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Abstract 
Many sorted logics can allow an increase in 

deductive efficiency by eliminating useless branches of 
the search space, but are usually formulated so that 
their expressive power is severely limited. 

The many sorted logic described here is unusual in 
that the quantifiers are unsorted; the restriction on the 
range of a quantified variable derives from the argument 
positions of the function and predicate symbols that it 
occupies; associated with every non-logical symbol is a 
sorting function which describes how its sort varies with 
the sorts of its inputs; polymorphic functions and 
predicates are thus easily expressible and statements 
usually requiring several assertions may be compactly 
expressed by a single assertion. 

The sort structure may be an arbitrary lattice. 
Increased expressiveness is obtained by allowing the sort 
of a term to be a more general sort than the sort of the 
argument position it occupies. Furthermore, by allowing 
three boolean sorts (representing ‘true’, ‘false’ and 
‘either true or false’), it is sometimes possible to detect 
that a formula is contradictory or tautologous without 
resort to general inference rules. 

Inference rules for a resolution based system are 
discussed; these can be proved to be both sound and 
complete. 

1. Introduction 
Much research has been directed towards ways of 

cutting down the search space of mechanised inference 
systems. One approach is to divide the individuals in the 
intended interpretation into different sorts and then 
specify the sorts of the arguments of all the non-logical 
symbols in the language and the sorts of the results of 
function symbols; such a logic is known as a many sorted 
logic(msl). Inference rules can be devised for such a 
logic so that many inferences which are obviously 
‘pointless’ (to the human observer) can easily be 
detected to be such by the system because functions or 
predicates are being applied to arguments of 
inappropriate sorts. Sortal information can thus be 
viewed as a form of meta-knowledge. 

Msls provide an simple syntactic way of specifying 
semantic information. Several mechanised msls have 
been proposed or built: eg (Reiter, 1981), (McSkimin, 
1977), (Weyhrauch, 1976) and (Champeaux, 1978). 
Sorts in a logic are rather akin to types in conventional 
programming languages and problems often found in 
strongly typed programming languages may also occur 
in msls. In particular the typing /sorting mechanism 
often reduces the expressive power of the language: it is 
not long before a Pascal programmer becomes 
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frustrated by the impossibility of writmg general 
purpose library procedures because procedures may not 
be polymorphic. 

In this paper we report on a msl which does not 
arbitrarily restrict the expressive power of the language 
and in which it is possible to specify detailed sortal 
information about the non-loglcal symbols which car 
then be used by the inference rules to reduce the search 
space. Space constraints only allow a discursive 
discussion of the logic. Full details including soundness 
and completeness proofs can be found in (Cohn, 1983). 

2. Preliminaries 
We assume the reader is conversant with the First 

Order Predicate Calculus and resolution systems. 
We use upper-case BOLDIT’C letters (possibly 

with numeric suffices and/or primes) as meta-variables 
denoting expressions in the object language. We use bold 
Roman and Greek letters for all other meta-variables. 

The alphabet of the language is the union of tht 
following sets: P: a non-empty set of predicate symbok 
(we use strings composed of entirely of upper-case 
Roman letters), F: a non-empty set of function symbols 
(we use strings composed entirely of lower-case Roman 
letters or numerals), V: a non-empty set of variables (we 
use lower-case italic letters), Iv,.+ - +,- 
boolean connectives, fA,Vj: iwb quanti~eras:setthoei 
universal quantifier A and the existential quantifier V, 
I[,],‘,‘]: three punctuation symbols. 

Terms and formulae are formed from the alphabet 
in the usual way. Terms are either variables or 
combinations. Formulae are atoms, liter&s, boolean 
combinations or quantifications. Disjunctions of laterals 
are called clauses and are usually represented simply as 
the set of their constituent literals. 

3. The Sort Structure 
Various sort structures occur naturally: disjoint 

sorts, trees and lattices. We choose to define the sort 
domain S as the most general such structure, a 
complete boolean lattice. An interpretation must 
interpret the top ( Ts) and bottom (Is) elements of S as 
the universe of discourse (U) and the empty set 
respectively. The partial ordering on S is called ZJs 
We also need the lattice operators Us, lls and \s. We 
usually omit the subscripts on these symbols. It is useful 
to distinguish those elements m S immediately above I; 
these disjoint sorts (their interpretations are non 
overlapping sets) are denoted by S,*. 

