From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

COMMUNICATION AND INTERACTION IN MULTI-AGENT PLANNING*

Michael Georgeff

Arti ficial Intelligence Center,
SRI International,
888 Ravenswood Ave.,
Menlo Park, CA., 94025.

Abstract

A method for synthesizing multi-agent plans from sim-
pler single-agent plans is described. The idea is to insert com-
munication acts into the single-agent plans so that agents can
synchronize activities and avoid harmful interactions. Unlike
most previous planning systems, actions are represented by se-
quences of states, rather than as simple state change operators.
This allows the expression of more complex kinds of interaction
than would otherwise be possible. An efficient method of inter-
action and safety analysis is then developed and used to identify
critical regions in the plans. An essential feature of the method
is that the analysis is performed without generating all possible
interleavings of the plans, thus avoiding a combinatorial explo-
sion. Finally, communication primitives are inserted into the
plans and a supervisor process created to handle synchroniza-
tion.*

§1 Introduction

One of the things robots and other agents need to be
able to do is to organize their activities so that they can co-
operate with one another and avoid conflicts. For example, we
might want two robots to co-operate in building a component,
one holding some part while the other attaches some other part
to it, or we might want each to pursue different goals, making
sure that they both don't attempt to use the same resource at
the same time. One way to organize such robots is to carefully
time each of their activities in such a way that this sort of
co-operation and conflict avoidance is guaranteed. However, in
many real-world situations, it is not possible to time events with
enough accuracy to enable this approach to work, and some run-
time synchronization of activities is needed. Further, because
these robots like to be as autonomous as possible, pursuing their
own goals at thcir own speed, we should not impose ordering
constraints on their activities unless it is absolutely necessary.
Such synchronization can only be achieved by getting the robots
(or some observers) to talk to each other or to some supervising
agent.

This paper describes a relatively simple method for
achieving this synchronization, given that the plans of the in-

*This research was supported in part by ONR contract N000014-
80-C-0296 and in part by AFOSR contract F49620-79-C-0188.

125

dividual robots have already been constructed. The method
also extends to single-agent planning, where one tries to achieve
subgoals separately and defers decisions as to how these sub-
plans will finally be interleaved (e.g., as in NOAH [Sacerdoti
77]). Note that we are not concerned with some of the more
problematic issues in multi-agent planning, such as questions of
belief or persuasion (e.g., [Konolige 82]). Similarly, the type of
communication act that is involved is particularly simple, and
provides no information other than synchronizing advice (cf.
[Appelt 82]).

Most approaches to planning view actions (or events)
as a mapping from an old situation into a new situation (e.g.,
[McCarthy 68, Sacerdoti 77]). However, in cases where mul-
tiple agents can interact with one another, this approach fails
to adequately represent some important features of actions and
cvents (e.g., see [Allen 81, McDermott 82]). For example, con-
sider the action of tightening a nut with a spanner. To represent
this action by the changes that it brings about misses the fact
that a particular tool was utilized during the performance of
the action. And, of course, this sort of information is critical
in allocating resource usage and preventing conflicts. Wilkins
[Wilkins 82] recognized this problem with the STRIPS formula-
tion, and extended the representation of actions to include a
description of the resources used during the action. However,
these resources are limited to being objects, and one cannot
specify such properties of an action (or action instance) as “I
will always remain to the north of the building”, which might
help other agents in planning to avoid a potentially harmful
interaction.

In this paper we show how representing actions as
sequencesof states allows us to take account of both co-operative
and harmful interactions between multiple agents. We assume
that the duration of an action is not fixed, and that we can
only know that an action has been completed by asking the
agent that performed the action (or some observer of the action).
This docs not mean to say that we cannot take into account
the expected duration times of actions, but rather that we are
concerned with problems where this information is not sufficient
for forming an adequate plan. For example, if some part in a
machine fails, then knowing that delivery of a new part takes
about 24 hours can help in planning the repair, but a good plan
will probably want a local supervisor or agent to be notified on
delivery of the part.

