
KRYPTON: Integrating Terminology and Assertion

Ronald J. Brachman
Fairchild Laboratory for Artificial Intelligence Research

Richard E. Fikes
Xerox Palo Alto Research Center

Hector J. Levesque
Fairchild Laboratory for Artificial Intelligence Research

Abstract

The demands placed on a knowledge representation scheme by a knowl-
edge-based system are generally not all met by any of today’s can-

didates. Representation languages based on frames or semantic net-
works have intuitive appeal for forming descriptions but tend to have
severely limited assertional power, and are often fraught with am-

biguous readings. Those based on first-order logic are less limited
assertionally, but are restricted to primitive, unrelated terms. We have
attempted to overcome these limitations in a new, hybrid knowledge
representation system, called “KRYPTON”. KRYPTON has two rep-
resentation languages, a frame-based one for forming domain-specific

descriptive terms and a logic-based one for making statements about
the world. We here summarize the two languages, a functional inter-
face to the system, and an implementation in terms of a taxonomy of

frames and its interaction with a first-order theorem prover.

$1 Introduction

Each of the currently predominant styles of knowledge represen-

tation seems less than perfect when confronted with the wide range
of tasks required of a representation system 121. For example, frame-
like structures are quite popular, but are often imprecisely specified,
have limited assertional capabilities (e.g., they tend to be limited to
‘instantiation’ and defaults), and tend to allow accidental assertions
associated with the mere presence or absence of data structures [l].
Logic-based systems are usually more precise and address a much wider
range of assertional capabilities, but are limited to primitive, indepen-
dent predicates; this limitation makes it impossible to syntactically
compose new predicates out of old ones.

A productive view would seem to embrace both styles of repre-
sentation in an attempt to capitalize on the strong points of each. Over
the past year, we have been designing and implementing an experimen-
tal knowledge representation system-called “KRYPTON’‘-with ex-

actly this goal in mind.

While the general idea of a hybrid system is not new, KRYPTON is
not typical of the predicate calculus/semantic net marriages attempted
before. It does not encode logical assertions in network form (as in
14)) nor does it use simultaneous predicate calculus and network rep-
resentations of the same facts (as in [3] and [12]). Instead, KRYPTON

distinguishes between terminological structure, expressed in a frame-
like taxonomic style, and assertion, expressed in a form of predicate
calculus. This distinction yields two main components for our repre-

sentation system: a terminological one (or ‘TBox’) and an assertional

one (or ‘ABox’). The TBox allows us to establish taxonomies of struc-
tured terms and answer questions about analytical relationships among
these terms; the ABox allows us to build descriptive theories of domains
of interest and to answer questions about those domains.

Given its division of representational labor, KRYPTON can afford
to take a strict view of the constructs in the two languages. The ex-
pressions in the TBox language are used as structured descriptions, and
have no direct assertional import. Moreover, the ABox language is used
strictly for assertions and even universally quantified bi-conditionals
have no special definitional import. In what follows, we will describe

in more detail the TBox and ABox languages, the operations that
are available in KRYPTON and how these operations are being imple-
mented.

$2 Two languages for representation

The two components in KRYPTON reflect the two kinds of expres-

sions it uses to represent knowledge-(nominal) terms and sentences.
The TBox contains the formal equivalent of indefinite noun phrases

such as “a person with at least 3 children”, and understands that this
expression is subsumed by (the formal version of) “a person with at
least 1 child”, and is disjoint from “a person with at most 1 child”.
The subsumption and disjointness relationships among these terms are
based only on their structure and not on any (domain-dependent) facts.
The ABox, on the other hand, operates with the formal equivalent of
sentences such as “Every person with at least 3 children owns a car”,
and understand the implications (in the logical sense) of an assertion
such as this one. Here we review the formal constructs that make up
the TBox and ABox languages.

2.1 The language of the terminological component

Our TBox language attempts to capture the essence of frames with-
in a compositional and strictly definitional framework, without the

ambiguities and possible misinterpretations common in existing frame
languages.’ In particular, the TBox supports two types of expressions:
Concept expressions, which correspond roughly to frames, and Role

expressions, the counterparts of slots. Thus, the language is defined by
a small set of Concept- and Role-forming operators.