*In earlier presentations of this work the sense of the 
lattice was inverted, so that the interpretations of T and 
J- were reversed. The earlier convention followed the 
Scott-Strachey tradition, but the present convention is 
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Of course it is not necessary to actually name all the 
sorts in the sort lattice. It would be ridiculous to have to 
do so for one would then be forced to think up names for 
many sorts which might never actually occur m any 
assertion or during inference. Thus we can distinguish 
between eponymous and anonymous sorts. Every 
anonymous sort should be expressible (using Ll, ll and 
\) purely m terms of eponymous sorts. However, since it 
is easy for an inference engine to invent names for all 
the anonymous sorts for internal use, we shall 
henceforth assume that all sorts are eponymous. 

It will be seen later that we require a unary 
predicate symbol for each eponymous sort, so it will be 
convenient to use this predicate symbol as the sort’s 
name. Laterals formed from these symbols are called 
characteristic literals. 

4. Sorting Functions 
Following (Hayes, 1971) we describe the sortal 

behaviour of a function symbol c1 by a sorting function bi 
of the same arity which maps S to S. This allows the 
specification of polymorphic function symbols, The 
domain equation for sorting functions is S’ + S. For 
technical reasons the crossproduct operation used to 
form the domain 9 is in fact not the usual pointwise 
operation; also, sorting functions may be quite 
reasonably required to be both strict and continuous,. 
for details see (Cohn, 1983). 

Sorting functions can also be used to describe the 
sortal behaviour of predicates, thus allowing 
polymorphic predicates. The question arises as to what 
the sort of an atom should be. One possibility is to 
invent a sort called BOOL E S which is always 
interpreted as the set of the two truth values. This is the 
usual approach, but a better technique is to have a 
separate, boolean sort lattice, B=fEE,TT,FF,UU{. EE and 
UU are the I and T elements of B respectively and TT 
and FF have fixed interpretations of ttruej and ifalse{ 
respectively. It is obvious that since B is a complete 
boolean(!) lattice it is just a particular S and all results 
for S apply to B as well. We can now give the 
functionality of sorting functions for predicate symbols; 
if LX E P then ti: Sn + B. 

It is important to point out that we are not now 
dealing with a four or even three valued logic. The logic 
is still two valued; we interpret function symbols as 
partial functions but predicate symbols are interpreted 
as relations rather than partial predicates so in any 
interpretation a well-sorted formula (ie one whose sort is 
not EE) denotes either true or false; even those formulae 
whose sort is UU still denote one of the two truth values. 
(Our definition of satisfiability also ensures that all 
formulae sorted as TT or FF always denote true or false 
respectively). The four different boolean sorts exist 
purely for the benefit of the deductive machinery; 
formulae sorted as FF or TT can immediately be deduced 
to be contradictions or tautologies, as appropriate; those 
which are UU require inference in the usual way to 
determine a truth value. A formula whose sort is EE is 
ill-sorted; the deductive machinery will refuse to 
perform inferences with it and under no interpretation 
does it denote a truth value; it is as meaningless as if it 

were syntactically ill-formed. 

5. Well-Sorted Formulae 
Intuitively, a formula is well-sorted iff the sorts of all 

the sub-expressions ‘match’ the sorts required by their 
respective argument positions in a consistent manner. 
In most formulations of msl the sort 71 of a term only 
matches the sort 72 of its argument position if 71 & 72. 

