
IMPROVING THE EXPRFSSIWJVESS OF MAN-Y SORTED LOGIC

Anthony G Cohn

Department of Computer Science
University of Warwick

Coventry CV4 7AL
England

Abstract
Many sorted logics can allow an increase in

deductive efficiency by eliminating useless branches of
the search space, but are usually formulated so that
their expressive power is severely limited.

The many sorted logic described here is unusual in
that the quantifiers are unsorted; the restriction on the
range of a quantified variable derives from the argument
positions of the function and predicate symbols that it
occupies; associated with every non-logical symbol is a
sorting function which describes how its sort varies with
the sorts of its inputs; polymorphic functions and
predicates are thus easily expressible and statements
usually requiring several assertions may be compactly
expressed by a single assertion.

The sort structure may be an arbitrary lattice.
Increased expressiveness is obtained by allowing the sort
of a term to be a more general sort than the sort of the
argument position it occupies. Furthermore, by allowing
three boolean sorts (representing ‘true’, ‘false’ and
‘either true or false’), it is sometimes possible to detect
that a formula is contradictory or tautologous without
resort to general inference rules.

Inference rules for a resolution based system are
discussed; these can be proved to be both sound and
complete.

1. Introduction
Much research has been directed towards ways of

cutting down the search space of mechanised inference
systems. One approach is to divide the individuals in the
intended interpretation into different sorts and then
specify the sorts of the arguments of all the non-logical
symbols in the language and the sorts of the results of
function symbols; such a logic is known as a many sorted
logic(msl). Inference rules can be devised for such a
logic so that many inferences which are obviously
‘pointless’ (to the human observer) can easily be
detected to be such by the system because functions or
predicates are being applied to arguments of
inappropriate sorts. Sortal information can thus be
viewed as a form of meta-knowledge.

Msls provide an simple syntactic way of specifying
semantic information. Several mechanised msls have
been proposed or built: eg (Reiter, 1981), (McSkimin,
1977), (Weyhrauch, 1976) and (Champeaux, 1978).
Sorts in a logic are rather akin to types in conventional
programming languages and problems often found in
strongly typed programming languages may also occur
in msls. In particular the typing /sorting mechanism
often reduces the expressive power of the language: it is
not long before a Pascal programmer becomes

This work has been supported in part by the SERC.

frustrated by the impossibility of writmg general
purpose library procedures because procedures may not
be polymorphic.

In this paper we report on a msl which does not
arbitrarily restrict the expressive power of the language
and in which it is possible to specify detailed sortal
information about the non-loglcal symbols which car
then be used by the inference rules to reduce the search
space. Space constraints only allow a discursive
discussion of the logic. Full details including soundness
and completeness proofs can be found in (Cohn, 1983).

2. Preliminaries
We assume the reader is conversant with the First

Order Predicate Calculus and resolution systems.
We use upper-case BOLDIT’C letters (possibly

with numeric suffices and/or primes) as meta-variables
denoting expressions in the object language. We use bold
Roman and Greek letters for all other meta-variables.

The alphabet of the language is the union of tht
following sets: P: a non-empty set of predicate symbok
(we use strings composed of entirely of upper-case
Roman letters), F: a non-empty set of function symbols
(we use strings composed entirely of lower-case Roman
letters or numerals), V: a non-empty set of variables (we
use lower-case italic letters), Iv,.+ - +,-
boolean connectives, fA,Vj: iwb quanti~eras:setthoei
universal quantifier A and the existential quantifier V,
I[,],‘,‘]: three punctuation symbols.

Terms and formulae are formed from the alphabet
in the usual way. Terms are either variables or
combinations. Formulae are atoms, liter&s, boolean
combinations or quantifications. Disjunctions of laterals
are called clauses and are usually represented simply as
the set of their constituent literals.

3. The Sort Structure
Various sort structures occur naturally: disjoint

sorts, trees and lattices. We choose to define the sort
domain S as the most general such structure, a
complete boolean lattice. An interpretation must
interpret the top (Ts) and bottom (Is) elements of S as
the universe of discourse (U) and the empty set
respectively. The partial ordering on S is called ZJs
We also need the lattice operators Us, lls and \s. We
usually omit the subscripts on these symbols. It is useful
to distinguish those elements m S immediately above I;
these disjoint sorts (their interpretations are non
overlapping sets) are denoted by S,*.

