
DATA DEPENDENCIES
ON INEQUALITIES

Drew McDermott

Department of Computer Science
Yale University

A6stract: Numerical inequalities present new challenges to
data-base systems that keep track of “dependencies,” or
reasons for beliefs. Care must be taken in interpreting an
inequality as an assertion, since occasionally a %trongn
interpretation is needed, that the inequality is best known
bound on a quantity. Such inequalities often have many
proofs, so that the proper response to their erasure is often
to look for an alternative proof. Fortunately, abstraction
techniques developed by data-dependency theorists are
robust enough that they can be extended fairly easily to
handle these problems. The key abstractions involved are
the “ddnode,” an abstract assertion as seen by t,he data-
dependency system, and its associated “signal function,”
which performs indexing, re-deduction, and garbage-
collection functions. Such signal functions must have
priorities, so that they don’t clobber each other when they
run.

1. The Problem
Programs in the field of artificial intelligence often deal

with sophisticated (if small) data bases. These data bases
can contain predicate-calculus formulas of greater-than-
usual complex&y, and often perform deductions of new
formulas. Such a data base is used to keep track of an
evolving problem solution, during which tentative
assumptions are made and withdrawn. Since the data base
is responsible for routine deductions, it ought to be
responsible for undoing them when assumptions change.

A useful mechanism for aiding this process is the
data-dependency note, a record of the reasons for belief in a
formula. In the simplest case, the dependency note records
that a formula follows from a set of other formulas. The
note is usually diagrammed as a circular node, with arcs
from the ju,t;fying beliefs to the node, and an arrow from
the node to the supported belief, or &tifo’cand. See Figure
l-l.

When the justificand is inferred, it is the responsibility of
the “inference engine” to record this dependency. When a
justifier is erased, the justificand must be erased as well,
unless there is an independent justification for it. Detecting
this is done by a reason maintenance system
(RMS). [Doyle 801 A no th er subtlety is that a belief may
depend on the absence of another belief. More on this
below.

*This work was supported by the National Science Foundation under
contract MCS-8203030

Figure l-l: A Data-Dependency Note

Special problems are raised when you try to extend these
methods to numerical inequalities. Such inequalities arise in
the domains of spatial and temporal reasoning. Often a
series of facts about objects and events can be captured as
a set of fuzzy maps, in which the coordinates (and other
parameters) of objects are known to within an interval.
For instance, if an event E2 occurs between 5 and f3 hours
after event El, we can record that the T coordinate of E2
in the frame of El is [5,6]. (Assuming the scale of El is “1
hr per time unit.“) I will write such “coordinate terms” as
(T E2 El).

The coordinate values interface to other facts in a natural
way. For instance, (T E2 El) = [5,6] may have been

inferred from these facts: (1) El is the beginning of a
painting episode EP. (2) E2 is the end of EP. (3) Paint
takes between 5 and 6 hours to dry. And, in turn, from (T
E2 E1)=[5,6], we may infer other facts, like this: If El
occurs at 4 o’clock, then E2 will occur after sunset.

I call a statement like (T E2 El) = [5,6] a term due
statement. (I will focus on terms of the form (parameter
object frame) in this paper, but many of the same
considerations apply to terms computed from these, like
(DISTANCE A B FRAME).)

The standard RMS algorithms are inadequate to update
data bases involving term-value statements. The problem
is that RMS algorithms simply decide whether to keep or
delete a belief. In the case of an inequality, it is often
worthwhile to invest some effort in recomputing the
quantities involved, and see if the inequality is still true. If
it is, everything it supports can stay around.

Another problem is the logical status of term-value
statements. We can distinguish “weak” and “strong”
int,erpretations of such a statement. The weak
interpretation of P=[l,h] is that the true value of P lies in
the interal [I, h]. (In most applications, it is irrelevant
whether the endpoints are included in this interval, except
for point intervals.) The strong interpretation is that no

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

narrower interval call be inferred. Weak interpretations are
more common, but there are cases that require the strong
interpretation.

Strong term-value statements are closely intertwined with
non-monotonic inference. A strong statement depends
upon the ubsence of any more informative weak value
statement about the same term.

As I mentioned, such dependency nets have already been
investigated. They may be diagrammed by adding “signs”
to the arcs from justifiers, indicating the sense of the
dependency. For instance, Figure indicates that C is
believed (“IN”) if A is IN and B is absent from the data
base (“OUT”).

