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A6stract: Numerical inequalities present new challenges to 
data-base systems that keep track of “dependencies,” or 
reasons for beliefs. Care must be taken in interpreting an 
inequality as an assertion, since occasionally a %trongn 
interpretation is needed, that the inequality is best known 
bound on a quantity. Such inequalities often have many 
proofs, so that the proper response to their erasure is often 
to look for an alternative proof. Fortunately, abstraction 
techniques developed by data-dependency theorists are 
robust enough that they can be extended fairly easily to 
handle these problems. The key abstractions involved are 
the “ddnode,” an abstract assertion as seen by t,he data- 
dependency system, and its associated “signal function,” 
which performs indexing, re-deduction, and garbage- 
collection functions. Such signal functions must have 
priorities, so that they don’t clobber each other when they 
run. 

1. The Problem 
Programs in the field of artificial intelligence often deal 

with sophisticated (if small) data bases. These data bases 
can contain predicate-calculus formulas of greater-than- 
usual complex&y, and often perform deductions of new 
formulas. Such a data base is used to keep track of an 
evolving problem solution, during which tentative 
assumptions are made and withdrawn. Since the data base 
is responsible for routine deductions, it ought to be 
responsible for undoing them when assumptions change. 

A useful mechanism for aiding this process is the 
data-dependency note, a record of the reasons for belief in a 
formula. In the simplest case, the dependency note records 
that a formula follows from a set of other formulas. The 
note is usually diagrammed as a circular node, with arcs 
from the ju,t;fying beliefs to the node, and an arrow from 
the node to the supported belief, or &tifo’cand. See Figure 
l-l. 

When the justificand is inferred, it is the responsibility of 
the “inference engine” to record this dependency. When a 
justifier is erased, the justificand must be erased as well, 
unless there is an independent justification for it. Detecting 
this is done by a reason maintenance system 
(RMS). [Doyle 801 A no th er subtlety is that a belief may 
depend on the absence of another belief. More on this 
below. 

*This work was supported by the National Science Foundation under 
contract MCS-8203030 

Figure l-l: A Data-Dependency Note 

Special problems are raised when you try to extend these 
methods to numerical inequalities. Such inequalities arise in 
the domains of spatial and temporal reasoning. Often a 
series of facts about objects and events can be captured as 
a set of fuzzy maps, in which the coordinates (and other 
parameters) of objects are known to within an interval. 
For instance, if an event E2 occurs between 5 and f3 hours 
after event El, we can record that the T coordinate of E2 
in the frame of El is [5,6]. (Assuming the scale of El is “1 
hr per time unit.“) I will write such “coordinate terms” as 
(T E2 El). 

The coordinate values interface to other facts in a natural 
way. For instance, (T E2 El) = [5,6] may have been 

inferred from these facts: (1) El is the beginning of a 
painting episode EP. (2) E2 is the end of EP. (3) Paint 
takes between 5 and 6 hours to dry. And, in turn, from (T 
E2 E1)=[5,6], we may infer other facts, like this: If El 
occurs at 4 o’clock, then E2 will occur after sunset. 

I call a statement like (T E2 El) = [5,6] a term due 
statement. (I will focus on terms of the form (parameter 
object frame) in this paper, but many of the same 
considerations apply to terms computed from these, like 
(DISTANCE A B FRAME).) 

The standard RMS algorithms are inadequate to update 
data bases involving term-value statements. The problem 
is that RMS algorithms simply decide whether to keep or 
delete a belief. In the case of an inequality, it is often 
worthwhile to invest some effort in recomputing the 
quantities involved, and see if the inequality is still true. If 
it is, everything it supports can stay around. 

Another problem is the logical status of term-value 
statements. We can distinguish “weak” and “strong” 
int,erpretations of such a statement. The weak 
interpretation of P=[l,h] is that the true value of P lies in 
the interal [I, h]. (In most applications, it is irrelevant 
whether the endpoints are included in this interval, except 
for point intervals.) The strong interpretation is that no 
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narrower interval call be inferred. Weak interpretations are 
more common, but there are cases that require the strong 
interpretation. 

Strong term-value statements are closely intertwined with 
non-monotonic inference. A strong statement depends 
upon the ubsence of any more informative weak value 
statement about the same term. 