*In earlier presentations of this work the sense of the
lattice was inverted, so that the interpretations of T and
J- were reversed. The earlier convention followed the
Scott-Strachey tradition, but the present convention is

84

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

Of course it is not necessary to actually name all the
sorts in the sort lattice. It would be ridiculous to have to
do so for one would then be forced to think up names for
many sorts which might never actually occur m any
assertion or during inference. Thus we can distinguish
between eponymous and anonymous sorts. Every
anonymous sort should be expressible (using Ll, ll and
\) purely m terms of eponymous sorts. However, since it
is easy for an inference engine to invent names for all
the anonymous sorts for internal use, we shall
henceforth assume that all sorts are eponymous.

It will be seen later that we require a unary
predicate symbol for each eponymous sort, so it will be
convenient to use this predicate symbol as the sort’s
name. Laterals formed from these symbols are called
characteristic literals.

4. Sorting Functions
Following (Hayes, 1971) we describe the sortal

behaviour of a function symbol c1 by a sorting function bi
of the same arity which maps S to S. This allows the
specification of polymorphic function symbols, The
domain equation for sorting functions is S’ + S. For
technical reasons the crossproduct operation used to
form the domain 9 is in fact not the usual pointwise
operation; also, sorting functions may be quite
reasonably required to be both strict and continuous,.
for details see (Cohn, 1983).

Sorting functions can also be used to describe the
sortal behaviour of predicates, thus allowing
polymorphic predicates. The question arises as to what
the sort of an atom should be. One possibility is to
invent a sort called BOOL E S which is always
interpreted as the set of the two truth values. This is the
usual approach, but a better technique is to have a
separate, boolean sort lattice, B=fEE,TT,FF,UU{. EE and
UU are the I and T elements of B respectively and TT
and FF have fixed interpretations of ttruej and ifalse{
respectively. It is obvious that since B is a complete
boolean(!) lattice it is just a particular S and all results
for S apply to B as well. We can now give the
functionality of sorting functions for predicate symbols;
if LX E P then ti: Sn + B.

It is important to point out that we are not now
dealing with a four or even three valued logic. The logic
is still two valued; we interpret function symbols as
partial functions but predicate symbols are interpreted
as relations rather than partial predicates so in any
interpretation a well-sorted formula (ie one whose sort is
not EE) denotes either true or false; even those formulae
whose sort is UU still denote one of the two truth values.
(Our definition of satisfiability also ensures that all
formulae sorted as TT or FF always denote true or false
respectively). The four different boolean sorts exist
purely for the benefit of the deductive machinery;
formulae sorted as FF or TT can immediately be deduced
to be contradictions or tautologies, as appropriate; those
which are UU require inference in the usual way to
determine a truth value. A formula whose sort is EE is
ill-sorted; the deductive machinery will refuse to
perform inferences with it and under no interpretation
does it denote a truth value; it is as meaningless as if it

were syntactically ill-formed.

5. Well-Sorted Formulae
Intuitively, a formula is well-sorted iff the sorts of all

the sub-expressions ‘match’ the sorts required by their
respective argument positions in a consistent manner.
In most formulations of msl the sort 71 of a term only
matches the sort 72 of its argument position if 71 & 72.

However the logic has more expressive power** if the
match only fails when 71ll72= 1. Eg, let g E F have a
sorting function such that

g(<MAN>) = I & g(<WOMAN>) = MAN

where S, = iMAN,WOMAN{ and let c be a constant symbol
of sort T. We allow g[c] to be well-sorted even though if
c is interpreted as a man then g[c] fails to denote

Some machinery is required in order to be able to
assign a sort to variables since variables do not have
sorting functions but clearly the sort of an expression
containing variables cannot, in general, be determined
without knowing the sort of all constituent terms. The
usual technique is to have separate quantifiers for every
sort, for the sort of a variable could then be determined
from the sort of its governing quantifier. However this
would reduce the value of allowing polymorphic sorting
functions since an instance of a variable would then have
a unique sort associated with it. Eg suppose P is a rank
two predicate symbol such that