But the relationship between weak and strong values
cannot be handled like- this, because there are potentially an
iufinite number of weak values that could impact on a

Figure 1-2: A Non-Monotonic Data-Dependency Note

strong value.

The final problem to describe is the origin of term-value
statements. JVe can distinguish two sources: computational
and non-computational. The former label applies to term
values compu-ted from other term values; the latter, to all
other inferences. A computational inference involves a fact
of the form

to = f(t*, . . . I tJ

where t,,..., t,, are numerical-valued terms, and f is a
#U

computable function. I will use the word derivalkon for
such an equality. Note that a typical equality gives rise to
several derivations. E.g., A=B+C gives rise to three:

A=B+C
B=A-C
C=A-B

I will not worry about generating derivations from other
equalities, but just assume derivations are generated in this
form when required.

Derivations are like St,eele and Sussman’s
“constraints” [Sussman 801 with one important difference:
they are supposed to be applied using interval arithmetic.
That is, if B=[3,4] and C=[-2,-l], then from the derivation
A=B+C, we can infer A=[1,3].

In general, nothing prevents the creation of circular
derivations, which may be difficult to make use of. Such a
derivation cannot be used by substituting value of right-
hand side quantities, but may require solving simultaneous
equations. In this paper, I will assume that such derivations
do not arise; that is, that the only circular derivation that
can be obtained by substitution is of the form A=A. This
is a reasonable assumption in our spatial-reasoning domain,

where drrivations come from coordinate transformations,
which do have this property. If you translate the X
coordinate of A from one frame to another and back, you
wind up with the term you started with.

The spatial-reasonin, w domain is simpler in this respect,
but more complex in others. One complexity is that there
are in the abstract an infinite number of derivations for a
term; any term can be derived from the value of that term
in another frame of reference, plus the values of the relative
coordinates of the two frames. Even in one dimension, we
have

(X A F1) = (X A Fp) (SCALE F, F1) + (X F, FF,)

for all objects A and refercncc frames F, and F,. But at
any time, most such derivations will give useless answers
(very wide intervals). We must provide heuristic means of
finding good derivations of a quantity.

In summary, therefore, our problems are these:

1. Avoiding erasing inequalities after minor
recomputat~ion

2. Managing the non-mouotonic relationship
between weak and strong term-value
statements.

3. Keeping track of useful derivations of
quantities.

I should point out that none of these problems is found
only in numerical inference. The methods described here
may be adaptable to other applications. But the numerical
situation makes the problems obvious and urgent.

2. §01ud;i0n
The solution is more a matter of careful bookkeeping

than blinding insight. Many of the techniques needed are
already known from t,he work of Doyle and McAllester.
The trick is to stack up the layers of abstraction just right.

One abstraction we need is the memory term (memterm),
a data st,ructure to which is attached all the information
about a numerical-value term, like (X A B), that has been
computed in t,he past, and whose values are being kept
track of. (There must be an indexing scheme to get YOU

from the object A to this memterm, but I will neglect this
issue.)

Data dependencies run between “propositional” objects
(objects that have a truth value). Memterms are not
propositional, but they have several propositional e&ties
associated with them:

e Weak values (u*vals): zero or more assertions
about intervals this mcmterm lies in. The
intersection of the intervals for all IN wvals
must be non-empty, and represents the “current
value” of the memterm. If there are no wvals,
then the memterm has some (large) default fuzz
as value. The default for a scale might be [0,
lOOOO]; for a position, [-10000, lOOOO].

0 Strong values (svnls): zero or more assertions
about the narrowest interval this term is known
to lie in. At most one may be IN at a time, and

267

its interval must be the current value of the
memterm (the intersection of the IN wvals’
values).

o Others to be described below.

From the RMS’s point of view, propositional objects are
called “ddnodes,” and are thought of merely as things to
attach data-dependency notes to, and to slap IN or OUT
labels on. This abstraction, due to Jon Doyle, permits the
RMS to handle a wide variety of assertion types, and not to
be committed to any particular format for them. It raises
the following problem, though: how can the RMS know how
to do the bookkeeping (e.g., assertion indexing) associated
with bringing a ddnode IN or OUT? Doyle’s answer was to
provide each ddnode with a “signal function,” which is
called by the RMS whenever a node changes label. The
signal function knows how to do bookkeeping, so the RMS
doesn’t have to.