§2 Formalizing the Problem

We consider an action to be a sequence S1,S2,...5,
of sets of states, intuitively those states over which the action
takes place.* The domain of the action is the initial set of states
S1, and the range is the final set of states S,;. The intermediate
sets of states Sa,...S,—y are called the moments of the action.

A planning problem P consists of a set of states, S; a
designated set of imitial states, I, in S; a set of primitive actions,
A, which can be performed by the various agents operating in
the domain; and a set of goal states, G, in S. For any given
planning problem, a single-agent [unconditional] plan P is a
description of a sequence of actions a;,as,...a, from A such
that

i. aj is applicable to all initial states I (i.e., the domain of a,
contains I)

for all 1,1 < ¢ < n, the action a; is applicable to all states
in the range of a;_

il.
ili. a, achieves the goal G (i.e., the range of a, is contained
in G).

A multi-agent plan for a problem P is a collection
of plans for subproblems of P which are synchronized to be
applicable to all initial states I and to achieve the goal G.

We will describe the problem domain using a predicate-
calculus-like representation and assume that all actions satisfy
the so-called “STRIPS assumption” [Nilsson 80]. Under the
STRIPS assumption, all conditions that cannot be proved [under
some suitable restriction] to have changed by the performance
of an action are assumed to remain unchanged.

Further, we are only concerned with problems in which
the components of a world state involving distinct agents are
sufficiently decoupled to permit us to assume that the effects
of actions of one agent are largely independent of any other.
Although violation of this restriction would not affect the validity
of any solutions obtained, we would then be less certain of
finding solutions, even if they existed.

The representation of actions that we will use is a
generalization of the standard STRIPS representation. Each
action description contains a pre-condition and a post-condition,
denoting the domain and range of the action. In addition,
we need to represent what happens during the action. This is
achieved by specifying an unordered set of conditions to denote
the moments (intermediate state sets) of the action. We will
call these conditions the during conditions of the action. Again,
under the STRIPS assumption, all other conditions are assumed
to remain unchanged during the performance of the action,
unless it can be proved otherwise.

For example, here is a possible description for the blocks
world action that places one block on another:

puton(x,y)
pre: holding(x) and clear(y)
during: { holding(x) and clear(y) }
post: clear(x) and handempty and on(x,y)

*More generally, an action may be a set of such sequences.
‘While this generalization can easily be accommodated within
the formalism, it needlessly complicates our exposition.

126

In the above problem domain, we could assume also
that there was a static domain constraint [Rosenschein 82] say-
ing that holding(x) always implies clear(x).

§3 The Method

Let us assume that, given a planning problem, we
have decomposed the original goal into appropriate subgoals.
Without loss of generality, we will only consider decomposi-
tion into two subgoals. Also assume that we have separately
generated plans for solving each of these subgoals (using some
simple search technique, for example). Our problem now is
to combine the two plans into a multi-agent plan that avoids
conflicts and allows as many actions to proceed in parallel as
possible.

The first thing we have to work out is the manner in
which individual actions may interact with one another. Then
we need to determine which of the feasible situations are “unsafe”
(i.e., could lead us into deadlock) and finally we need to insert
synchronization primitives into the two subplans (single-agent
plans) so that these unsafe situations can be avoided.

3.1 Interaction Analysis

Our first task is to establish which situations occurring
in the two single-agent plans are incompatible with one another.
For example, if, in one single-agent plan, a situation occurs
where block A is on top of block B, and, in the other single-agent
plan, a situation occurs where block B is required to be clear,
then these two situations are clearly incompatible. Similarly, if
one agent expects a component of some assembly to be held by
some other agent, and that other agent is not holding it, then
the situations are again incompatible. We will now make this
notion a little more precise.

Consider two (single-agent) plans P and Q, and let p
and g be some state descriptions occurring at some point in
the action sequences for P and @, respectively. We will denote
by <p,g> the situation (set of states) where both p and ¢
hold. If p and g are contradictory (i.e., we can prove that p
and ¢ cannot both be true at the same time), then of course
<p,q> will denote the empty set and we will say that <p,q> is
unsatisfiable. Otherwise, we will say that <p,q> is satisfiable.