In general, Concepts and Roles are formed by combining or restrict-
ing other Concepts and Roles. For example, the language includes an

‘The TBox is, in large part, a distillation of KL-ONE [13], which accounts for our
use below of terms like “value restriction” and “differentiation”.

31

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

operator ConjGenerIc (‘conjoined generic’). which takes auy num-
ber of Concepts, and forms the Concept corresponding to their con-
junction. This operator could be used to define the symbol2 bachelor
by assigning it the expression (ConjGeneric unmarried-person man)
(assuming that the symbols unmarried-person and man had appropriate
definitions as Concepts).

Concepts can also be formed by restricting other Concepts using

Roles. For example, KRYPTON has a VRGeneric (‘value-restricted
generic’) operator that takes a Concept cl, a Role r, and a Concept
cz, and yields the term meaning “a cl all of whose r’s are Q’S”, as in
(VRGeneric person child bachelor) for “a person all of whose children

are bachelors”. The language also has an NRGeneric (‘number-restric-

ted generic’) operator that restricts the cardinality of the set of fillers
for a given Role, as in (NRGeneric person child 1 3) for “a person
with at least 1 and not more than 3 children”.

Roles, like Concepts, can be defined as specializations of other Roles.

One basic Role specialization operator VRDWRoie (‘value-restricted
differentiation’), takes a Role r and a Concept c, and defines the deriva-
tive Role corresponding to the phrase “an r that is a c”. Thus, this
operator would be appropriate for defining son, given already defined

terms child (a Role) and man (a Concept), as (VRDiffRole child man).
Another Role-forming operator, RoleChain, allows Roles to be func-
tionally composed so that (RoleChain parent brother-in-law) could be
used as the definition of uncle.

All of the term-forming operators can be composed in the obvious
way, as in, for example,

(VRGeneric (ConjGeneric unmarried-person man)
(VRDiffRole sibling man)
(NRGeneric person (RoleChain child child) 1 co)).

This expression can be read as “a bachelor whose brothers have grand-
children” or, more literally, “an unmarried person and a man all of

whose siblings that are men are persons whose children have, among

them, between 1 and co children”.

In many domains one wants to be able to give necessary but not

sufficient conditions for a definition. To this end, KRYPTON includes
facilities for specifying ‘only-if’ definitions. The PrimGeneric and
PrimRole operators are used to form primitive specializations of a
Concept or Role. A primitive Concept is one that is subsumed by its
superconcept, but where no sufficient conditions are given for deter-
mining if something is described by it. However, two primitive sub-
Concepts of a Concept are not by definition disjoint nor do they neces-
sarily exhaust that Concept. To introduce a pair of Concepts (or Roles)
that do have these properties, the KRYPTON decomposition operators
(DecompGeneric or DecompRole) would be used.

To see how some of the TBox operators relate to a more traditional
language of frames, consider the following description of a family (in a
hypothetical ‘framese’):

2As we will describe below, expressions can be assigned as definitions to atomic
symbols. This use of defined symbols, however, is purely for the convenience of
the user.

faam i!Jr :
lea social-structure

pi

Taking this frame as a description of “a social structure with, among
other things, a father who is a man, a mother who is a woman, and
some number of children, all persons”, we might express it in KRYP-

TON as

(PrimGeneric (ConjGeneric

(NRGeneric (VRGeneric social-structure father man)
father 1 1)

(NRGeneric (VRGeneric social-structure mother woman)
mother 1 1)

(VRGeneric social-structure child person))).

We have considered a wide range of operators for the TBox lan-

guage; the principal ones in the current version are summarized in
Table 1.

Expression Interpretation Description
Concepts:
(ConjGeneric cl . . . e,) “a el and . . . and a c,,” conjunction
(VRGeneric cl r ~2) “a er any r of which is a es* value restriction
(NRGeneric e r nl rz2) “a c with between nr and n2 r’s” number restriction
(PrimGeneric c i) “a e of the i-th kind” primitive Concept
(DecompGeneric c ii “a c of the i-th type from the decomposition

disjoint?) j-th [disjoint] decomposition”
Roles:
(VRDiflRole c r) “an r that is a c” differentiation
(RoleChain rl . . . r,) Uan rn of . . . of an rrn composition
(PrimRole r i) “an r of the k-th kind” primitive Role
(DecompRole r i J’ “an r of the Cth type from the decomposition

die joint?) j-th [disjoint] decomposition”

T&e 1. The TBox Language.