So wvals, svals, and other propositional objects are
implemented as ddnodes, with signal functions to do their
bookkeeping. These ddnodes can support other ddnodes,
that also have signal functions. For instance, AE[5,6] might
support A>4. If the wval is erased, the signal function for
A >4 might ask to recompute A, see if A>4 is still true,
and if so, resupport it with the new wval.

Whenever the RMS adjusts the IN/OUT labels, signal
functions will go off all over the data base, like popcorn (or
like “demons,” [Charniak 721). For instance, suppose we
have three ddnodes like those in Figure

Nl (INCOME FRED) E [60000, lOOOOO]

i
N2 (INCOME FRED) > 50000

I
N3 (RICH FRED)

Figure 2-P: Nodes Being Updated

The signal function Fl for Nl might say: If I go OUT,
free my storage. The function F2 for N2 might say, If I go
OUT, recompute (INCOME FRED) and resupport me if
necessary. The function F3 for N3 might say, If I go OUT,
remove me from the data base.

Suppose Nl goes OUT. Then all three signal functions
get called. The resulting chaos could cause inefficiency or
even error. Suppose F3 goes first, and unindexes N3. Then
F2 might decide N2 should be IN after all, which would
require 1~3 to be re-indexed.

The solution is for most signal functions to do nothing
immediately, but queue up functions to do the real work on
a system of queues (or ‘{agendas”) with different priorities.
In the example, F2 should get higher priority than F3.
That way, by the time F3 runs, F2 may have already
patched things up so that F3 need do nothing. One way to
think about this (due to David McAllester [McRllester 821)
is that each queue maintains an “invariant,” an assertion
that is true when the queue is empty, as it normally is.
Lower-priority queues can thus assume the invariants
associated with higher-priority queues. F3 can assume that

“all OUT inequalities are really unsupported,” because

signal functions like F2 have ensured this. Intuitively, the
job of a queued function is to bring its queue’s invariant
“closer” to being true. When the queue is empty, the
invariant is true.

A large part of applying a data-dependency system is
choosing queue priorities. In particular, for the application
at hand, we are going to need a queue level at which signal
functions can call for memterms to be recomputed.
Recomputation can mean two things: re-applying existing
derivations, or finding new ones. I will say more about this
shortly.

with a Figure 2-2 shows the ddnodes associated
memterm. ~ed.etb

3 A G c 1) 33 -b-l

c

‘3
Figure 2-2: Derivation and Wvals

I use a triangular node for an active derivation, that is, one
that has been generated and stored in a memterm. The
inputs are connected to the base of the triangle, the output
to its apex. A derivation is an assertion (i.e., it looks like a
ddnode to the RI\/IS), which connects memterms.
Memtcrms have wvals, which are also assertions. A wval
will be supported by a dd-note which includes the
derivation used to compute it.

In addition to the ddnodes shown in the figure, there are
some other useful propositional entities associated with
memtcrms. First, we need a ddnode, the derivedness-node,
which asserts that every useful derivation is IN. We need a
second ddnode, the completeness-stode for the memterm,
which asserts that every IN derivation is actually
contributing a wval. In addition, the completeness node
depends on the the derivedness node.

Maintaining the derivedness ddnode is the responsibility
of the modules using the memterm system. The first time
the value of a memterm is asked for, all its derivations are
found (usually heuristically), and the derivedness node is
brought IN. It usually stays in from then on, but outside
modules can force it OUT if they become aware of new
derivations.

Maintaining the completeness ddnode is the responsibility
of the memterm system itself. Whenever a new wval is
added to a memterm, then all of the memterms that are
derived from it are marked “incomplete.” That is, their
completeness node are forced OUT. Whenever the value of
a memterm is sought, if it is incomplete, then its
derivations are used to re-derive new wvals, and it is
marked complete again.

Note that this ddnode is being used essent,ially
Boolean flag. Why not just use a Boolean, and save

as a
some

storage? Because a ddnode can participate in data
dcpcndcncies; that is, it can support other propositional
till ities. In the present context, the main propositional
entity is the strong value (“sval”). Most memterms will not
have a strong value most of the time, but if one is needed,
WC create a ddnode for it, and support that ddnode with
the extant wvals, plus the completeness node for the
mcmtcrm.

