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ABSTRACT 

Theory resolution constitutes a set of complete proce- 
dures for building nonequational theories into a resolution 
theorem-proving program so that axioms of the theory need 
never be resolved upon. Total theory resolution uses a deci- 
sion procedure that is capable of determining inconsistency 
of any set of clauses using predicates in the theory. Partial 
theory resolution employs a weaker decision procedure that 
can determine potential inconsistency of a pair of literals. 
Applications include the building in of both mathematical 
and special decision procedures, such as for the taxonomic 
information furnished by a knowledge representation sys- 
tem. 

I INTRODUCTION 

Building theories into derived inference rules so 
that axioms of t,he theory are never resolved upon has 
enormous potential for reducing the size of the exponential 
search space commonly encountered in resolution theorem 
proving [5,9]. Plotkin’s work on equational theories [15] 
was concerned with general methods for building in theories 
that are equational (i.e., theories that can be expressed 
as a set of either equalities or, by slight extension, equiv- 
alences of a pair of literals). This building in of equational 
theories consisted of using special unification algorithms 
and reducing terms to normal form. This work has been 
extended substantially, particularly in the area of develop- 
ment of special unification algorithms for various equational 
theories [16]. 

Not all theories that it would be useful to build 
in are equational. For example, reasoning about orderings 
and other transitive relations is often necessary, but using 
ordinary resolution for this is quite inefficient. It is possible 
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to derive an infinite number of consequences from a < b 
and (5 < y) A (y < z) > (z < z) despite the obvious 
fact that no refutation based on just these two clauses is 
possible. A solution to this problem is to require that use 
of the transitivity axiom be restricted to occasions when 
either there ar: matches for two of its literals (partial theory 
resolution) or LL complete refutation of the ordering part 
of the clauses to be refuted can be found (total theory 
resolution). 

Another important form of reasoning in artificial 
intelligence applications addressed by knowledge repro- 
sentat,ion systems [4] is reasoning about taxonomic infor- 
mation and property inheritance. One of our goals is to be 
able take advantage of the efficient reasoning provided by 
knowledge representation systems in this area by using the 
knowledge representation system as a taxonomy decision 
procedure in a larger deduction system. Combining such 
systems makes sense, since it relieves the general-purpose 
deduct,ion system of the need to do taxonomic reasoning 
and, in addition, extends the power of the knowledge rep- 
resentation system towards greater logical completeness. 
Other researchers have also cited advantages of integrat- 
ing knowledge representation systems with more general 
deductive systems [3,18]. KRYPTON [2] represents an ap- 
proach to constructing a knowledge representation system 
composed of two parts: a terminological component (the 
TBox) and an assertional component (the ABox). For such 
systems, theory resolution indicates in general how infor- 
mation can be provided to the ABox by the TBox and how 
it can be used by the ABox. 

Building in nonequational theories differs from 
building in equational theories. Because equational theories 
are defined by equalities or equivalences, a term or literal 
can always be replaced by an equal term or equivalent 
literal. This is not the case for nonequational theories that 
arc expressed in terms of implication rather than equiv- 
alence. If we build in a nonequational theory of taxonomic 
information that includes Man(z) > Person(z), we would 
expect to be able to infer Person( John) from Man( John), 
but not G’erson(Mary) from lMun(Mury) (i.e., replace- 
ment of Man(z) by Person(z) is permitted only in those 
cases in which A4un occurs unnegated). 

Nonequational theories may express conditional 
inconsistency of a pair of literals. For instance, (z < y) A 
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(Y < 4 3 (z < 1 P z ex resses the fact that y < z and 
I(Z < z) are inconsistent only in the presence of 2 < y. 

Theory resolution is a set of complete procedures 
for building in nonequational theories using decision proce 
dures as components of a more general deduction system. 
Two forms are described. Total theory resolution employs a 
decision procedure that can determine inconsistency of any 
set of clauses using predicates of the theory and is quite 
restricted as to what inferences it will make. Partial theory 
resolution is less restricted as to what inferences it will make 
but requires much less of the decision procedure-making it 
more feasible, for example, to use knowledge representation 
systems as the decision procedure. 

