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dividual robots have already been constructed. The method 
also extends to single-agent planning, where one tries to achieve 
subgoals separately and defers decisions as to how these sub- 
plans will finally be interleaved (e.g., as in NOAH [Sacerdoti 
771). Note that we are not concerned with some of the more 
problematic issues in multi-agent planning, such as questions of 
belief or persuasion (e.g., [Konolige 821). Similarly, the type of 
communication act that is involved is particularly simple, and 
provides no information other than synchronizing advice (cf. 
[Appelt 821). 

h4ost approaches to planning view actions (or events) 
as a mapping from an old situation into a new situation (e.g., 
[hlccarthy 68, Sacerdoti 771). However, in cases where mul- 
tiple agents can interact with one another, this approach fails 
to adequately represent some important features of actions and 
events (e.g., see [Allen 81, McDermott 821). For example, con- 
sider the action of tightening a nut with a spanner. To represent 
this action by the changes that it brings about misses the fact 
that a particular tool was utilized during the performance of 
the action. And, of course, this sort of information is critical 
in allocating resource usage and preventing conflicts. Wilkins 
[M’ilkins 821 recognized this problem with the STRIPS formula- 
tion, and extended the representation of actions to include a 
description of the resources used during the action. However, 
these resources are limited to being objects, and one cannot 
specify such properties of an action (or action instance) aa “I 
will always remain to the north of the building”, which might 
help other 
interaction. 

agents in planning to avoid a potentially harmful 

seqplen 
In this paper we show how representing actions as 

ces of stat es allows us to take account of both co-operative 
and harmful interactions between multiple agents. IVe assume 
that the duration of an action is not fixed, and that we can 
only know that an action has been completed by asking the 
agent that performed the action (or some observer of the action). 
This dors not mean to say that we cannot take into account 
the espectrcl duration times of actions, but rather that we are 
concerned with problems where this information is not suficieni 
for forming an adequate plan. For example, if some part in a 
machine fails, then knowing that delivery of a new part takes 
about 24 hours can help in planning the repair, but a good plan 
will probably want a local supervisor or agent to be notified on 
delivery of the part. 
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$2 Formalizing the Problem 

M-‘e consider an action to be a sequence SI, Sz, . . .S, 
of sets of states, intuitively those states over which the action 
takes place.* The domain of the action is the initial set of states 
S1, and the range is the final set of states S,. The intermediate 
sets of states S,, . . .S,- 1 are called the momenta of the action. 

.4 planning problem P consists of a set of states, S; a 
designated set of initial states, I, in 5’; a set of primitive actions, 
A, which can be performed by the various agents operating in 
the domain; and a set of goal states, G, in S. For any given 
planning problem, a single-agent [unconditional] plan P is a 
description of a sequence of actions al, a2, . . .a, from A such 
that 

i. 

ii. 

a1 is applicable 
contains I) 

to all initial states I (i.e., the domain of a1 

for all i, 1 < i 5 n, the 
in the range of ai- 

action ai is applicable to all states 

. . . 
111. a, achieves the goal G (i.e., the range of a, is contained 

in G). 

A multi-agent plan for a problem P is a collection 
of plans for subproblems of P which are synchronized to be 
applicable to all initial states I and to achieve the goal G. 

We will describe the problem domain using a predicate- 
calculus-like representation and assume that all actions satisfy 
the so-called “STRIPS assumption” [Nilsson 801. Under the 
STRIPS assumption, all conditions that cannot be proved [under 
some suitable restriction] to have changed by the performance 
of an action are assumed to remain unchanged. 

Further, we are only concerned with problems in which 
the components of a world state involving distinct agents are 
sufficiently decoupled to permit us to assume that the effects 
of actions of one agent are largely independent of any other. 
,4lt hough violation of this restriction would not affect the validity 
of any solutions obtained, we would then be less certain of 
finding solutions, even if they existed. 

The representation of actions that we will use is a 
generalization of the standard STRIPS representation. Each 
action description contains a pre-condition and a post-condition, 
denoting the domain and range of the action. In addition, 
we need to represent what happens during the action. This is 
achieved by specifying an unorderedset of conditions to denote 
the moments (intermediate state sets) of the action. We will 
call these conditions the during conditions of the action. Again, 
under the STRIPS assumption, all other conditions are assumed 
to remain unchanged during the performance of the action, 
unless it can be proved otherwise. 

world 
For example, here is a possible description 

action that places one block on another: 
for the blocks 

puton bw) 
pre: holding(x) and clear(y) 
during: { holding(x) and clear(y) } 
post: clear(x) and hsndempty and an(x,y) 

*More generally, an action may be a set of such sequences. 
While this generalization can easily be accommodated within 
the formalism, it needlessly complicates our exposition. 