Now consider what happens when we try to execute
actions in parallel. Let us begin by describing the sequence of
state sets defining an action by a sequence of conditions. Then,
given two actions @ == py,pa,...pm and b = q1,¢2,...q,, what
can we say about the way they can be executed?

Assume we are in some situation <p;,q;>. To estab-
lish feasibility and safety, we need to know what are the possible
successor situations. Say that, at this given instant, action a
continues next, while action b remains at its current point of
execution. Then, clearly, in the next situation p;4; will hold.
But will ¢; also hold in this new situation? In the general case,
we would need to use the properties of the problem domain to
determine what in fact does happen next. However, under the
STRIPS assumption, we are guaranteed that g; holds in this
new situation, provided <pii1,g;> is satisfiable. Similarly,
if action b proceeds before action a, then p; will continue to

hold in the new situation, provided again that this new situa-
tion is satisfiable. Thus the possible successors of the situation
<pi,q;> are just <piy1,q;> and <pg, gj41>.

The STRIPS assumption is thus seen to be very im-
portant, because it allows us to determine the manner in which
actions can be interleaved solely on the basis of satisfiability
of the pairwise combination of the conditions defining the ac-
tions. If this were not the case, we would have to examine every
possible interleaving of the actions, inferring as we went just
what the successor situations were and whether or not they were
satisfiable. Even without taking into account the cost of per-
forming the necessary inferences, the complexity of this process
is of order (n + m)!/(n! m!), compared with a complexity of
order n X m if we make the STRIPS assumption (and thus need
only examine all possible pairs of conditions). Furthermore, in
the general case it would not be possible to specify the during
conditions as an unordered set — we would have to specify the
actual order in which these conditions occur during the perfor-
mance of the action. This complicates the representation of
actions and, in any case, may not be information that we can
readily provide.

We are now in a position to determine how actions
as a whole can be safely executed. Consider two plans P =
ay,az,...am and @ = by,bs,...b,, and assume actions a; and
b; are next to be executed.

One possibility is that actions a; and &; can be ex-
ecuted in parallel. Because we have no control over the rates
of the actions, all interleavings of the actions must therefore be
possible. Under the STRIPS assumption, this will be the case
if, and only if, all situations <p,q>> are satisfiable, where p and
g are any condition defining the actions a; and bj, respectively.
Such actions will be said to commute.

Alternatively, action a; could be executed while b; is
suspended (or vice versa). For this to be possible, we require
that the preconditions of b; be satisfied on termination of some
action that follows a; in plan P. We will in fact impose somewhat
stronger restrictions than this, and require that the precondi-
tions of b; be satisfied on termination of a; itself.* This amounts
to assuming that the preconditions for one of the actions ap-
pearing in one of the plans are unlikely to be achieved by the
other plan (or that, in worlds where interactions are rare, so is
serendipity). It is clear that, for actions satisfying the STRIPS
assumption, and under the restriction given above, action a; can
be executed while b; is suspended if, and only if, (1) the situa-
tion consisting of the preconditions of both actions is satisfiable
and (2) the situation consisting of the postcondition of a; and
the precondition of b; is satisfiable. If actions a; and b; have
this property, we will say that a; has precedence over b;.

Note that it is possible for both actions to have preced-
ence over each other, meaning that either can be executed while
the other is suspended. Also, neither action may have precedence
over the other, in which case neither can be executed. In the
latter case, we will say that the actions conflict.

*This is simply a restriction on the solutions we allow, and
simplifies the analysis. The fact that one of the plans might
fortuitously achieve the preconditions for one or more actions
in the other plan does not snvalidate any solution we might
obtain — it just means that the solution we obtain will not
make constructive use of that fact.

127

In problem domains that are best described by predi-
cate calculus or some parameterized form of action description,
the above conditions need to be determined for the ¢nstances of
the actions that occur in the particular plans undér considera-
tion. However, in many cases these conditions can be established
for the primitive actions, irrespective of the particular instance.
For example, in the blocks world, handempty conflicts with
holding(x). irrespective of the value of x. Furthermore, one
can often establish relatively simple fsolation conditions under
which classes of actions will or will not commute irrespective of
the particular instance. Thus although the deductions necessary
for determining satisfaction of situations may be time consum-
ing, much of the analysis can be done once only for any given
problem domain.