We will give definitions and completeness proofs 
for the ground case of theory resolution and definitions for 
the general case. Completeness for the general case follows 
directly from ground case completeness. We consider only 
clausal resolution here, but these results should be easily 
extendable to nonclausal resolution [10,13,22]. 

II TOTAL THEORY RESOLUTION 

In building in a theory T, we are interested in 
ascertaining whether a set of clauses S is T-inconsistent 
(i.e., whether S IJ T is inconsistent). If we have a decision 
procedure for T that is capable of finding minimally T- 
inconsistent subsets of clauses from any set of clauses using 
only predicates in T, then it can be applied to S with all 
literals having predicates not in T removed to create an 
inference rule (total theory resolution) that derives clauses 
containing no occurrrences of predicates that are referred 
to in T. 

A theorem justifying such a rule of inference fol- 
lows. In it, P is the set of predicates in T, S corresponds 
to S U T above, and T is some subset of Sp. The decision 
procedure for T must determine T-inconsistency of sets of 
clauses from Sp - 2’ and Wp. 

Theorem. Let S be a set of ground clauses and P be 
a set of predicates. Let Sp be the set of all clauses of S 
containing only predicate symbols in P. Let SF be the 
set of all clauses of S containing only predicate symbols 
not in P. Let W be S - Sp - SF Let Wp be the list of 
clauses C’i formed by restricting each clause in W to just 
the predicates in P. Let WF be the list of clauses Di formed 
by restricting each clause in W to just the predicates not 
in P. CY = { C; V Di 1 1 5 i 5 n }. Let X be the set of 
all clauses of the form Di, V - - e V Di,,, where C’i,, . . . , Ci,,, 
are all the clauses of Wp in a minimally inconsistent set 
of clauses from Sp and Wp. Then S is inconsistent if and 
only if &iU X is inconsistent. 

Proof: If part. This proves the soundness of the rule. 
Assume 5’~ tJ X is inconsistent. For every element of X, 
false is a logical consequence of Sp and some Ci,, . . . , Ci, 

from Wp. Therefore Di, V-e .V Di,,, is a logical consequence 
of Sp and W (derived, for example, by imitating a ground 
resolution derivation of false from Sp and Ci,, . . . , Ci, 
using C;, V Di,, . . . , Ci,,, V Di, instead of Cil,. . . , Ci,). 
Because SF c S and every element of X is a logical conse- 
quence of SplJCV and SpUW C S, if S+JX is inconsistent, 
then so is S. 

Only if part. This proves the completness of the 
rule. Assume S is inconsistent. Then either Sp is inconsis- 
tent, SF is inconsistent, or the inconsistency of S depends 
at least partially on W. 

Case 1. Sp is inconsistent. Then false E X and 
SF tJ X is inconsistent. 

Case 2. SF is inconsistent. Then SF U X is 
inconsistent. 

Case 3. Sp and SF are consistent. Because they 
have disjoint sets of predicates, 57~ tJ SF is also consistent. 
Then there is a minimally inconsistent set of clauses Sl, U 
S’ u W’ such that Sl, 2 Sp, S$ C SF, and 0CW’ C 
18 By completeness of A-ordered resolution [17,20,5,9], 
there exists an A-ordered resolution refutation of this set 
with predicates in P preceding predicates not in P in the 
A-ordering. Included in the refutation is a set of clauses X’ 
containing no predicates in P derived entirely from Sl, lJ 
iv’. Sk U ,Y’ is clearly inconsistent. When we look at the 
A-ordered derivations, it is apparent that each element of 
X’ is of the form Di, V-e * V Di, derived from Sip tJ W’ such 
that a subset of Sl, tJ { Ci,, . . . , Ci, } is inconsistent where 
{ Ci, VDil } C W’. If this subset is minimally inconsistent 
then Di, V . -. V Di,,, E X. Otherwise Di, V - -a V Di,,, is 
still subsumed by (possibly identical to) an element of X. 
Because X contains each element of X’ or an element that 
subsumes it, the inconsistency of SF tJ X follows from the 
inconsistency of S$U X’. a 