P(<M,W>) = P(<W,M>) = EE

P(<M,M>) = P(<w,w>) = uu

where S, = tM,Wj. To express that P[z,y] is always true
would seem to need two statements if we have sorted
quantifiers:

A,x ~,yP[x,y] and +p A\wY P[ZlYl
It would be much more natural if we could just write.
AxAyP[x,y] and let x and y range over M and W as
appropriate (ie y should always be of the same sort as
z). This is the mechanism envisaged by (Hayes, 1971)
and is certainly very convenient. The basic idea is that
the sort of variable should be determined by the
argument positions it occurs in. If it occurs as an
argument to a polymorphic symbol then it may range
over several sorts. In this case the sort of the entire
expression may vary as a function of the sorts of such
variables.

Defining the sorting functions for predicate symbols
so that they are EE rather than FF for arguments for
which they cannot be true reduces the need for explicit
sortal preconditions on variables. Eg if S, =
tHUMAN,NATNUMJ and we intend LE E P to denote the
‘less than’ relation on the natural numbers, then by
sorting LE so that

ik(<NATNUM,NATNUM>) = uu

LE(T\<NATNuM,NATNUM>) = EE

then we can write AxLE[O,x] rather than
AX [NATNUM[X],+LE[o,x]] as we would have to if LE were
sorted so that LE(T\<NATNUM,NATNUM>) = FF.

the one
lattices.

usually found in type hierarchies and powerset
** (Kowalski, 1971)
Gordon Plotkm

attributes this idea and result to

In (Cohn, 1983) an algorithm is given to compute a
SA g for any formula or term B. Given .$ E E then B(c)
gives the sort of B in the environment $,. If H ([)= I
then B is ill-sorted in [. If ‘d([E E) B([)=l (ie if
B= IA) then B is ill-sorted. Conversely if
‘v’(c E E) &<)=T (’ ie if E:=T~ then B gives us no
information about the precise sort of B; we can
regarded an unsorted logic as sorting all formulae and
all combinations with TA.

If B is a formula with a SA g then we can usefully
distinguish the following two subsets of A.

i) ATT = !B : B E A & rng(&=~TTj~
ii) hF = ~~ : B E A & rng(B’)=tFF{{
where rng(B) = tB(c) : [E E & ~(~)#L]

If B E ATT then B has sort TT for all environments
in which it makes sense and our definition of sati$ability
ensures that B is true in all interpretations. If B E hF
then B has sort FF for all environments in which it
makes sense and our definition of satisfiabihty ensures
that B is false in all inteEpretations. If a well-sorted
formula B has a SA B K (ATTubF) then clearly
UU E rng(B’), so there are environments in which the
truth of B cannot be inferred solely from sortal
information; B might still be t autolog ous or
contradictory but it requires the application of more
general inference rules to detect this.

In (Cohn, 1983) the correctness of the SA algorithm
is proved by showing a certain corrzspondence between
an expression B and its SA ,B. Essentially, the
correspondence shown is that if B tells us that B is of
sort T then in any interpretation the denotation of B
must be a member of the set denoted by T in that
interpretation. If B is a formula then this simply asserts
that if B is of sort TT then it is valid and if it is of sort FF
then it is unsatisfiable. Proving this correspondence
thus amounts to a soundness theorem for SAs. If B is a
combination or stem then we can also prove the
converse, that if B informs us that B is of sort T then for
all T' C_ T st. ~‘21 there is an interpretation in which B
denotes an object in the set denoted by T'. This means
that T = UU only when necessary (ie when B is neither a
tautology nor a falsehood). So if B is a tautology or a
falsehood then it has sort TT or FF as appropriate. Thus

***For technical reasons, in (Cohn, 1983) the
equation is actually somewhat different.

domain

we also have a form of completeness result for SAs.
It may also be noted that the SA algorithm can be

used to detect integrity violations in a first order data
base query language.

6. Many Sorted Inference Rules
A complete set of inference rules is given m (Cohn,

1983) which are shown to be sound and complete. Here
we only have space to sketch what a set of resolution
based inference rules for this msl might look like.