3.2 Safety Analysis

We can now use these properties to set up the safety
conditions for individual actions. Consider two plans P =
ay,ag,...a, and Q = by, bs,...b,. Let begin(a) denote the
beginning of an action a and end(a) the termination of the
action. Let the initial conditions of the plans P and @ be
denoted by end(ag) and end(bo), respectively. For each pair
of actions a; and b; occurring in P and @ we then have the
following:

i. If a; and b; do not commute, then <begin(a;),begin(b;)>
is unsafe.

il. If a; does not have precedence over b;, then <begin(a;),

end(b;_;)> is unsafe.

The sct of all such unsafe situations is called the in-
teraction sel.

However, we still need to determine whether these un-
safe situations give rise to other unsafe situations — that is, we
must determine which of all the possible situations occurring in
the exccution of the plans P and @ could result in deadlock.
The rules that govern the safety of a given situation s are as
follows:

i. Ifs <begin(a;), begin(b;)>, then s is unsafe if either
successor situations are unsafe.

If 3 = <begin(a;),end(b;)>, then s is unsafe if <end(a;),
end(b;)> is unsafe.

If s <end(a;),end(b;)}>, then ¢ is unsafe if both suc-
cessor situations are unsafe.

Together with those situations occurring in the interaction
set, these are all the unsafe situations.

Unfortunately, to use these rules to determine which of
all feasible situations are unsafe requires the examination of all
possible interleavings of the actions comprising the plans, and
the complexity of this process increases exponentially with the
number of actions involved. However, in the kinds of problem
domain that we are considering, actions rarely interact with
each other, and as a result long subsequences of actions often
commute. The following theorem, which is not difficult to prove,
allows us to make use of this fact.

Commutativity Theorem. Let ay,a5,...a,, be a [consecutive]
subsequence of actions in a plan P and bl,bz, b, be a sub-

If all the actions a;, 1 <i<m,

commute with the actions b;, 1 <5 < n, then all _pos.srble situa-

tions occurring in all possible interleavings of these sequences

will be unsafe if, and oniy if, the situaiions <end(an), begin(d,)>
and <begin(ay),end(b,)> are unsafe. Further, all situations

occurring in all interleavings of these sequences will be safe if,

and only if, <end(a,,), end(b,)> is safe.

corisicerrce nd arte e cor v enlney)
sequence of actions in a pian §.

This theorem means that, if any two subsequences of
actions commute with each nf}\pr then we need nn'v consider

those situations that occur on the “bounda.rles of the sequences.
Exactly what states within those boundaries are safe and unsafe
depends only on the safety or otherwise of the boundary states,
and this can be determined in a straightforward manner. As
commutativity is common when interactions are rare, this result
allows us to avoid the expioration of a very iarge number of
interleavings and to substantially reduce the complexity of the
problem. In particular, actions that commute with all actions
in the other plan can simply be removed from consideration.

We will now use these results as a basis for our method
ted two

nf ca
of safety
plans and have performed the interaction analysis. All refer-
ences to actions that commute with the other plan in its entirety
i o which do not annear tha intanaatis
{i.c., which do not appear in the interactio
from the plans, and the beginning and termination points of
the remaining actions are explicitly represented. We will say

S TR TN PE I SRS SN 17 < N |
tnat tne resulling plans are sImpiijica.

incle-acent

oty analvsis s
¢ anal C singie-agent

ySis.

Assume we have construct

at) mma maveoawa

in - A
5€vj arc removea

i 11

Then, beginning with
the initial situation, the conditions of safety given above are ap-
plied recursively to determine all situations that are feasible yet
unsafe. However, whenever we reach a situation where follow-
ing subsequences of actions commute, we use the commutativity
theorem to avoid the explicit exploration of all possible inter-
jeavings of these subsequences.*

3.3 Interaction Resolution

The set of unsafe situations is next analyzed to identify
contiguous sequences of unsafe situations. These represent criti-

in the

cal rear
cal rege

have been determined, standard operating-system methods can
be used to enforce synchronization of the actions in

thod anaAla
Taay <onunic u

ons

single-agent plans. Onee these critical resions
ons singie-ageny pians. Lnce Lnese crilical regicns

ng

critical
same time.