Definition. Let Ci, . . . , C, be nonempty clauses and 
D1,... , D, be clauses such that each Ci V Di is in S and 
every predicate in Ci is in theory T and no predicate in Di is 
in theory T. Let 611,. . . ,blnl,. . . ,b,r,. . . ,gmn, be sub- 
stitutions such that { Cl~il,. . . , Cl~rnl,. . . , Cmcml, . . . , 
Gn~mn, > is minimally T-inconsistent. Then DIalI V- - .V 
Dlcl,,, V .. . V Dmc,l V -- - V Dmcm,,, is a total theory 
resolvent from S, using theory T. 

Total theory resolution, plus ordinary resolution 
or some other semidecision procedure for first-order predi- 
cate calculus operating on clauses that do not contain predi- 
cates in T, is complete. 

Example. Consider a theory of partial ordering ORD 
consisting of ~(z < z) and (z < y)A(y < z) > (z < z). A 
set of unit clauses in this theory is inconsistent if and only 
if it contains a chain of inequalities tr < . . . < t,(n > 1) 
such that either ti = t, or l(tn < ti) is one of the clauses. 
Total theory resolvents would include F(b) from (z < b) v 



F(z) and F(u) V G(c) from (x < b) V F(z), (b < Y) V G(Y), 
and either c < a or ~(a < c). 

Thus the types of reasoning that are employable 
in the decision procedure can be quite different from and 
more effective (in its domain) than resolution. 

There are limitations to the use of total theory 
resolution. The requirement that the decision procedure for 
the theory be capable of determining inconsistency of any 
set of clauses using predicates in the theory is quite strict. 
Reasoning about sets of clauses is probably an unreasonable 
requirement for such purposes as using a knowledge rep- 
resentation system as a decision procedure for taxonomic 
information, since such systems are often weak in han- 
dling disjunction. This tends to limit total resolution’s ap- 
plicability to building in mathematical decision procedures 
t.hat handle disjunction. Incomplete restrictions of total 
theory resolution could still be usefully employed. For ex- 
ample, it may be easy for a system to decide inconsistency 
of sets of single literals (unit clauses), as above for ORD 
and maybe also in the case of taxonomic reasoning (note 
that tsxonomic hierarchies can be expressed in the monadic 
predicate calculus for which there exists a decision proce- 
dure that could possibly be used in complete or incomplete 
theory resolution). Total theory resolution could then be 
used to resolve on only one literal from each clause. 

Some care must be taken in deciding what theory 
T to build in so that the decison procedure does not have 
to decide too much. The theory must be capable of decid- 
ing sets of clauses that are constructed by using any predi- 
cates appearing in T. Thus, if we try to use total theory 
resolution to build in the equality relation with equality 
substitutivity (i.e., 2 = y 1 (P(e ..z.. .) > I’(. . aye . e)) 
for each predicate P), the decision procedure will have to 
decide all of S. 

There may be a large number of T-inconsistencies 
that do not result in useful T-resolvents. It would be 
a worthwhile refinement .to monitor the finding of T- 
inconsistent sets of clauses to verify that the substitutions 
applied do not preclude future use of the T-resolvent. This 
is like applying a purity check in A-ordered resolution. 

A-ordered resolution slightly resembles total 
theory resolution. It permits resolution operations only on 
the atoms of each clause that occur earliest in a fixed or- 
dering of predicates (the A-ordering). The A-ordering could 
place predicates of T before all others. A-ordered resolu- 
tion differs from total theory resolution in that it assumes 
resolution (or hyperresolution) is to be used as the inference 
operation. It is thus inflexible, since it does not permit T to 
be built in except by resolution. Furthermore, total theory 
resolution creates a resolvent only from inconsistent set of 
clauses using predicates of T. A-ordered resolution is not 
so restrictive. 