The transformation to clausal form is almost
identical to the unsorted case except for the need to
define the sorting functions for the skolem symbols. This
is easily done using the SAs for the formulae in question.

6.1. Taking Instances.
We choose to view resolution as two rules: applymg a

substitution and resolution. The notion of an instance of
a clause obtained by applying a substitution to a clause
is different to the unsorted notion for several reasons.
Firstly it may be that applying a substitution may yield
an ill-sorted clause. Secondly, in some cases
characteristic literals have to be added to clause. Eg let
P be a predicate symbol sorted so that

ij(<T>) = uu & ti(<T\T>) = EE

and let c be a constant of sort T. Now both ~P[x]] and
tP[c]{ are well-sorted, but it is not the case that
Pbli I= twl since any model (5 of lP[x]i where
g(c) B O(T) falsifies tP[c]j. Clearly it is only the case
that iP[x]i I= fP[C]i when the sort of C is L 7.
However since P[c] is well-sorted we should like to be
able to instantiate x to c. We can do this provided we
broaden our notion of instance so that the instance of
tP[x]j obtained by substituting c for x is 1 -~[c],P[c]j
We shall call the characteristic literal -T[c] a prosthetic
literal since it has to be ‘grafted’ onto the clause lP[c]j
in order to preserve soundness.

It is also possible that applying a substitution may
yield several clauses as an instance. Eg, let the rank two
predicate symbol SPOUSE be sorted so that

SPCUSE(<M,M>) = SPdUSE(<W,W>) = EE

SPdUSE(<M,W>) = SPC%JSE(<W,M>) = UU

where S, = fM,Wj. Consider the (very polygamous!)
clause lSPOUSE[x,y]{. If we substitute c for x then
there are in fact two instances****:

i) 1 -M[c], SPOUSE[c,y]j ii) 1 -W[c], SPOUSE[c,y]j

We should not find it entirely surprismg that
applying a substitution may give rise to multiple
instances for certain polymorphic formulae. As long as
variables remain unmstantiated then a formula may be
polymorphic; however a ground expression has a unique
sort and thus can not be polymorphic. SAs can only
represent sortal relationships between variables; as
combinations are substituted for variables these
relationships must be made explicit in the formula by
prosthesis and multiple instancing. Although the

****The inference is in fact only sound if a mechanism is
provided for restricting the quantification of y to tW{ in
(i) and to IMj m (ii). Details are in (Cohn, 1983).

86

possibly explosive effect of multiple instances on the MOTHER(<M>) = FF & MOTHER(<W>) = IJU
search space during a proof may appear worrying it is
certainly not a product of the msl. In an unsorted logic
the original formulae would have been much more more
complex or more numerous. Eg the many sorted
formula: Ax AySPOUSE[x,y] would have to be
reoresented in an unsorted logic bv a formula such as

A Y d

Ax”~ [[[W+W[YII v [Wb+M[y 11 --) SPOUSE[z,y]]
Thus the search space is complex from the start even
with uninstantiated variables. In an unsorted clausal
resolution system the above formula translates to two
clauses each with three literals. This immediately gives
a choice of clauses to resolve the literal -SPOUSE[m,n]
with. By contrast, m our msl there would be but a single
unit clause. Provided terms of sort M or of sort W were
substituted for x and y then no prosthesis or multiple
instancing would take place and the search space would
be much simpler than in the unsorted case.

where S, = tM,Wj. We could ‘translate’ this sorting
function to a formula in the logic thus,
AX[M~THER[X]+W[X]] w e could then use this formula
to infer W[c] from MOTHER[c] when c is of sort T
However for reasons already stated we prefer not to
encumber a theory with these axioms which Just
duplicate mformation already present in the sorting
functions. Thus we need a special rule to perform
inferences such as the above This rule is called
so&casting and can be viewed as a resolving of a literal
ag ains t the imaginary formula expressing the
information content of the sorting function for the
predicate symbol of the literal concerned. The rule
comes in two forms depending on whether the literal is
positive or negative In general, the situation is
complicated by the necessity of considering several
combinations simultaneously. Eg if

Of course if terms of sort T are substituted for both
x and y then two instances each with two prosthetic
literals would be inferrable; these two clauses would be
identical to those inferred in an unsorted logic. However
this should come as no surprise since we have no useful
sort information about the terms substituted for x and y
and thus the sort mechanism cannot operate effectively.