In the above problem domain, we could assume also 
that there was a static domain constraint [Rosenschein 821 say- 
ing that holding(x) always implies clear(x). 

$3 The Method 

Let us assume that, given a planning problem, we 
have decomposed the original goal into appropriate subgoals. 
\l’ithout loss of generality, we will only consider decomposi- 
tion into two subgoals. Also assume that we have separately 
generated plans for solving each of these subgoals (using some 
simple search technique, for example). Our problem now is 
to combine the two plans into a multi-agent plan that avoids 
conflicts and allows as many actions to proceed in parallel as 
possible. 

The first thing we have to work out is the manner in 
which individual actions may interact with one another. Then 
we need to determine which of the feasible situations are “unsafe” 
(i.e., could lead us into deadlock) and finally we need to insert 
synchronization primitives into the two subplans (single-agent 
plans) so that these unsafe situations can be avoided. 

3.1 Interaction Analysis 

Our first task is to establish which situations occurring 
in the two single-agent plans are incompatible with one another. 
For example, if, in one single-agent plan, a situation occurs 
where block A is on top of block B, and, in the other single-agent 
plan, a situation occurs where block B is required to be clear, 
then these two situations are clearly incompatible. Similarly, if 
one agent expects a component of some assembly to be held by 
some other agent, and that other agent is not holding it, then 
the situations are again incompatible. We will now make this 
notion a little more precise. 

Consider two (single-agent) plans P and Q, and let p 
and q be some st,ate descriptions occurring at some point in 
the action sequences for P and Q, respectively. We will denote 
by <p,q> the situation (set of states) where both p and q 
hold. If p and q are contradictory (i.e., we can prove that p 
and q cannot both be true at the same time), then of course 
<p,q> will denote the empty set and we will say that <p,q> is 
unsatisfiable. Otherwise, we will say that <p,q> is aatiafiable. 

Now consider what happens when we try to execute 
actions in parallel. Let us begin by describing the sequence of 
state sets defining an action by a sequence of conditions. Then, 
given two actions a = pl,p2, . . .pm and b = q1 ,q2,. . .q,,, what 
can we say about the way they can be executed? 

Assume we are in some situation <pi, qj >. To estab- 
lish feasibility and safety, we need to know what are the possible 
successor situations. Say that, at this given instant, action a 
continues next, while action b remains at its current point of 
execution. Then, clearly, in the next situation pi+1 will hold. 
But will qj also hold in this new situation? In the general case, 
we would need to use the properties of the problem domain to 
determine what in fact does happen next. However, under the 
STRIPS assumption, we are guaranteed that qj holds in this 
new situation, provided <p;+t,qj > is satisfiable. Similarly, 
if action 6 proceeds before action a, then pi will continue to 



hold in the new situation, provided again that this new situa- 
tion is satisfiable. Thus the possible successors of the situation 
<pi,qj> are just <pi+lyqj> and Cpi,qj+l>- 

The STRIPS assumption is thus seen to be very im- 
port ant, because it allows us to determine the manner in which 
actions can be interleaved solely on the basis of satisfiability 
of the pairwise combination of the conditions defining the ac- 
t ions. If t hi5 were not the case, we would have to examine every 
possible interleaving of the actions, inferring as we went just 
what the successor situations were and whether or not they were 
satisfiable. Even without taking into account the cost of per- 
forming the necessary inferences, the complexity of this process 
is of order (n + m)!/(n! m!), compared with a complexity of 
order n X m if we make the STRIPS assumption (and thus need 
only examine all possible pairs of conditions). Furthermore, in 
the general case it would not be possible to specify the during 
conditions as an unordered set - we would have to specify the 
actual order in which these conditions occur during the perfor- 
mance of the action. This complicates the representation of 
actions and, in any case, may not be information that we can 
readily provide. 

1Ve are now in a position to determine how actions 
as a whole can be safely executed. Consider two plans P = 
n1.a2,.. .a, and Q = b~,bz,.. .b,, and assume actions ai and 
bj are next to be executed. 