There is probably a useful relationship to be dis- 
covered between total theory resolution and the work on 

combining decision procedures [14,19]. So far we have dis- 
cussed only building in a single decision procedure, though 
the procedure could be repeated as long aa the sets of predi- 
cates do not overlap. It is likely that we would want an ex- 
tension of theory resolution that permits the sets of predi- 
cates to overlap at least in the case of the equality predicate. 
A difference between total theory resolution and the work 
on combining decision procedures is that the latter has been 
concerned primarily with decision procedures that do not 
have to instantiate their inputs, unlike our requirements for 
finding substitutions to make a set of clauses inconsistent. 

III PARTIAL THEORY RESOLUTION 

Partial theory resolution is a procedure for build- 
ing in theories that requires a less complex decision proce- 
dure than total theory resolution; all it needs is a decision 
procedure that determines for any pair of literals a complete 
set of substitutions and conditions for the inconsistency of 
the literals. 

Partial theory resolution will first be defined and 
proved complete for ground clauses. We will define a T- 
resolution operation that resolves on one or more literals 
from each input clause, like ordinary resolution without a 
separate factoring operation. We will then extend it to the 
general case, showing how T-resolvents can be computed 
by using only one literal at a time from each input clause. 

There are two types of T-resolvents in partial 
theory resolution. If some set of literals of a clause is in- 
consistent with T, those literals can be removed from the 
clause to form a T-resolvent: 

Definition. Let A be a nonempty ground clause and let 
C be a ground clause. Then C is a ground T-resolvent of 
A V C if and only if T+A. 

If, with T assumed, a set of literals of one clause 
is inconsistent with a set of literals of another clause under 
certain conditions, then T-resolvents can be formed aa the 
disjunction of the other literals of the clauses and negated 
conditions for the inconsistency: 

Definition. Let A and B be nonempty ground clauses 
and let C and D be ground clauses. Then CV DV E where 
E is a ground clause is a ground T-resolvent of A V C and 
B V D if and only if T+AV 43 V E but not TklAi V E 
for any literal Ai in A or T+lBj V E for any literal Bj in 
B. E is called the reeidue of matching A and B. 

The residue E is a negated condition for the in- 
consistency of A and B because T+A V 1B V E is equiv- 
alent to T+E > ((AA B) G fake). The restriction that 
neither T/--1Ai V E nor TklBj V E assures us that all 
the literals of both of A and B are essential to the possible 
T-inconsistency of A A B.. T-resolution includes ordinary 
resolution because it is always the case that T+AV-IBVE 
if B is 1A. 
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The soundness of ground T-resolution is obvious. 
T-semantic trees will be used to prove its completeness. 

Definition. Let S be a set of ground clauses with set 
of atoms {Al,... ,Ak}. Then a semantic tree for S is a 
binary tree with height k such that for each node n with 
depth i (0 5 i < k), n has two child nodes nl and na at 
level i + 1, the arc to nr is labeled by the literal Ai+l) and 
t,he arc to n2 is labeled by the literal lAi+l. 

Each node n in a semantic tree provides a partial 
(or, in the case of terminal nodes, total) interpretation I,, 
for the atoms of S, assigning true to each atom A that 
labels an arc on the path from the root to n and assigning 
false to each atom A where -A labels an arc on the path 
from the root to n. 

Definition. Node n in a semantic tree for S falsifies 
clause C E S if and only if C is false in interpretation 
I n. 

Definition. A T-semantic tree is a semantic tree from 
which all nodes representing T-inconsistent truth assign- 
ments are removed. 

Definition. Node n in a T-semantic tree for S T-falsifies 
clause C E S if and only if C is false in interpretation 1, 
taking account of T. 

Definition. Node n is a failure node in a T-semantic tree 
for set of ground clauses S if and only if n T-falsifies a 
clause in S and no ancestor of n is a failure node. 