However the logic has more expressive power** if the 
match only fails when 71ll72= 1. Eg, let g E F have a 
sorting function such that 

g(<MAN>) = I & g(<WOMAN>) = MAN 

where S, = iMAN,WOMAN{ and let c be a constant symbol 
of sort T. We allow g[c] to be well-sorted even though if 
c is interpreted as a man then g[c] fails to denote 

Some machinery is required in order to be able to 
assign a sort to variables since variables do not have 
sorting functions but clearly the sort of an expression 
containing variables cannot, in general, be determined 
without knowing the sort of all constituent terms. The 
usual technique is to have separate quantifiers for every 
sort, for the sort of a variable could then be determined 
from the sort of its governing quantifier. However this 
would reduce the value of allowing polymorphic sorting 
functions since an instance of a variable would then have 
a unique sort associated with it. Eg suppose P is a rank 
two predicate symbol such that 

P(<M,W>) = P(<W,M>) = EE 

P(<M,M>) = P(<w,w>) = uu 

where S, = tM,Wj. To express that P[z,y] is always true 
would seem to need two statements if we have sorted 
quantifiers: 

A,x ~,yP[x,y] and +p A\wY P[ZlYl 
It would be much more natural if we could just write. 
AxAyP[x,y] and let x and y range over M and W as 
appropriate (ie y should always be of the same sort as 
z). This is the mechanism envisaged by (Hayes, 1971) 
and is certainly very convenient. The basic idea is that 
the sort of variable should be determined by the 
argument positions it occurs in. If it occurs as an 
argument to a polymorphic symbol then it may range 
over several sorts. In this case the sort of the entire 
expression may vary as a function of the sorts of such 
variables. 

Defining the sorting functions for predicate symbols 
so that they are EE rather than FF for arguments for 
which they cannot be true reduces the need for explicit 
sortal preconditions on variables. Eg if S, = 
tHUMAN,NATNUMJ and we intend LE E P to denote the 
‘less than’ relation on the natural numbers, then by 
sorting LE so that 

ik( <NATNUM,NATNUM>) = uu 

LE(T\<NATNuM,NATNUM>) = EE 

then we can write AxLE[O,x] rather than 
AX [NATNUM[X ],+LE[o,x]] as we would have to if LE were 
sorted so that LE(T\<NATNUM,NATNUM>) = FF. 

the one 
lattices. 

usually found in type hierarchies and powerset 
** (Kowalski, 1971) 
Gordon Plotkm 
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In (Cohn, 1983) an algorithm is given to compute a 
SA g for any formula or term B. Given .$ E E then B(c) 
gives the sort of B in the environment $,. If H ([)= I 
then B is ill-sorted in [. If ‘d([ E E) B([)=l (ie if 
B= IA) then B is ill-sorted. Conversely if 
‘v’(c E E) &<)=T (’ ie if E:=T~ then B gives us no 
information about the precise sort of B; we can 
regarded an unsorted logic as sorting all formulae and 
all combinations with TA. 

If B is a formula with a SA g then we can usefully 
distinguish the following two subsets of A. 

i) ATT = !B : B E A & rng(&=~TTj~ 
ii) hF = ~~ : B E A & rng(B’)=tFF{{ 
where rng(B) = tB(c) : [ E E & ~(~)#L] 

If B E ATT then B has sort TT for all environments 
in which it makes sense and our definition of sati$ability 
ensures that B is true in all interpretations. If B E hF 
then B has sort FF for all environments in which it 
makes sense and our definition of satisfiabihty ensures 
that B is false in all inteEpretations. If a well-sorted 
formula B has a SA B K (ATTubF) then clearly 
UU E rng(B’), so there are environments in which the 
truth of B cannot be inferred solely from sortal 
information; B might still be t autolog ous or 
contradictory but it requires the application of more 
general inference rules to detect this. 

In (Cohn, 1983) the correctness of the SA algorithm 
is proved by showing a certain corrzspondence between 
an expression B and its SA ,B. Essentially, the 
correspondence shown is that if B tells us that B is of 
sort T then in any interpretation the denotation of B 
must be a member of the set denoted by T in that 
interpretation. If B is a formula then this simply asserts 
that if B is of sort TT then it is valid and if it is of sort FF 
then it is unsatisfiable. Proving this correspondence 
thus amounts to a soundness theorem for SAs. If B is a 
combination or stem then we can also prove the 
converse, that if B informs us that B is of sort T then for 
all T' C_ T st. ~‘21 there is an interpretation in which B 
denotes an object in the set denoted by T'. This means 
that T = UU only when necessary (ie when B is neither a 
tautology nor a falsehood). So if B is a tautology or a 
falsehood then it has sort TT or FF as appropriate. Thus 

***For technical reasons, in (Cohn, 1983) the 
equation is actually somewhat different. 

domain 

we also have a form of completeness result for SAs. 
It may also be noted that the SA algorithm can be 

used to detect integrity violations in a first order data 
base query language. 