If the sort of the term substituted for x is M and the

SPdiJSE(<M,W>) = SPCUSE(<W,M>) = UU

SPCUSE(<M,M>) = SPdUSE(<W,W>) = EE

where S, = iM,W{ and cl and c2 are constants of sort T,
then we can infer both [M[cl]-M[c2]] and [W[cl]~W[c2]]

from {SPOUSE[cl,c2]{ by sortcasting.

sort of the term substituted for y is T then there are
two instances but with only one prosthetic literal in
each clause. Thus the sortal mechanism delays
prosthesis and multiple instancing until actually needed,
In an unsorted logic the multiple clauses and the literals
expressing the sort restrictions are always unavoidable.

6.2. Many Sorted Resolution

7. Final Remarks
Use of a msl is not only notationally convenient, as

workers in knowledge representation have found out (eg
see (Hayes, 1971), (Hayes, 1978), (McDermott, 1982) ,
but also can considerably reduce the size of the search
space. Implementation of the logic outlined m this
paper is in hand. We believe that such a system might
prove to be a useful and efficient tool.

The resolution rule given in (Cohn, 1983)
corresponds to the general resolution rule given in
(Robinson, 1979) and (Kowalski, 1971). It is convenient
to split the resolution rule into two: a rule for resolving
non-characteristic literals and a rule for resolving
characteristic literals. Except for the complications
already discussed caused by applying a substitution the
first rule is identical to the usual unsorted rule.

If the structure of S were represented as a set of
axioms in a theory then we would not need a separate
rule of inference for characteristic literals. However this
would not be in the spirit of a msl: the sort machinery
should cope directly with sortal inferences. Moreover

8. Acknowledgements
I would like to thank Pat Hayes, Ray Turner ant

everybody with whom I have discussed this work.

9. References

Champeaux, D, “A Theorem Prover Dating a Semantic
Network,” in Proc AISB/G/ Conf on AI, Hamburg (1978).
Cohn, A G, “Mechanismg a Particularly Expressive Many
Sorted Logic,” PhD Thesis, University of Essex (1983).

the number of axioms needed to represent S would be
very large for even a quite moderate sized S which would
increase the search space and clog the system.
Therefore we define a special rule for resolving
characteristic literals so that, for example, M[C] can be
resolved against W[C], even though the predicate
symbols differ. Unlike ordinary resolution a literal in the
resolvent may directly descend from the hterals
resolved upon. Eg if we are resolving against TI[C] and
72[C] and 71ll72 = 73 # J- then the literal 73[C]
occurs in the resolvent.

Hayes, P J, “A Logic of Actions,” in Machine Intelligence
6, Edmburgh University Press (1971).
Hayes, P J, Ontology of liquids, University of Essex
(1978).
Kowalski, R and Hayes, P J, “Lecture Notes on Automatic
Theorem Provmg,” DCL Memo 40, University of
Edinburgh (1971).-
McDermott, D, “A Temporal Logic for Reasonmg About
Processes and Plans,” Cognitive Science 6(1982).

McSkimin, J R and Minker, J, “The Use of a Semantic
Network in a Deductive Question Answering System,” in

6.3. Sortcasting
Characteristic literal resolution can be viewed as an

inference rule that replaces the axioms that define the
structure of S. We also need a rule that can directly use
the mformation contained in the sorting functions for
the non-logical symbols; otherwise we would need a set of
axioms to encapsulate this knowledge. Eg consider the
sorting function for the predicate symbol MOTHER:

Froc /JCAZ 5, Cambridge (1977).
Reiter, R, “On the Integrity of Typed First Order Data
Bases,” in Advances in Data Base Theory, Volume 1 s ed
H Gallaire, J Mmker, J M Nicolas, Plenum Press (1981)
Robinson, J A, Logic: Form and Function, Edinburgh
University Press (1979)
Weyhrauch, R, Lecture Notes for a Summer-School,
Istituto di Elaborazione dell’lnformazione, Piss (19’78)