Definition. Node n is an inference node in a T-semantic 
tree for set of ground clauses S if and only if both of n’s 
child nodes are failure nodes. 

Note that although in a T-semantic tree each non- 
terminal node may have either one or two child nodes, an 
inference node will always have two. If node n has only a 
single child node n1 and nl T-falsifies a clause (and thus 
might be a failure node), then n also T-falsifies the clause. 
Thus, a failure node will never be the single child node of 
its parent. 

Theorem. A set of ground clauses S is T-inconsistent if 
and only if every branch of a semantic tree 7 for S contains 
a failure node. Either the root node of 7 is a failure node 
or there is at least one inference node in 7. 

Theorem. Let S be a T-inconsistent set of ground 
clauses and let 7 be a T-semantic tree for S. Then if 
the root node of 7 is not a failure node, there is a T- 
inconsistent set of ground clauses S’ derivable from S by 
ground T-resolution such that 7 is a semantic tree for S’ 
but has fewer failure nodes for S’ than for S. 

Proof: Since S is T-inconsistent and the root node of 7 - ^ 
is not a failure node, tIi%e r&.i.i~~~~a~ IZ&‘%ii3’i’nTerence 

node n in 7. Then n’s child nodes, nl and na, are both 
failure nodes. Let the clause T-falsified at nl be A V C 
where nonempty clause A consists of all the literals not 
already T-falsified at n. Let the clause T-falsified at n2 be 
B V D where nonempty clause B consists of all the literals 
not already T-falsified at n. Then n, or an ancestor of n 
if n is the single child n0d.e of its parent, is a failure node 
for S’ = S lJ { C V D V E } where E is a clause consisting 
of the negations of the literals labeling arcs above node n 
that were used in T-falsifying A and B. Because T+E A 
TAi 1 7A and T+lEAAi > 1B where Ai and YAi label 
the arcs to n1 and n2 respectively, T+A V 1B V E and 
C V D V E is a ground clause T-resolvent of A V C and 
B V D. 7 contains fewer failure nodes for S’ than for S 
because n (or an ancestor of n) is a failure node instead of 
nl and n2. 

Theorem. Ground clause T-resolution is complete. 

Proof: Let S be a T-inconsistent set of clauses. Let 7 be 
a T-semantic tree for S. Then either the root node of 7 is 
a failure node, in which case the empty clause is derivable 
by ground T-resolution from the clause T-falsified at the 
root, or 7 contains an inference node, in which case com- 
pleteness is assured by induction on the number of failure 
nodes, applying the previous theorem that uses ground T- 
resolution to add a clause that makes the inference node 
(or an ancestor of it) be a failure node. 8 

The ground T-resolution operation as defined 
above shares somewhat an undesirable feature of total 
theory resolution, i.e., that it demands too much of the 
decision procedure-in this case, requiring it to determine 
the possible inconsistency of two sets of literals (i.e., two 
clauses) instead of just two literals. This is easily remedied. 

In the definition of ground T-resolvents with two 
parent clauses, let A be Al Ve. *i/A, and let B be B1 V. . .V 
B,. Then T+AVlBV E is equivalent to all of T+Al V 
lB1vE, . . . . and T+A,VlB,VE being true. Therefore, 
in computing T-resolvents, it is sufficient to determine pos- 
sible T-inconsistency of single pairs of literals Ai and Bj 
with negated condition (residue) Eij (i.e., TblAi V 1Bj V 
Eij) and form T-resolvents of AV C and B V D as C V D V 
El1 v . . . v Em,,. Eij is a ground T-match of literals Ai 
and Bj. Note that this multiple pairwise matching is a 
substitute for a separate factoring operation. 

We now extend T-matches and T-resolvents to the 
general (nonground) case. 

Definition. Let A and B be two literals. Then (E,a) 
where E is a clause and cr is a substitution is a T-match 
of A and B if and only if T+Aa V 1Ba V E but not 
T/--AC V E or T+Ba V E. 

A T-match of literals A and B specifies a sub- 
stitution rr and condition 1E that make A and B be T- 
inconsistent. 