We will use CSP primitives [Hoare 1978] for handling
this synchronization. A program in that formalism is a col-
iection of sequential processes each of which can inciude in-
terprocess communication operations. Syntactically, an inter-
process communication operation names the source or destina-
tion process and gives the information to be transmitted. In
Hoare’s notation, the oneratmn “send & to process P” is written

Pls
and the operation “receive 8 from process P” is

P?s

*In fact, the analysis of safety can be further simplified. These

details need not concern us. here, our intention being primarily
sta kl_qh the importance of the STRIPS assumntion and the

DS porzance of vae o 2 Uiy ASSUmMPLIOD aknG 1ae

utativity theorem to avoid a combinatorial explosion.

oy
o

Semantically, when a process reaches a communication
operation, it waits for the corresponding process to reach the
matching communication operation. At that point the operation
is performed and both processes resume their execution.

The synchronization is achieved as follows. At the
beginning and end of each critical region R we set up a com-

mupication command to a supervisor S, respectively Slbegin-
R and Slend-R. The supervisor then en:

regions are allowed to progress at the same time. Placing the

communication commands in the original single-agent plans is
aichtforward
d.

trat gaticrwar

critical

sures that no

clea
ciea

the scheduler, which is a standard operating-systems problem.

rlv s CSo all we now have to do is construct
T SC an W€ BCW nave {0 Go is construct

«

3.4 Example

We will consider an example where two robots are
required to place some metal stock in a lathe, one making a
bolt and the other a nut. Only one robot can use the lathe at a
time.

We will not formally provide the details of the actions
and the problem domain, but only sufficient to give the idea
behind the analysis and the sclution. The fact that the lathe

can only be used by one robot at a time is represented as a static
constraint on the problem domain.

The actions are informally as follows:

alm: agent 1 moves to the lathe

a2m: agent 2 moves to the lathe

alp: agent 1 places metal stock in lathe
a2p: agent 2 places metal stock in lathe
alb: agent 1 makes a bolt

a2n: agent 2 makes a nut

alf: agent 1 moves to end

a2f: agent 2 moves to end

The preconditions and during conditions for actions
alb and a2n include the constraint that the lathe must be in
the possession of the appropriate agent, as do the postconditions
and during conditions for actions alp and a2p.

Assume that a simple planner produces the following

a2m — a2p — a2n — a2f

The following precedence and commutativity properties can then
be established:

actions alb and a2n conflict with one another

331 action 2lb has nracedenca over a9n hut nnt vice varsa
iii. action alb has precedence over a2p, but not vice versa.
iv artinn 891 hae nraradansra gver a1n hut nat vics voran
iv. action a2n has precedence over alp, but not vice versa
Wa naw nracosd ta datormins tha nnenfs citnatisane Bicct tha
We now proceed to determine the unsafe situations. First, the
interaction set is determined to be:

< begin(alb),begin(a2n)> < begin(alb),end(a2p)>
<end(a1p) begin(a2n)> <begin(alp) begin(a2p)>

\ UUEIII\&J Ul’ chlll\&ﬂpl} \CHU\Blpj,ucslu\aap’)

<begin(alp),begin(a2n)> < begin(alp),end(a2p)>

We pext form the simplified solutions:

begin(alp) — end(alp) — begin(alb) — end(alb)
begin(a2p) — end(a2p) — begin(a2n) — end(a2n)

Then we perform the safety analysis, which, in this case, returns
the set of unsafe situations unchanged from the interaction set.
On concatenating consecutive elements, we get only two critical
regions: begin(alp) — end(alb) conflicts with begin(a2p)
— end(a2n).

Finally we insert CSP commands into the original plans:
Solution for agent 1 (P)

alm — Slbegin(alp) — alp — alb — Slend(alb)
— alf

Solution for agent 2 (Q)
a2m — S!begin(a2p) — a2p — a2n — Slend(a2n)

— a2f
Solution for the synchronizer (S)*
[not N ; P?begin(alp) — M := true
[not M ; Q?begin(a2p) — N := true
[l true ; P?end(alb) — M := false
I true ; Q?end(a2n) — N = false]

Both M and N are initially set to “false”.