One possibility is that actions a; and bj can be ex- 
ecut cd in parallel. Because we have no control over the rates 
of the act ions, all interleavings of the actions must therefore be 
possible. tinder the STRIPS assumption, this will be the case 
if, and only if, all situations <p,q> are satisfiable, where p and 
q are any condition defining the actions oi and bj, respectively. 
Such actions will be said to commute. 

Alternatively, action ai could be executed while bj is 
suspcndcd (or vice versa). For this to be possible, we require 
that the preconclit ions of bj be satisfied on termination of some 
action that follows ai in plan P. We will in fact impose somewhat 
stronger restrictions than this, and require that the precondi- 
tions of bj be satisfied on termination of ai itself.* This amounts 
to assuming that the preconditions for one of the actions ap- 
pearing in one of the plans are unlikely to be achieved by the 
other plan (or that, in worlds where interactions are rare, so is 
serendipity). It is clear that, for actions satisfying the STRIPS 
assumption, and under the restriction given above, action ai can 
be executed while bj is suspended if, and only if, (1) the situa- 
tion consisting of the preconditions of both actions is satisfiable 
and (2) the situation consisting of the postcondition of ai and 
the precondition of bj is satisfiable. If actions ai and bj have 
this property, we will say that ai has precedence over 6,. 

Note that it, is possible for both actions to have preced- 
encc over each other, meaning that either can be executed while 
the other is suspended. Also, neither action may have precedence 
over the other, in which case neither can be executed. In the 
latter case, we will say that the actions conflict. 

*This is simply a restriction on the do/&ion8 we allow, and 
simplifies the analysis. The fact that one of the plans might 
fortuitously achieve the preconditions for one OF more actions 
in the other plan does not invalidate any solution we might 
obtain - it just means that the solution we obtain will not 
make constructive use of that fact. 

In problem domains that are best described by predi- 
cate calculus or some parameterized form of action description, 
the above conditions need to be determined for the inatancea of 
the actions that occur in the particular plans under considera- 
t,ion. However, in many cases these conditions can be established 
for the primitive actions, irrespective of the particular instance. 
For example, in the blocks world, handempty conflicts with 
holding(x), irrcsprctive of the value of x. Furthermore, one 
can often establish relatively simple isolation conditions under 
which classes of actions will or will not commut,e irrespective of 
the particular inst ancc. Thus although the deductions necessary 
for determining satisfaction of situations may be time consum- 
ing, much of the analysis can be done once on/y for any given 
problem domain. 

3.2 Safety Analysis 

14’~ can now use these properties to set up the safety 
conditions for individual actions. Consider two plans P = 
al,a~,...a, and Q = bl,b~,...b,. Let begin(a) denote the 
beginning of an action a and end(a) the termination of the 
action. Let the initial conditions of the plans P and Q be 
denoted by end(ao) and end(bo), respectively. For each pair 
of actions ai and bj occurring in P and Q we then have the 
following: 

i. If ni and 
is unsafe. 

bj do not commute, then <begin( begin( 

ii. If ai dots not have precedence over bj, then <begin( 
c?Zd( bj- I)> is unsafe. 

The set of all such 
teraction aef. 

unsafe situations is called the in- 

However, we still need to determine whether these un- 
safe situations give rise to other unsafe situations - that is, we 
must dctcrminc which of all the possible situations occurring in 
the execution of the plans P and Q could result in deadlock. 
The rules that govern the safety of a given situation 8 are as 
follows: 

i. If s = <begin(ai),begin(bj)>, then s is 
successor situations are unsafe. 

ii. If s = <liegin(ni),end(lij)>, then u is 
e?Zd( bj) > is unsafe. 

. . . 
111. 

iv. 

