CHILDREN) = 1.

The first is correct, but the second is wrong. Martha has three children,
not one.

Why did this happen? Becausc a portion of the subproblem was
pruned duc to consideration of something outside the context of the
subproblem, namely, the overall problem being solved.

A solutinn to this difficulty is to introduce an additional argument in
the nuMBEROF relation. [f any contextual information is used to "help”
solve this subproblem then it must be recorded in the additional
argument. "This contextual information is, in cffect, represented by the
Justification of the meta-level conclusion that "this portion of the
subproblem can be climinated”. The details of this justification are
dependent upon the specific structure of the problem solver involved (a
meta-level decision to prune must involve some reasoning about the
problem solving process), as well as the particular technique of meta-
level pruning. As a practical matter, it is possible to simply usc a 7 for
the context argument in those cascs where external pruning has taken
place. This would mean that these cached meta-level statcments (ones
with 1°s) arc not useful for estimating the number of solutions when the
subproblern is encountered again. Thus, their only purpose is to record
the dependency tree for use in truth maintenance. ‘This is probably not

376

alarge loss, since, even if full context arguments werce kept, it is unlikely
that a context argument would match up with any other except that of
the original problem, whose results would be cached anyway.

Finally, two things should be noted. First, the cached information
for the overall problem will be correct in any case, Sccond, the extra
argument to NUMBEROF statements will always be null if external pruning
is entirely absent during the course of solving a subproblem. In this
case, the proposition about the number of solutions would be the same
as if the subproblem had been solved in vacuo.

5. Results

The methods described in this paper have been implemented in
experimental versions of the MRS system (Genesereth, 1982a). An
clegant (but still impractical) implementation of the problem solver has
also been done as control axioms for Meta-level Architecture
(Genescreth, 1982b). To make use of the techniques described, the
most stringent requircinent is a representation system that permits the
expression of the necessary knowledge about set definitions and sct
sizes. Given this, it is possible to "shochorn” these methods into most
cxisting problem solvers. While we chose to represent meta-level
propuositions (c.g. NUMBEROF statements and justifications) explicitly in
this paper it is not necessary to do so in order to make use of the
techniques described.

Our initial experiences with these methods has been quite positive.
For Kunz’ model of renal physiology (Kunz, 1983), knowledge about
the sizes of important sets was provided along with several statements
of invariance. While invariant set sizes were cached, the more claborate
storing of justifications outlined in section 3.2.2 was not complete at the
time, and no other caching was done. Typical queties of the model
usually require on the order of fifteen minutes of CPU time on a DEC
20/60. The addition of knowledge about sct sizes along with a few
invariance statements resulted in speed increases from two to ten times,
depending on the particular query. In spite of the success, the effort
was limited by the inability to cxpress certain complex invariance
statements to the MRS system available at the time. These deficiencies
have since been remedicd, making additional specdup possible using
only these clementary techniques.

A second application of the techniques presented here arose in the
development of a simple income tax consultant (Barnes, 1982). During
the consultation, the system needs to make inferences about familial
relationships. Because of the many different familial relationships
involved (c.g. Mother, Father, Aunt, Uncle, Sister, Brother, Daughter,
Son, Sibling, Child, Parent), the scarch space for cven the simplest
querics was extremely large. For example, a simple guery to determine
all of the siblings of a given person generated hundreds of subgoals
(fiftcen pages of hardeopy trace) and took nearly fiftcen minutes of real
time to produce the answers (Circular reasoning was pruned as in the
cxample of scction 4). The addition of a priori knowledge about the
numbcer of parents a person has, and knowledge that MOTHER and FATHER
arc function symbols, reduced the number of subgoals by a tactor of
three, and reduced the run time by a similar factor. Use of the full
techniques described in sections 3.2.2 and 4 resulted in an additional
factor of two reduction when running the problem for the first time.
The reason for this speedup is that the same subgoals were often
gencrated several times by different branches of the search tree. The
first occurrence would cause the answers and meta-knowledge to be
cached. Subsequent cecurrences of the subproblem could then make
use of the cached knowledge about sct size.

6. Discussion

6.1. The Closed World Assumption

Observant readers will note that we have relied on a closed-world
assumption thronghout this paper. We have tacitly assumed that a
problem solver is capable of producing cvery solution to a problem, and
therefore, that the theoretical number of solutions to a problem is the
same as the number that the system can produce.

Although convenient, this assumption is not a nceessary onc. The
theoretical number of selutions is an upper bound on the actuat
number that a problem solver can praduce (assuming sound logic and a
correct database) and remains uscful in any case where the sysiemn can
produce all of the answers to a problem. Cached information, however,
is information about the actual number of answers a problem solver can
produce. ‘Lo distinguish these two concepts, it is sufficient to vsc a
different relation name, say ACTUALNUMBEROF, supply the fact that

ACTUALNUMBEROF (v,p) << NUMBEROF(v,p) (6-1)

and change our problem solver to usc the actual number for cutting off
inference.

In systems where the closed world assumption is not valid therc is
additional advantage to having both kinds of information availabie.
Information about the actual number of solutions permits inference to
be stopped, while theorcetical information allows a system to warn the
user when it cannot produce all of the answers to a problem. As a result
of implicit closed-world assumptions, expert systems often generate
ludicrous answers to questions outside their arca of expertise. Having
both kinds of information available allows a problem solver to
determine when it can and cannot solve problems, which would
climinate such crrant behavior.