Normally, not much happens when a wval or sval goes
OUT. But. it is simple in this system to attach a signal
function to a ddnode, such as an inequality, supported by
such a value. Such a signal function can ask that an
attempt to recompute the memterm be made. The result
will be that all wvals will be up to date, the completeness
node will be brought IN again, and, if necessary, a new sval
will be created.

The user of a numerical inference system usually does not
want to perceive it as numerical as such. He would rather
treat an inequality as just another assertion. In the classic
treat’mcnts of data dependencies [Doyle 79, deKleer 771, it is
assumed that all likely proofs for an assertion are
represented explicitly. If any is unsatisfied, then the
assertion should be deleted. This is, of course, not true for
beliefs about quantities, which often have an infinite

number of equally reasonable potential proofs. X > 4 may
be believed because X = 5, or X E[6,7], or We cannot
generate all possible proofs, but would like to make it look
to many inference programs as if that’s exactly what
happens.

This suggestIs organizing the queue hierarchy as follows:

High priority: recomputation of t*crms supporting
important inequalities

Intermediate priority: User’s queue levels
,....

Low priority: Storage allocation; in particular,
reclaiming storage of OUT ddnodes

The reason for giving term recomputation a high priority
is so 1 hat a term will be recomput,ed if possible before
anyone examines it. This allows us to simulat,e keeping an
infinite number of potential of proofs around, because the
recomputer will look for another IN proof on demand. The
user’s code can then always assume the invariant “If
inequality is OIJT then there is no reason to believe it.”

The reason to put storage reclamation at such a low
priority level is to allow “experimenting” with the data
base. The user may wish to try various hypotheses before
adopting a final one. During this experimentation, ddnodes
may temporarily become “dead,” that is, OUT a,nd not
supporting anything. By “locking” the low-priority queue,
we can postpone garb age-collecting these nodes u&i1 they
are worthless for certain.

3. Resnlts sncl Conelusions
The code for this system has been written, and is in the

process of being debugged. It is written in NISP, a portable

JLJSP macro pacJ;age that runs in ZetaLisp, ILJSP, Franz,
and T. For now, the most likely host dialect is T, a
Sclacmc-like Lisp that runs on Apollos and Vaxes.

Data-dependency notes have a mixed reputation. h4ost
people appreciate the need for a flexible method of

updating a data base. Jlowever, they have trouble seeing
exactly how deprndency notes meet this need. Some of the
literature (e.g., [Doyle 79, deKleer 771) seems to imply that
data dependencies can, by making and retracting
assumptions, take over most of the control structure of a
practical program. This is unlikely for all but t,he simplest
applications. In practice, data dependencies are simply one
tool among many, which perform two tasks quite well:
erasing beliefs that are no longer justified, and queueing
“signal functions” to rethink t,heir justifications. The
conclusion of the present paper is that this ability extends
naturally to beliefs involving numbers, specifically, beliefs
about the intervals quantities lie in.

ACKNO’l?LEDGEMENTS: Thanks to Rod McGuire for a
lot of ideas.

[Charniak 721

[deKleer 771

[Doyle 791

[Doyle SO]

[McAllester 821

[Sussman 801

References

Charniak, E.
Towards a Model of Children ‘6 Story

Comprehension.
Technical Report 266, MIT Artificial

Intelligence Lab, 1972.

de Kleer, Johan, Doyle, Jon, Steele, Guy
L., and Sussman, Gerald J.
Explicit control of reasoning.
Memo 427, MIT AI Laboratory, 1977.
Also in Proc. Con f. on AI and Prog. Lang.

Rochester, which appeared as
IsIGART Newsletter no. 64, pp.
116-125.

Doyle, J.
A truth maintenance system.
Artificial Intelligence 12:231-272, 1979.

Doyle, Jon.
A model for deliberation, action, and

introspection.
TR 581, MIT AI Laboratory, 1980.

McAllester, David.
Reasoning Utility Package User's

Manual, Version One.
Memo 667, MIT AI Laboratory, 1982.

Sussman, G.J. and Steele, G.L.
CONSTRAINTS -- A Language for

Expressing Almost-Hierarchical
Descriptions.

Artificial Intelligence 14(l):l-39, August,