As I mentioned, such dependency nets have already been 
investigated. They may be diagrammed by adding “signs” 
to the arcs from justifiers, indicating the sense of the 
dependency. For instance, Figure indicates that C is 
believed (“IN”) if A is IN and B is absent from the data 
base (“OUT”). 

But the relationship between weak and strong values 
cannot be handled like- this, because there are potentially an 
iufinite number of weak values that could impact on a 

Figure 1-2: A Non-Monotonic Data-Dependency Note 

strong value. 

The final problem to describe is the origin of term-value 
statements. JVe can distinguish two sources: computational 
and non-computational. The former label applies to term 
values compu-ted from other term values; the latter, to all 
other inferences. A computational inference involves a fact 
of the form 

to = f(t*, . . . I tJ 

where t,,..., t,, are numerical-valued terms, and f is a 
#U 

computable function. I will use the word derivalkon for 
such an equality. Note that a typical equality gives rise to 
several derivations. E.g., A=B+C gives rise to three: 

A=B+C 
B=A-C 
C=A-B 

I will not worry about generating derivations from other 
equalities, but just assume derivations are generated in this 
form when required. 

Derivations are like St,eele and Sussman’s 
“constraints” [Sussman 801 with one important difference: 
they are supposed to be applied using interval arithmetic. 
That is, if B=[3,4] and C=[-2,-l], then from the derivation 
A=B+C, we can infer A=[1,3]. 

In general, nothing prevents the creation of circular 
derivations, which may be difficult to make use of. Such a 
derivation cannot be used by substituting value of right- 
hand side quantities, but may require solving simultaneous 
equations. In this paper, I will assume that such derivations 
do not arise; that is, that the only circular derivation that 
can be obtained by substitution is of the form A=A. This 
is a reasonable assumption in our spatial-reasoning domain, 

where drrivations come from coordinate transformations, 
which do have this property. If you translate the X 
coordinate of A from one frame to another and back, you 
wind up with the term you started with. 

The spatial-reasonin, w domain is simpler in this respect, 
but more complex in others. One complexity is that there 
are in the abstract an infinite number of derivations for a 
term; any term can be derived from the value of that term 
in another frame of reference, plus the values of the relative 
coordinates of the two frames. Even in one dimension, we 
have 

(X A F1) = (X A Fp) (SCALE F, F1) + (X F, FF,) 

for all objects A and refercncc frames F, and F,. But at 
any time, most such derivations will give useless answers 
(very wide intervals). We must provide heuristic means of 
finding good derivations of a quantity. 

In summary, therefore, our problems are these: 

1. Avoiding erasing inequalities after minor 
recomputat~ion 

2. Managing the non-mouotonic relationship 
between weak and strong term-value 
statements. 

3. Keeping track of useful derivations of 
quantities. 

I should point out that none of these problems is found 
only in numerical inference. The methods described here 
may be adaptable to other applications. But the numerical 
situation makes the problems obvious and urgent. 

2. §01ud;i0n 
The solution is more a matter of careful bookkeeping 

than blinding insight. Many of the techniques needed are 
already known from t,he work of Doyle and McAllester. 
The trick is to stack up the layers of abstraction just right. 

One abstraction we need is the memory term (memterm), 
a data st,ructure to which is attached all the information 
about a numerical-value term, like (X A B), that has been 
computed in t,he past, and whose values are being kept 
track of. (There must be an indexing scheme to get YOU 

from the object A to this memterm, but I will neglect this 
issue.) 

Data dependencies run between “propositional” objects 
(objects that have a truth value). Memterms are not 
propositional, but they have several propositional e&ties 
associated with them: 

e Weak values (u*vals): zero or more assertions 
about intervals this mcmterm lies in. The 
intersection of the intervals for all IN wvals 
must be non-empty, and represents the “current 
value” of the memterm. If there are no wvals, 
then the memterm has some (large) default fuzz 
as value. The default for a scale might be [0, 
lOOOO]; for a position, [-10000, lOOOO]. 