2.2 The language of the assertional component

As with the expressions of the TBox language, the sentences of the
ABox language are constructed compositionally from simpler ones. The
concerns behind the choice of sentence-forming operators, however, are
quite different from those motivating the ones for forming TBox terms.
As discussed in [2], the issue of expressive power in an assertional rep-
resentation language is really the issue of the extent to which incom-
plete knowledge can be represented. Moreover, this issue can be seen
to motivate the standard logical sentential constructs of disjunction,
negation and existential quantification (see also 191). So to provide the
ability to deal systematically with incomplete knowledge and to com-
pensate for the fact that the TBox has been purged of any assertional
ability, our ABox language is structured compositionally like a first or-
der predicate calculus language. In other words, the sentence-forming
operators are the usual ones: Not, Or, ThereExists, and so on.

The major difference between our ABox language and a standard
first order logical one lies in the atomic sentences. The non-logical
symbols of a standard logical language-that is, the predicate symbols
(and function symbols, if any)-are taken to be independent, primitive,

32

domain-dependent terms. In our case, there is already a facility for
specifying a collection of domain-dependent terms, namely the TBox.
Our approach, therefore, is to make the non-logical symbols of the ABox
language be the terms of the TBox language. As observed by Hayes [5]
and Nilsson [lo], when the language of frames and slots is ‘translated’

by

ABox: TELL: KB >(SENTENCE --c KB

Sentence is true.

ASK: KB x SENTENCE + {yes, no, unknown}

18 sentence true?
into predicate calculus, the frames and slots become one- and two-
place predicates respectively. The main difference between what they
are suggesting and what we have done is that our predicates are not
primitive but are definitionally related to each other (independent of
any theory expressed in the ABox language).3

As for the TBox, the TELL operation takes a symbol and associates it
with a TBox term (Concept or Role expression). The effect is to change
the knowledge base into one whose vocabulary includes the symbol,
defined by the term. We have focused on two ASKoperations: the first
asks whether one TBox term subsumes another, and the second whether

one TBox term is conceptually disjoint from another. Schematically,
this gives us

$3 Operations on the components
TBox: TELL: KB X SYMBOL X TERM + KB

Overall, the structure of KRYPTON can be visualized as in Figure

1: a TBox of roughly KL-ONGish terms organized taxonomically, an
ABox of roughly first-order sentences whose predicates come from the
TBox, and a symbol table maintaining the names of the TBox terms so
that a user can refer to them. However, this is a somewhat misleading
picture since it suggests that users can manipulate these structures
directly. In fact, a user does not get access to either a network in the
TBox or to a collection of sentences in the ABox. What a user does get
instead is a fixed set of operations over the TBox and ABox languages.
All interactions between a user and a KRYPTON knowledge base are
mediated by these operations.

By symbol, I mean term.

ASKI: KB x TERM X TERM + {yes, no}

Doea term1 subsume term27

ASK:!: KB x TERM x TERM -+ {yes, no}

Is terrnl disjoint Jrom term27

The TBox ASK operations allow a user to inquire about the meaning of
the domain-dependent terms being used (without also folding in what
is known about the world). In addition, the ABox uses these operations
to understand the non-logical terms in the sentences it processes.

Of course there have to be additional ASK operations on a knowl-
edge base. For instance, the ones that we have mentioned so far provide
no way of getting other than a yes/no answer. In the case of the ABox,
we have to be able to find out what individuals have a given property;
in the TBox, there has to be some way of getting the information from
the definitions that is not provided by the subsumption and disJointness
operations (e.g., the fact that the number of angles of a triangle is

TI!OX

necessarily 3).