If S = <end(ui),e?iff(bj)>, 
cessor situations are unsafe. 

then 8 is unsafe if both suc- 

unsafe if either 

unsafe if <end(ai), 

Togrf hrr with those situations occurring 
set, these are all the unsafe situations. 

in the interaction 

IJnfort unatcly, to use these rules to determine which of 
all feasible situations are unsafe requires the examination of all 
possible interleavings of the actions comprising the plans, and 
the complexity of this process increases exponentially with tbe 
number of actions involved. However, in the kinds of problem 
domain that we are considering, actions rarely interact with 
each other, and as a result long subsequences of actions often 
commute. The following theorem, which is not difficult to prove, 
allows us to make use of this fact. 
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Commutativity Theorem. Let al, a2,. . .a,,, be a [con8ecutive] Semantically, when a process reaches a communication 
subsequence of action8 in a plan P and bl,bZ,. . .b, be a aub- operation, it, waits for the corresponding process to reach the 
sequence of actions in a plan Q. If all the action8 ai, 1 5 d 5 m, matching communication operation. At that point the operation 
commute with the action8 bj, 1 <j 5 n, then all possible situa- is performed and both processes resume their execution. 
tiona occurring in all po88ible interleaving8 of these sequence8 
will be unsafe if and only &f,, the dituationa <end(a,), begin( 
and <begin( end(b,)> are unaafe. Further, all situations 
occurring in all interleaving8 of these sequences will be safe if, 
and only 1% <end(a,), end(b,)> i8 safe. 

This theorem means that, if any two subsequences of 
actions commute with each other, then we need only consider 
those situations that occur on the “boundaries” of the sequences. 
Exactly what states within those boundaries are safe and unsafe 
depends only on the safety or otherwise of the boundary states, 
and this can be determined in a straightforward manner. As 
commutat,ivity is common when interactions are rare, this result, 
allows us to avoid the exploration of a very large number of 
interleavings and to substantially reduce the complexity of the 
problem. In particular, actions that commute with all actions 
in the other plan can simply be removed from consideration. 

The synchronization is achieved as folIows. At the 
beginning and end of each critical region R we set, up a com- 
munication command to a supervisor S, respectively S!begin- 
R and S!end-R. The supervisor then ensures that no critical 
regions are allowed to progress at the same time. Placing the 
communication commands in the original single-agent plans is 
clearly straightforward. So all we now have to do is construct 
the scheduler, which is a standard operating-systems problem. 

3.4 Example 

We will consider an example where two robots are 
required to place some metal stock in a lathe, one making a 
bolt and the other a nut. Only one robot, can use the lathe at a 
time. 

We will now use these results as a basis for our method 
of safety analysis. Assume we have constructed two single-agent 
plans and have performed the interaction analysis. All refer- 
ences to actions that commute with the other plan in its entirety 
(i.e., which do not appear in the interaction set) are removed 
from the plans, and the beginning and termination points of 
the remaining actions are explicitly represented. We will say 
that the resulting plans are simplified. Then, beginning with 
the initial situation, the conditions of safety given above are ap- 
plied recursively to determine all situations that are feasible yet, 
unsafe. However, whenever we reach a situation where follow- 
ing subsequences of actions commute, we use the commutativity 
theorem to avoid the explicit exploration of all possible inter- 
leavings of these subsequences.* 

3.3 InteracGon Resolution 

The set. of unsafe situations is next analyzed to identify 
contiguous sequences of unsafe situations. These represent criti- 
cal regions in the single-agent plans. Once these critical regions 
have been determined, standard operating-system methods can 
be used to enforce synchronization of the actions in the plans so 
that conflicting critical regions will not both be entered at, the 
same time. 

We will use CSP primitives [Hoare 19781 for handling 
this synchronization. A program in that formalism is a col- 
lection of sequential processes each of which can include in- 
terprocess communication operations. Syntactically, an inter- 
process communication operation names the source or destina- 
tion process and gives the information to be transmitted. In 
Hoare’s notation, the operation “send 8 to process P” is written 

P!s 

and the operation “receive 8 from process P” is 

P?s 

*In fact, the analysis of safety can be further simplified. These 
details need not, concern us. here, our intention being primarily 
to establish t be importance of the STRIPS assumption and the 
commutativity theorem to avoid a combinatorial explosion. 

We will not, formally provide the details of the actions 
and the problem domain, but, only sufficient to give the idea 
behind the analysis and the solution. The fact that the lathe 
can only be used by one robot at a time is represented as a static 
constraint on the problem domain. 

The actions are informally as follows: 

aim: agent 1 moves to the lathe 
a2m: agent 2 moves to the lathe 
alp: agent 1 places metal stock in 
a2p: agent 2 places metal stock in 
alb: agent 1 makes a bolt 
a2n: agent 2 makes a nut 
alf: agent 1 moves to end 
a2f: agent 2 moves to end 

lathe 
lathe 

The preconditions and during conditions for actions 
alb and a2n include the constraint that. the lathe must. be in 
the possession of the appropriate agent, as do the postconditions 
and during conditions for actions alp and a2p. 