0 Strong values (svnls): zero or more assertions 
about the narrowest interval this term is known 
to lie in. At most one may be IN at a time, and 
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its interval must be the current value of the 
memterm (the intersection of the IN wvals’ 
values). 

o Others to be described below. 

From the RMS’s point of view, propositional objects are 
called “ddnodes,” and are thought of merely as things to 
attach data-dependency notes to, and to slap IN or OUT 
labels on. This abstraction, due to Jon Doyle, permits the 
RMS to handle a wide variety of assertion types, and not to 
be committed to any particular format for them. It raises 
the following problem, though: how can the RMS know how 
to do the bookkeeping (e.g., assertion indexing) associated 
with bringing a ddnode IN or OUT? Doyle’s answer was to 
provide each ddnode with a “signal function,” which is 
called by the RMS whenever a node changes label. The 
signal function knows how to do bookkeeping, so the RMS 
doesn’t have to. 

So wvals, svals, and other propositional objects are 
implemented as ddnodes, with signal functions to do their 
bookkeeping. These ddnodes can support other ddnodes, 
that also have signal functions. For instance, AE[5,6] might 
support A>4. If the wval is erased, the signal function for 
A >4 might ask to recompute A, see if A>4 is still true, 
and if so, resupport it with the new wval. 

Whenever the RMS adjusts the IN/OUT labels, signal 
functions will go off all over the data base, like popcorn (or 
like “demons,” [Charniak 721). For instance, suppose we 
have three ddnodes like those in Figure 

Nl (INCOME FRED) E [60000, lOOOOO] 

i 
N2 (INCOME FRED) > 50000 

I 
N3 (RICH FRED) 

Figure 2-P: Nodes Being Updated 

The signal function Fl for Nl might say: If I go OUT, 
free my storage. The function F2 for N2 might say, If I go 
OUT, recompute (INCOME FRED) and resupport me if 
necessary. The function F3 for N3 might say, If I go OUT, 
remove me from the data base. 

Suppose Nl goes OUT. Then all three signal functions 
get called. The resulting chaos could cause inefficiency or 
even error. Suppose F3 goes first, and unindexes N3. Then 
F2 might decide N2 should be IN after all, which would 
require 1~3 to be re-indexed. 

The solution is for most signal functions to do nothing 
immediately, but queue up functions to do the real work on 
a system of queues (or ‘{agendas”) with different priorities. 
In the example, F2 should get higher priority than F3. 
That way, by the time F3 runs, F2 may have already 
patched things up so that F3 need do nothing. One way to 
think about this (due to David McAllester [McRllester 821) 
is that each queue maintains an “invariant,” an assertion 
that is true when the queue is empty, as it normally is. 
Lower-priority queues can thus assume the invariants 
associated with higher-priority queues. F3 can assume that 

“all OUT inequalities are really unsupported,” because 

signal functions like F2 have ensured this. Intuitively, the 
job of a queued function is to bring its queue’s invariant 
“closer” to being true. When the queue is empty, the 
invariant is true. 

A large part of applying a data-dependency system is 
choosing queue priorities. In particular, for the application 
at hand, we are going to need a queue level at which signal 
functions can call for memterms to be recomputed. 
Recomputation can mean two things: re-applying existing 
derivations, or finding new ones. I will say more about this 
shortly. 

with a Figure 2-2 shows the ddnodes associated 
memterm. ~ed.etb 
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Figure 2-2: Derivation and Wvals 

I use a triangular node for an active derivation, that is, one 
that has been generated and stored in a memterm. The 
inputs are connected to the base of the triangle, the output 
to its apex. A derivation is an assertion (i.e., it looks like a 
ddnode to the RI\/IS), which connects memterms. 
Memtcrms have wvals, which are also assertions. A wval 
will be supported by a dd-note which includes the 
derivation used to compute it. 

In addition to the ddnodes shown in the figure, there are 
some other useful propositional entities associated with 
memtcrms. First, we need a ddnode, the derivedness-node, 
which asserts that every useful derivation is IN. We need a 
second ddnode, the completeness-stode for the memterm, 
which asserts that every IN derivation is actually 
contributing a wval. In addition, the completeness node 
depends on the the derivedness node. 