It is important to stress that the service provided by KRYPTON as a

knowledge representation system is completely specified by a definition
of the TELL and ASK operations. In particular, the notions of a
taxonomy or a set of first-order clauses in normal form are not part of
the interface provided by the system 4 The actual symbolic structures

used by KRYPTON to realize the TELL and ASK operations are not

available to the user. While it might be useful to think of a knowledge
base as structured in a certain way, this structure can only be inferred
from the system’s behavior. One might consider new operations that
allow finer-grained distinctions to be made among knowledge bases,5
allowing even more of its structure to be deduced, but again it will be
the operations that count, not the data structures used to implement
them.

One interesting property of this approach to knowledge representa-
tion is that there is a difference conceptually between what a system
can be told (involving expressions in the language used as arguments
to TELL) and what it has to actually remember (involving data struc-
tures in the implementation language). This allows us to consider an

41n [s], we present a definition of TELL and ASK that is completely independent
of how the knowledge is represented in a knowledge base and is based instead on
the set of worlds that are compatible with what is known.

‘One possibility, for example, is an ABox ASK operator that only performs some
form of limited inference over what is known.

Figure 1. KRYPTON overview.

The operations on a KRYPTON knowledge base can be divided into
two groups: the TELL operations, used to augment a knowledge base,
and the ASK operations, used to extract information. In either case,
the operation can be definitional or assertional.

In terms of the ABox, the TELL operation takes an ABox sentence
and asserts that it is true. The effect, roughly speaking, is to change
the knowledge base into one whose theory of the world implies that
sentence. The corresponding ASK operation takes a sentence and asks
if it is true. The result is determined on the basis of the current theory
held by the knowledge base and the vocabulary used in the sentence, as
defined in the TBox. Schematically, we can describe these operations

3The status of function symbols and predicate symbols with more than two argu-
ments is unclear at present. There is no problem incorporating them as primitive8
into the ABox language; the issue is what facilities there should be for relating
them definitionally to other terms in the TBox.

33

interface notation that is, in some sense, more expressive than the im-

plementation one, provided that the diflerence can be accounted for in
in efficiency over simply asserting the meaning postulates as aMoms~T

To this end, we are developing extensions of standard inference rules
that take into account dependencies among predicates derivable from
TBox definitions.

the translation. In [S], a modal ‘auto-epistemic’ language is used to
supply arguments to TELL and yet the resulting knowledge is always
represented in first-order terms.

For example, the reasoning of a standard resolution theorem prover
depends on noticing that an occurrence of @(z) in one clause is incon-
sistent with 1 $(z) in another. Given that realization, the two clauses
can be used to infer a resolvent clause. The scope of this inference $4 Building KRYPTON

Having discussed the desired functionality of the KRYPTON knowl-
edge representation system, we now sketch in general terms how we are
building a system with these capabilitites.

4.1 Making an ABox

The first thing to notice about an implementation of the ABox
is that because of the expressive power of the assertional language,
very general reasoning strategies will be needed to answer questions.

Specifically, we cannot limit ourselves to the special-purpose methods
typical of frame-based representation systems.

For example, to find out if there is a cow in the field, it will not
be sufficient to locate a representational object standing for it (i.e.,
an instantiation of the cow-in-the-field Concept), since, among other
things, we may not know all the cows or even how many there are.
Yet, we may very well have been told that Smith owns nothing but
cows and that at least one of his animals has escaped into the field.

rule can be expanded by using subsumption and disjointness informa-
tion from the TBox as an additional means of recognizing the inconsis-
tency of two literals.8 That is, since triangle and rectangle are disjoint,
triangle(z) and rectangle(z) are inconsistent; and since polygon sub-
sumes rectangle, ‘polygon(z) and rectangle(z) are inconsistent. The

situation is complicated by the fact that TBox definitions also imply
‘conditional’ inconsistencies. For example, assume that rectangle has
been defined as (VRGenerIc polygon angle right-angle). The literal
polygon(z) is inconsistent with -rectangle(z) only when all the angles of
5 are right angles. In such cases, the clauses containing the condition-

ally inconsistent literals can still be resolved provided that we include

the negation of the condition in the resolvent. Thus, if the TBox is
asked whether polygon is disjoint from -rectangle, it should answer, in
effect, “only when all the angles are right angles”.