6. Many Sorted Inference Rules 
A complete set of inference rules is given m (Cohn, 

1983) which are shown to be sound and complete. Here 
we only have space to sketch what a set of resolution 
based inference rules for this msl might look like. 

The transformation to clausal form is almost 
identical to the unsorted case except for the need to 
define the sorting functions for the skolem symbols. This 
is easily done using the SAs for the formulae in question. 

6.1. Taking Instances. 
We choose to view resolution as two rules: applymg a 

substitution and resolution. The notion of an instance of 
a clause obtained by applying a substitution to a clause 
is different to the unsorted notion for several reasons. 
Firstly it may be that applying a substitution may yield 
an ill-sorted clause. Secondly, in some cases 
characteristic literals have to be added to clause. Eg let 
P be a predicate symbol sorted so that 

ij(<T>) = uu & ti(<T\T>) = EE 

and let c be a constant of sort T. Now both ~P[x]] and 
tP[c]{ are well-sorted, but it is not the case that 
Pbli I= twl since any model (5 of lP[x]i where 
g(c) B O(T) falsifies tP[c]j. Clearly it is only the case 
that iP[x]i I= fP[C]i when the sort of C is L 7. 
However since P[c] is well-sorted we should like to be 
able to instantiate x to c. We can do this provided we 
broaden our notion of instance so that the instance of 
tP[x]j obtained by substituting c for x is 1 -~[c],P[c]j 
We shall call the characteristic literal -T[c] a prosthetic 
literal since it has to be ‘grafted’ onto the clause lP[c]j 
in order to preserve soundness. 

It is also possible that applying a substitution may 
yield several clauses as an instance. Eg, let the rank two 
predicate symbol SPOUSE be sorted so that 

SPCUSE(<M,M>) = SPdUSE(<W,W>) = EE 

SPdUSE(<M,W>) = SPC%JSE(<W,M>) = UU 

where S, = fM,Wj. Consider the (very polygamous!) 
clause lSPOUSE[x,y]{. If we substitute c for x then 
there are in fact two instances****: 

i) 1 -M[c], SPOUSE[c,y]j ii) 1 -W[c], SPOUSE[c,y]j 

We should not find it entirely surprismg that 
applying a substitution may give rise to multiple 
instances for certain polymorphic formulae. As long as 
variables remain unmstantiated then a formula may be 
polymorphic; however a ground expression has a unique 
sort and thus can not be polymorphic. SAs can only 
represent sortal relationships between variables; as 
combinations are substituted for variables these 
relationships must be made explicit in the formula by 
prosthesis and multiple instancing. Although the 

****The inference is in fact only sound if a mechanism is 
provided for restricting the quantification of y to tW{ in 
(i) and to IMj m (ii). Details are in (Cohn, 1983). 
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possibly explosive effect of multiple instances on the MOTHER(<M>) = FF & MOTHER(<W>) = IJU 
search space during a proof may appear worrying it is 
certainly not a product of the msl. In an unsorted logic 
the original formulae would have been much more more 
complex or more numerous. Eg the many sorted 
formula: Ax AySPOUSE[x,y] would have to be 
reoresented in an unsorted logic bv a formula such as 

A Y d 

Ax”~ [[[W+W[YII v [Wb+M[y 11 --) SPOUSE[z,y]] 
Thus the search space is complex from the start even 
with uninstantiated variables. In an unsorted clausal 
resolution system the above formula translates to two 
clauses each with three literals. This immediately gives 
a choice of clauses to resolve the literal -SPOUSE[m,n] 
with. By contrast, m our msl there would be but a single 
unit clause. Provided terms of sort M or of sort W were 
substituted for x and y then no prosthesis or multiple 
instancing would take place and the search space would 
be much simpler than in the unsorted case. 