394 



We will give examples based on two theories: 

e A taxonomic hierarchy theory TAX, including 
Man( 2) > Person( 2). 

o The partial-ordering theory QRD (defined pre- 
viously). 

Example. (false, { w t John}) is a TAX-match of 
1Llan( John) and +erson(ur). 

Example. (o < c, Q)) is an ORD-match of a < 6 and 
6 < c. But (~(c < 2) v (a < z),@),(l(c < 2) V ~(2 < 
Y) v (a < Y), 0L - * * are also ORD-matches of o < 6 and 
6 < c. The notion of minimal complete sets of T-matches 
is defined to exclude these additional T-matches. 

Definition. Let M = { (El, cl), . . . , (E,, a,)} (n 2 0) 
be a set of T-matches of literals A and B. Then M is a 
complete set of T-matches of A and B if and only if for 
every T-match (E,a) of A and B there is some T-match 
(Ei,ai) E 121 and substitution 0 such that c = a;6 and 
T+Eie > E. M is a minimal complete set of T-matches 
of A and B if and only if M, but no proper subset of M, 
is a complete set of T-matches of A and B. 

Example. { (a < c, 0)) is a minimal complete set of 
ORD-matches of a < 6 and 6 < c. ORD-matches of 
the form (l(c < 2) V (a < x),0), . . . have the property 
that ORDt-(a < c) > [l(c < 2) V (c < a)], . . ., and are 
therefore not in the minimal complete set of ORD-matches. 

As in the ground case, single-parent and double- 
parent T-resolution operations are defined: 

Definition. Let A be a literal and AV C be a clause and 
let (r be a substitution such that Tj-1Aa. Then Ca is a 
T-resolvent of A V C. 

Example. Positive(l) is an ORD-resolvent of (z < 1) V 
Positive(z). 

hlore than one T-inconsistent literal can be 
removed from a clause by performing single parent T- 
resolution repeatedly. 

Definition. Let A and B be the nonempty clauses Al V 
.--VA, and B1V... V B,, let AV C and B V D be clauses, 
and let (Eij, aii) be T-matches of Ai and Bj. Then Cc V 
Dav Ea is a T-resoluent of AV C and BV D where v is the 
most general combined substitution of ~~11, . . . , onn and E 
is El1 i/a.. V E,,. 

Example. +obot(John) is a TAX-resolvent of 
AJun( John) and +erson(w) V iRobot( 

Example. C(u) V D(u) V (u < c) is an ORD-resolvent of 
(u < u) V C(u) and (V < c) V D(u). 

Further constraints on what T-resolvents can be 
inferred may be required for partial theory resolution to be 

really effective. For example, a < 6 and c < d, which have 
no terms in common, have ORD-resolvents ‘(6 < c)V(u < 
d), -46 < c) v (6 < d), -46 < c) V (a < c), l(d < a) V (c < 
b), etc. If the first of these is actually used in a refutation, 
there must exist matches 6 < c and ~(a < d) for its literals. 
It would be preferable to T-resolve these literals with a < 6 
and c < d (e.g., T-resolve a < 6 and 6 < c deriving Q < C, 

T-resolve a < c and c < d deriving a < d, and resolve 
that with ~(a < d)) instead of directly T-resolving a < 6 
and c < d. We would impose the restriction that ORD- 
resolvents be derived only by resolving on pairs of literals 
that have a term in common. 

There are two previous resolution refinements that 
resemble partial theory resolution: Z-resolution and U- 
generalized resolution. 

Dixon’s Z-resolution [6] is essentially partial 
theory resolution with the restriction that T must consist 
of a finite deductively closed set of 2-clauses (clauses with 
length 2). This restriction does not permit inclusion of 
assertions like lQ(x)VQ(/(z)), l(z < z), or (z < y)A(y < 
a) > (.r < z), but d oes permit efficient computation of T- 
resolvents (even allowing the possibility of compiling T to 
Lisp code and thence to machine code). 