4.2 Making a TBox

Since we take the point of view that an ABox reasoner has to be
able to access TBox subsumption and disjointness information between
steps in a deduction, we have to be very careful about how long it takes
to compute that information. Absolutely nothing will be gained by our
implementation strategy if the TBox operations are as hard as theorem
proving; we could just as well have gone the meaning postulate route.
We are taking three steps to ensure that the TBox operations can be
performed reasonably quickly with respect to the ABox.

The second point worth noticing about the ABox is that if the
predicate symbols of the ABox language are indeed TBox terms, then
the ABox reasoner needs to have access to the TBox definitions of those
terms. For example, once told that Elsie is a cow, the ABox should
know that Elsie is an animal and is not a bull. However, these facts are
not logical consequences of the first one since they depend on how the
Concept cow is defined in the TBox. In general, the issue here is that
the ABox predicates are not simply unconnected primitives (as in first- The first and perhaps most important limit on the TBox operations

is provided by our TBox language itself. One can imagine wanting a
language that would allow arbitrary ‘lambda-definable’ predicates to be

order logic), so that if
techniques, we have to

TBox.

we want to use standard first-order reasoning

somehow make the connections implied by the

specified. The trouble is that no complete algorithm for subsumption
would then be possible, much less an efficient one. By restricting our
TBox language to what might be called the ‘frame-definable’ predicates
(in terms of operators like those we have already discussed-see Table
l), we stand at least a chance of getting a usable algorithm while
providing a set of term-forming facilities that have been found useful
in AI applications.

Conceptually, the simplest way to make the TBox-ABox connection
is to cause the act of defining a term in the TBox to assert a sentence in
the ABox, and then to perform standard first-order reasoning over the
resultant expanded theory. For example, after defining the Concept
cow we could automatically assert sentences saying that every cow is
an animal and that cows are not bulls, as if these were observed facts
about the world. As far as the ABox is concerned, the definition of a
term would be no more than the assertion of a ‘meaning postulate’.6

The situation is far from resolved, however. The computational
complexity of term subsumption seems to be very sensitive to the choice
of term-forming operators. For example, it appears that given our TBox
language without the VRDifITtole operator, the term subsumption
algorithm will be O(n”) at worst; with the VRDifIRole operator,
however, the problem is as difficult as propositional theorem proving

I?

‘There are already precedents in the theorem-proving literature (see [8] and Ill])

for using special information about subsumption and disjointness of predicates as
a way of guiding a proof procedure.

8See [IS] f or a similar approach to augmenting resolution by ‘building-in’ a theory.

In some sense, this would yield a ‘hybrid’ system like the kind
discussed in [3] and 1121, since we would have two notations stating the
same set of facts. Our goal, however, is to develop an ABox reasoner
that avoids such redundancies, maintains the distinction between def-
initional and assertional information, and provides a significant gain

%deed, by far the most common rendering of definitions in systems based on first-
order logic is as assertions of a certain form (universally quantilied bi-conditionals),
a treatment which fails to distinguish them from the more arbitrary facts that
happen to have the same logical form.

As a second step towards fulfilling this efficiency requirement ffor

the TBox, we have adopted a caching scheme in which we store sub-
sumption relationships for symbols defined by the user in a tree-like
data structure. We, in effect, are maintaining an explicit taxonomy of
the defined symbols. We are also developing methods for extending this
cache to include both absolute and conditional disjointness information
about TBox terms. The key open question regarding these extensions
is how to determine a useful subset of the large number of possible
conditional relationships that could be defined between the symbols.

As a final step towards an efficient TBox, we have adopted the no-
tion of a classifier, much like the one present in KL-ONE [14], wherein a
background process sequentially determines the subsumption relation-
ship between the new symbol and each symbol for which it is still
unknown. Because the taxonomy reflects a partial-ordering, we can
incrementally move the symbol down towards its correct position. The
overall effect of this classification scheme is that the symbol taxonomy

slowly becomes more and more informed about the relationship of a

symbol to all the other defined symbols.