6.2. Adding Other Meta-Leve! Reasoning

Recognizing when all the solutions to a problem have been found is
only onc of the many possible methods for pruning a scarch space.
Other methods include: restricting facts to be used only in forward or
backward inference, climinating repeated subgoals in an inference, and
avoiding "undoing™ an inference that has just been done. Aside from
the interaction mentioned in section 4, these methods arc all cssentially
independent. There is nothing to prevent them from being used in
conjunction.

Mecta-level ordering of search spaces actually has a syncrgistic cffect
with the techniques presented here. Ordinarily, when a system is asked
to find all of the solutions to a problem, ordering of the scarch space is
of no benefit. The entire space must be scarched anyway. However,
when the number of sclutions is known, ordering of the scarch space
becomes valuable. If all of the answers can be collected rapidly (by
searching promising branches ot the space first), more of the space will
be pruned by a recognition that all of the solutions have been found.
Conversely, the utility of knowing the number of solutions depends on
discovering all of the solutions before the space is exhausted. For
problems in which all the solutions are desived ordering is of no use
without knowing the nuiber of solutions, just as knowing the number of
solutions is of no use under the worsi possible ordering.

6.3. Perspective

In this paper a methodology has been presented for shutting off
reasoning when all the answers to i problem have been found. 1o
make use of this, knowledge about the sizes of relevant sets must be
provided, or derived by the problem solver. Tt is quite possible for a
system to gather such knowledge dynamically and keep it up to date,
although the mechanics of truth maintenance are somewhat complex
for this case.

377

This rescarch is a small portion of a much larger cffort to
demenstrate that meta-level reasoning is an essential component in
building intelligent artifacts, as well as a practical methodology for
construction of cxpert systems. Mcta-level reasoning is not a single
technique that can be knocked off and buried. Rather, it is an cntire
patadigm. ‘There are, at the very least, hundreds of meta-level
problems like the one we have described here. Each one has its own
special set of concepts (vocabulary) and governing laws which must be
discovered and formalized for usc in intclligent systems.

Many authors have argued for the usc of meta-level reasoning. More
recently several authors have explored gencral frameworks in which
systematic meta-level reasoning is possible (Doyle, 1980, Genescreth,
1982b, Hayes, 1973, Smith, 1982, Weyhrauch, 1980). Like that of this
paper, there have also been a foew attempts to codify the necessary
meta-knowledge for solving specific meta-level problems. Among the
most notable cfforts arc those of Bundy (Bundy, 1979), Clancey
(Clancey, 1981), Davis (Davis, 1980), and Wilensky (Wilensky, 1981).
We regard these efforts (as well as our own) as mere "drops in a
bucket". Enormous opportunity remains for significant research into
any one of the myriad of outstanding meta-level reasoning problems.

ACKNOWLEDGEMENTS
Thanks to John Kunz for an intercsting and motivating application. Also thanks to

Jan Claylon and Mike Genesercth
provided uselut comments on the content and organization of this paper.

REFFRENCES

Pat layces for his reinforcement and excitement.

Barnes, T., Joyce, R, ‘Fsuji, S. A Simple Income Tax Consultant. }leuristic Programming
Project Memo, Stanford University, 1982.

Bundy, A., Byrd, 1., Luger, G., Melish, C., Palmer, M. Solving Mcchanics Problems Using
Meta-level Inference, pages 1017-1027. International Joint Conference on Artificial
Intelligence, August, 1979.

Clarcey, W. J., Letsinger, R. NEOMYCIN: Reconfiguring a Rule-based Expert System
Jor Application to icaching. Heuristic Programming Project Memo HPP-81-2,
Stanford University, I'cbruary 1981,

Davis, R. Meta-Rules: Reasoning about Control. drtificial Intelligence, 1980, 15, 179-222.
Doyte, J. A Truth Maintenance System. Artificial Intelligence, 1979, 12, 231-272.

Doyle, J. A Model for Deliberation, Action, and Introspection. Arlificial Intelligence
Taboratory Memo AI-TR-581, Massachusets Institute of Technology, May 1980.

Teigenbaum, E. A, Genesereth, M., Kaplan, S. J., Mostow, D. J. Intelligent Agents.
Proposal to the Defence Advanced Rescarch Projects Agency.

Genesereth, M. R. An Introduction to MRS for Al Fxperts. Heuristic Progranuning
Project Memo 11PP-82-27, Stanford University, November 1982.

Genesereth, M. R, Smith, D. E. Meta-Level Architecture. Heuristic Programming Project
Memio [1PP-81-6, Stanford University, December 1982,

Hayes, P. J. Computation and Deduction, pages 105-117. Crzechoslovakian Acadamy of
Sciences, 1973.

Kunz, 1. Use of Artificial Intelligence and Simple Mathematics to Analyze a Physiological
Model. PhD thesis, Stanford University, 1983. In preparation.

Smith, B. Reflection and Semantics in a Procedural Language. Artificial Intelligence
Laboratory Memo AI-TR-272, Massachusets Institute of Technology, January 1982,

Weyhrauch, R. W. Prolegomena to a Theory of Mechanized Formal Reasoning. Artificial
Intelligence, 1980, 13(1), 133-170.

Wilensky, R. Meta-Planning: Representing and Using Knowledge About Planning in
Problem Solving and Natural Language Understanding. Cognitive Science, 1981,
5(3),197-234.