The solution obtained is, of course, the obvious one.
Both agents must advise the supervisor that they wish to put
stock in the lathe, and can only proceed to do so when given
permission. Both agents must also advise the supervisor when
they have finished with the lathe. On his part, the supervisor
makes sure that only one agent at a time is putting stock into
the lathe and using it. Notice that the synchronizer allows any
interleaving or parallel execution of the single-agent plans that
does not lead to deadlock. Further, the synchronizer allows the
plans to be continually executed, which is useful for production-
line planping.

Although the problem described above involved the
avoidance of harmful interactions (mutual exclusion), the method
can equally well be applied to problems that require co-operation
between agents. The reason is that unless the actions are synch-
ronized to provide the required co-operation, situations will arise
which are unsatisfiable. For example, if two agents are required
to co-operate to paint a block of wood, one holding the piece
and the other painting it, then any situation where one agent
was painting the wood while the other was not holding it would
be unsatisfiable.

The multi-agent plan synthesizer described in this paper
has been used to solve a number of tasks involving both co-
operation and interaction avoidance. These problems include
two arms working co-operatively to bolt subassemblies together,
some typical blocks world problems requiring “non-linear” solu-
tions, and various “readers and writers” problems.

*The form “[] <guard> — <command>" is a guarded
command (see [Hoare 78]), and the command following the
symbol “— ” can only be executed if the execution of the guard
(i.e. the boolean expression and the input command preceding
“— ") does not fail.

129

§4 Conclusions

We have presented a simple and efficient techmique
for forming flexible multi-agent plans from simpler ‘single-agent
plans. The critical features of the approach are that

i. actions are represented as sequences of states, thus allowing
the expression of more complex kinds of interaction than
would be possible if simple state change operators were used,
and

the STRIPS assumption and commutativity conditions are
used to avoid the explicit generation of all possible inter-
leavings of the actions comprising the plans, thus avoiding
a combinatorial explosion.

e
e

While the approach does not guarantee solutions to
some classes of problem involving complex interactions between
single-agent plans, it has wide applicability in many real-world
settings, such as in automated factories and co-operative robot
assembly tasks. Future work will extend the formalism to in-
clude conditional plans and hierarchical planning techniques.

Acknowledgments

The author wishes to thank Peter Cheeseman for his
critical reading of this paper.

References
[1] Allen, J.F., “A General Model of Action and Time”",
University of Rochester, Comp. Sci. Report TR 97, 1981.

2] Appelt, D. “Planning Natural Language Utterances”, in
Research on Distributed Artificial Intelligence, Interim Re-

port, Al Center, SRI International, Menlo Park, Ca., 1982.

(3]

Hoare, C.A.R., "Communicating Sequential Processes”,
Comm. ACM, Vol. 21, pp 666-677, 1978.

Konolige, K. “A First Order Formalization of Knowledge
and Action for a Multiagent Planning System”, in Research
on Distributed Artificial Intelligence, 1982.

(5]

McCarthy, J., in Minsky (ed.) Programs with Common
Sense, MIT Press, Cambridge, Mass., 1968.

McDermott, D., “A Temporal Logic for Reasoning about
Processes and Plans”, Yale University Comp. Sci. Research
Report 196, 1981.

(6]

Nilsson, N.J. Principles of Artificial Intelligence, Tioga
Press, Palo Alto, Ca., 1980.

Rosenschein, S. “Plan Synthesis: A Logical Perspective”
Multiagent Planning System”, Proc. IJCAI-81, Vancouver,
Canada, pp. 331-337, 1981.

Sacerdoti, E.D. A Structure for Plans and Behaviour,
Elsevier, North Holland, New York, 1977.

Wilkins, D.E., “Parallelism in Planning and Problem
Solving: Reasoning about Resources”, Tech Note 258, Al
Center, SRI International, Menlo Park, Ca., 1982.

[l

(10]