Assume that 
single-agent, plans: 

a simple planner produces the following 

alm - alp - alb - alf 
a2m - a2p - a2n - a2f 

and The following 
be established 

precedence commutati vity properties can then 

i. actions alb and a2n conflict with one another 

ii. actions alp and a2p 
but do not commute. 

each have precedence over the other, 

. . . 
111. action alb has precedence over a2p, but not vice versa. 

iv. action a2n has precedence over alp, but not vice versa. 

We now proceed to determine the unsafe 
interaction set is determined to be: 

situations. First., the 

< begin(alb),begin(a2n)> < begin(alb),end(aap)> 
<end(alp),begin(a2n)> < begin(alp),begin(a!Zp)> 
< begin(alb),begin(a2p)> <end(alp),begin(a2p)> 
< begin(alp),begin(a2n)> < begin(alp),end(a2p)> 

We next form the simplified solutions: 



begin(alp) - end(alp) - begin(alb) - end(alb) 
begin(a2p) -+ end(a2p) - begin(a2n) - end(a2n) 

Then we perform the safety analysis, which, in this case, returns 
the set of unsafe situations unchanged from the interaction set. 
On concatenating consecutive elements, we get only two critical 
regions: begin(alp) - end(alb) conflicts with begin(a2p) 
- end(a2n). 

Finally we insert CSP commands into the original plans: 

Solution for agent 1 (P) 

alm - S!begin(alp) - alp - alb - S?end(alb) 
- alf 

Solution for agent 2 (Q) 

a2m - S!begin(a2p) - a2p - a2n - S!end(a2n) 
- a2f 

Solution for the synchronizer (S)* 

[ not N ; P?begin(alp) - M := true 
0 not M ; Q?begin(a2p) - N := true 
0 true ; P?end(alb) - M := false 
0 true ; Q?end(a2n) - N := false] 

Both M and N are initially set to “false”. 

The solution obtained is, of course, the obvious one. 
Both agents must advise the supervisor that they wish to put 
stock in the lathe, and can only proceed to do so when given 
permission. Both agents must also advise the supervisor when 
they have finished with the lathe. On his part, the supervisor 
makes sure that only one agent at a time is putting stock into 
the lathe and using it. Notice that the synchronizer allows any 
interleaving or parallel execution of the single-agent plans that 
does not lead to deadlock. Further, the synchronizer allows the 
plans to be continually executed, which is useful for production- 
line planning. 

Although the problem described above involved the 
avoidance of harmful interactions (mutual exclusion), the method 
can equally well be applied to problems that require co-operation 
between agents. The reason is that unless the actions are synch- 
ronized to provide the required co-operation, situations will arise 
which are unsatisfiable. For example, if two agents are required 
to co-operate to paint a block of wood, one holding the piece 
and the ot,her painting it, then any situation where one agent 
was painting the wood while the other was not holding it would 
be unsatisfiable. 

The multi-agent plan synthesizer described in this paper 
has been used to solve a number of tasks involving both co- 
operation and interaction avoidance. These problems include 
two arms working co-operatively to bolt subassemblies together, 
some typical blocks world problems requiring “non-linear” solu- 
tions, and various “readers and writers” problems. 

*The form “0 <guard> - <command>” is a guarded 
command (see [Hoare 78]), and the command fallowing the 
symbol U- n can only be executed if the execution of the guard 
(i.e. the boolean expression and the input command preceding 
“4 “) does not fail. 

$4 C:onclusions 

We have presented a simple and efficient technique 
for forming flexible multi-agent plans from simpler’single-agent 
plans. The critical features of the approach are that 

i. actions are represented as sequences of states, thus allowing 
the expression of more complex kinds of interaction than 
would be possible if simple state change operators were used, 
and 

ii. the STRIPS assumption and commutativity conditions are 
used to avoid the explicit generation of all possible inter- 
leavings of the actions comprising the plans, thus avoiding 
a combinatorial explosion. 

While the approach does not guarantee solutions to 
some classes of problem involving complex interactions between 
single-agent plans, it haa wide applicability in many real-world 
settings, such as in automated factories and co-operative robot 
assembly tasks. Future work will extend the formalism to in- 
clude conditional plans and hierarchical planning techniques. 
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