Maintaining the derivedness ddnode is the responsibility 
of the modules using the memterm system. The first time 
the value of a memterm is asked for, all its derivations are 
found (usually heuristically), and the derivedness node is 
brought IN. It usually stays in from then on, but outside 
modules can force it OUT if they become aware of new 
derivations. 

Maintaining the completeness ddnode is the responsibility 
of the memterm system itself. Whenever a new wval is 
added to a memterm, then all of the memterms that are 
derived from it are marked “incomplete.” That is, their 
completeness node are forced OUT. Whenever the value of 
a memterm is sought, if it is incomplete, then its 
derivations are used to re-derive new wvals, and it is 
marked complete again. 

Note that this ddnode is being used essent,ially 
Boolean flag. Why not just use a Boolean, and save 

as a 
some 



storage? Because a ddnode can participate in data 
dcpcndcncies; that is, it can support other propositional 
till ities. In the present context, the main propositional 
entity is the strong value (“sval” ). Most memterms will not 
have a strong value most of the time, but if one is needed, 
WC create a ddnode for it, and support that ddnode with 
the extant wvals, plus the completeness node for the 
mcmtcrm. 

Normally, not much happens when a wval or sval goes 
OUT. But. it is simple in this system to attach a signal 
function to a ddnode, such as an inequality, supported by 
such a value. Such a signal function can ask that an 
attempt to recompute the memterm be made. The result 
will be that all wvals will be up to date, the completeness 
node will be brought IN again, and, if necessary, a new sval 
will be created. 

The user of a numerical inference system usually does not 
want to perceive it as numerical as such. He would rather 
treat an inequality as just another assertion. In the classic 
treat’mcnts of data dependencies [Doyle 79, deKleer 771, it is 
assumed that all likely proofs for an assertion are 
represented explicitly. If any is unsatisfied, then the 
assertion should be deleted. This is, of course, not true for 
beliefs about quantities, which often have an infinite 

number of equally reasonable potential proofs. X > 4 may 
be believed because X = 5, or X E[6,7], or . . . . We cannot 
generate all possible proofs, but would like to make it look 
to many inference programs as if that’s exactly what 
happens. 

This suggestIs organizing the queue hierarchy as follows: 

High priority: recomputation of t*crms supporting 
important inequalities 

Intermediate priority: User’s queue levels 
,.... 

Low priority: Storage allocation; in particular, 
reclaiming storage of OUT ddnodes 

The reason for giving term recomputation a high priority 
is so 1 hat a term will be recomput,ed if possible before 
anyone examines it. This allows us to simulat,e keeping an 
infinite number of potential of proofs around, because the 
recomputer will look for another IN proof on demand. The 
user’s code can then always assume the invariant “If 
inequality is OIJT then there is no reason to believe it.” 

The reason to put storage reclamation at such a low 
priority level is to allow “experimenting” with the data 
base. The user may wish to try various hypotheses before 
adopting a final one. During this experimentation, ddnodes 
may temporarily become “dead,” that is, OUT a,nd not 
supporting anything. By “locking” the low-priority queue, 
we can postpone garb age-collecting these nodes u&i1 they 
are worthless for certain. 

3. Resnlts sncl Conelusions 
The code for this system has been written, and is in the 

process of being debugged. It is written in NISP, a portable 

JLJSP macro pacJ;age that runs in ZetaLisp, ILJSP, Franz, 
and T. For now, the most likely host dialect is T, a 
Sclacmc-like Lisp that runs on Apollos and Vaxes. 

Data-dependency notes have a mixed reputation. h4ost 
people appreciate the need for a flexible method of 

updating a data base. Jlowever, they have trouble seeing 
exactly how deprndency notes meet this need. Some of the 
literature (e.g., [Doyle 79, deKleer 771) seems to imply that 
data dependencies can, by making and retracting 
assumptions, take over most of the control structure of a 
practical program. This is unlikely for all but t,he simplest 
applications. In practice, data dependencies are simply one 
tool among many, which perform two tasks quite well: 
erasing beliefs that are no longer justified, and queueing 
“signal functions” to rethink t,heir justifications. The 
conclusion of the present paper is that this ability extends 
naturally to beliefs involving numbers, specifically, beliefs 
about the intervals quantities lie in. 
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