One very important thing to notice about this implementation stra-

tegy based on a taxonomy and classification is that it is precisely
that-an implementation strategy. The meaning of the TBox language

and the definition of the TBox operators do not depend at all on the

taxonomy or on how well the classifier is doing at some point.

g5 Conclusion

The KRYPTON system represents an attempt to integrate frame-
based and logical facilities in such a way as to minimize the disad-
vantages of each. To do this, KRYPTON separates the representation
task into two distinct components: a terminological and an assertional
one. The terminological component supports the formation of struc-
tured descriptions organized taxonomically; the assertional Lomponent
allows these descriptions to be used to characterize some domain of
interest. The terminological component is a distilled version of frames,
characterized by a set of compositional term-forming operators, each
with clear import. The assertional component utilizes the power of
standard first-order logic for expressing incomplete knowledge. These
two components interact through a functionally-specified interface; the
user has no access to the structures used to implement it.

An implementation of a KRYPTON system in Interlisp-D is under-
way. As of this writing, we have implemented the operations of the
terminological component using the taxonomy/classification methodol-
ogy discussed above, and are currently investigating its interaction with
a version of the theorem-prover described in 1151.

References

[l] Brachman,R. J., Fikes, R.E., andLevesque, H. J., “KRYPTON:

A Functional Approach to Representation System,” to appear in

IEEE Computer, September, 1983.

PI Charniak, E., “A Common Representation for ProbIem-Sola ing

and Language-Comprehension Information,” Artificial Intelli-
gence 16, 3 (1981), 225-255.

[4] Fikes, R., and Hendrix, G., “A Network-Based Knowledge
Representation and its Natural Deduction System,” in Proc.
IJCAI-77, Cambridge, MA, 1977, 23.5-246.

151 Hayes, P. J., “The Logic of Frames, n in Frame Conceptions and
Text Understanding, Metzing, D. (ed.), Walter de Gruyter and
Co., Berlin, 1979, 46-61.

I61 Levesque, H. J., “A Formal Treatment of Incomplete Knowledge

Bases,” Ph. D. thesis, Dept. of Computer Science, University of
Toronto, 1981. Also available as FLAIR Technical Report No.
3, Fairchild Laboratory for Artificial Intelligence Research, Palo

Alto, CA, February, 1982.

PI Levesque, H. J., “Some Results on the Complexity of Subsump-

tion in a Frame-based Language,” in preparation, 1983.

181 McSkimin, J. R., and Minker, J., “A Predicate Calculus Based
Semantic Network for Deductive Searching,” in Associative

Networks: Representation and Use of Knowledge by Computers,
Findler, N. V. (ed.), A ca d emit Press, New York, 1979, 205238.

PI Moore, R. C., “The Role of Logic in Knowledge Representation

and Commonsense Reasoning,” in Proc. AAAI-82, Pittsburgh,
1982, 428433.

[lo] Nilsson, N. J., Principles of Artificial Intelligence, Tioga

Publishing Co., Palo Alto, CA, 1980.

Ill1 Reiter, R., “Equality and Domain Closure
Databases,” JACM 27, 2 (1980), 235-249.

in First-Order

[12] Rich, C., “Knowledge Representation Languages and Predicate
Calculus: How to Have Your Cake and Eat it Too,” in Proc.
AAAI-82, Pittsburgh, 1982, 193196.

1131 Schmolze, J. G., and Brachmnn, R. J., eds., “Proceedings of
the Second KL-ONE Workshop,” FLAIR Technical Report No.
4, Fairchild Laboratory for Artificial Intelligence Research, Palo
Alto, CA, May, 1982.

[14] Schmolze, J. G., and Lipkis, T. A., “Classification in the KL-

ONE Knowledge Representation System,” in Proc. IJCAI-83,
Karlsruhe, W. Germany, 1983.

1151 Stickel, M. E., “A Nonclausal Connection-Graph Resolution
Theorem-Proving Program,” in Proc. AAAI-82, Pittsburgh,

1982, 229-233.

PI Stickel, M. E., “Theory Resolution: Building-In Nonequational
Theories,” in Proc. AAAI-83, Washington. D. C., 1983.

PI Brachman, R. J., and Levesque, H. J., “Competence in
Knowledge Representation,” in Proc. AAAI-82, Pittsburgh,
1982, 189192.

35