Harrison and Rubin’s U-generalized resolution [8] 
is essentially partial theory resolution restricted to sets of 
clauses that have a unit or input refutation. They apply it 
to building in the equality relation, developing a procedure 
similar to Morris’s Eresolution [12]. The restriction to sets 
of clauses having unit or input refutations eliminates the 
need for factoring and simplifies the procedure (only a single 
literal of each parent must be used to create a T-resolvent), 
but otherwise seriously limits its applicability. No effort 
was made in the definition of U-generalized resolution to 
limit T-resolution by using minimal complete sets of T- 
matches. 

Partial theory resolution is a procedure with sub- 
stantial generality and power. Thus, it is not surprising 
that many specialized reasoning procedures can be viewed 
as instances of partial theory resolution, perhaps with addi- 
tional constraints governing which partial theory resolvents 
can be inferred: 

Where T consists of the equality axioms, T- 
resolution operations include paramodulation [23] (e.g., 
P( 6) V C V D can be inferred from P(u) V C and u = 6 V D) 
and E-resolution [12] (e.g., la = 6 V C V D can be inferred 
from P(u) V C and -J’(b) V D). 

Where T consists of ordering axioms, including 
axioms that show how ordering is preserved (such aa (z < 
y) > (P(x) > P(y)) and (z < y) > (z + z < y + 
z)), T-resolution operations include Manna and Waldinger’s 
program-synthetic special relation substitution rule (e.g., 
P(b)VCVD can be inferred from P(a)VC and (u < 6)VD) 
and relation matching rule [II] (e.g., -~(a < 6)vCvD can be 
inferred from P(u)VC and +(b)VD), which are extensions 



of parsmodulation and Eresolution. T-resolution with or- 
dering axioms is also similar to Slagle and Norton’s reason- 
ing about partial ordering [21]. Bledsoe and Hines’s variable 
elimination (11 is a very refined method for reasoning about 
inequalities that can be viewed partly as partial theory 
resolution for inequality with added constraints on partial 
theory resolution operations. The ORD-resolvent a < c 
of a < 6 and 6 < c is a variable-elimination-procedure 
chain resolvent only if 6 is a shielding term (nonground term 
headed by an uninterpreted function symbol). The variable 
elimination rule allows inferring ORD-resolvent (u < b)vC 
from clause (a < z) V (z < 6) V C only if z does not occur 
in a, 6, or C. The variable elimination rule more generally 
allows replacement of multiple literals ui < x and x < 6j 
in a clause by literals ai < bj. This result is obtainable 
by partial theory resolution if we include the axiom ~(z < 
UZ~~I(X, y)) and a rule to transform min(ai,, ai,) < bi to 
(ail < bi) V (ain < 6j). 

IV CONCLUSION 

Theory resolution is a set of complete proce- 
dures for incorporating decision procedures into resolution 
theorem proving in first-order predicate calculus. Theory 
resolution can greatly decrease the length of refutations 
and the size of the search space, for example, by hiding 
lengthy taxonomic derivations in single TAX-matches and 
by restricting use of ordering axioms in ORD-matches. 
Total theory resolution can be used when there exists a 
decision procedure for the theory that is capable of deter- 
mining inconsistency of any set of clauses using predicates 
of the theory. This may be a realistic requirement in some 
mathemat,ical theorem proving. For example, a decision 
procedure for Presburger arithmetic (integer addition and 
inequality) might be adapted to meet the requirements for 
total theory resolution. 

Partial theory resolution requires much less of the 
decision procedure. It requires only that conditions and 
substitutions for inconsistency of a single pair of literals 
be determinable by the decision procedure for the theory. 
This makes it feasible, for example, to consider use of a 
knowledge representation system as the decision procedure 
for taxonomic information. Partial theory resolution is also 
a generalization of several other approaches to building in 
nonequational theories. 

We are implementing and testing forms of theory 
resolution in the deduction system component of the 
KLAUS natural-language-understanding system [7,22]. 
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