where S, = tM,Wj. We could ‘translate’ this sorting 
function to a formula in the logic thus, 
AX[M~THER[X]+W[X]] w e could then use this formula 
to infer W[c] from MOTHER[c] when c is of sort T 
However for reasons already stated we prefer not to 
encumber a theory with these axioms which Just 
duplicate mformation already present in the sorting 
functions. Thus we need a special rule to perform 
inferences such as the above This rule is called 
so&casting and can be viewed as a resolving of a literal 
ag ains t the imaginary formula expressing the 
information content of the sorting function for the 
predicate symbol of the literal concerned. The rule 
comes in two forms depending on whether the literal is 
positive or negative In general, the situation is 
complicated by the necessity of considering several 
combinations simultaneously. Eg if 

Of course if terms of sort T are substituted for both 
x and y then two instances each with two prosthetic 
literals would be inferrable; these two clauses would be 
identical to those inferred in an unsorted logic. However 
this should come as no surprise since we have no useful 
sort information about the terms substituted for x and y 
and thus the sort mechanism cannot operate effectively. 

If the sort of the term substituted for x is M and the 

SPdiJSE(<M,W>) = SPCUSE(<W,M>) = UU 

SPCUSE( <M,M>) = SPdUSE(<W,W>) = EE 

where S, = iM,W{ and cl and c2 are constants of sort T, 
then we can infer both [M[cl]-M[c2]] and [W[cl]~W[c2]] 

from {SPOUSE[cl,c2]{ by sortcasting. 

sort of the term substituted for y is T then there are 
two instances but with only one prosthetic literal in 
each clause. Thus the sortal mechanism delays 
prosthesis and multiple instancing until actually needed, 
In an unsorted logic the multiple clauses and the literals 
expressing the sort restrictions are always unavoidable. 

6.2. Many Sorted Resolution 

7. Final Remarks 
Use of a msl is not only notationally convenient, as 

workers in knowledge representation have found out (eg 
see (Hayes, 1971), (Hayes, 1978), (McDermott, 1982) , 
but also can considerably reduce the size of the search 
space. Implementation of the logic outlined m this 
paper is in hand. We believe that such a system might 
prove to be a useful and efficient tool. 

The resolution rule given in (Cohn, 1983) 
corresponds to the general resolution rule given in 
(Robinson, 1979) and (Kowalski, 1971). It is convenient 
to split the resolution rule into two: a rule for resolving 
non-characteristic literals and a rule for resolving 
characteristic literals. Except for the complications 
already discussed caused by applying a substitution the 
first rule is identical to the usual unsorted rule. 

If the structure of S were represented as a set of 
axioms in a theory then we would not need a separate 
rule of inference for characteristic literals. However this 
would not be in the spirit of a msl: the sort machinery 
should cope directly with sortal inferences. Moreover 

8. Acknowledgements 
I would like to thank Pat Hayes, Ray Turner ant 

everybody with whom I have discussed this work. 

9. References 

Champeaux, D, “A Theorem Prover Dating a Semantic 
Network,” in Proc AISB/G/ Conf on AI, Hamburg (1978). 
Cohn, A G, “Mechanismg a Particularly Expressive Many 
Sorted Logic,” PhD Thesis, University of Essex (1983). 

the number of axioms needed to represent S would be 
very large for even a quite moderate sized S which would 
increase the search space and clog the system. 
Therefore we define a special rule for resolving 
characteristic literals so that, for example, M[C] can be 
resolved against W[C], even though the predicate 
symbols differ. Unlike ordinary resolution a literal in the 
resolvent may directly descend from the hterals 
resolved upon. Eg if we are resolving against TI[ C] and 
72[ C] and 71ll72 = 73 # J- then the literal 73[ C] 
occurs in the resolvent. 

Hayes, P J, “A Logic of Actions,” in Machine Intelligence 
6, Edmburgh University Press (1971). 
Hayes, P J, Ontology of liquids, University of Essex 
(1978). 
Kowalski, R and Hayes, P J, “Lecture Notes on Automatic 
Theorem Provmg,” DCL Memo 40, University of 
Edinburgh (1971).- 
McDermott, D, “A Temporal Logic for Reasonmg About 
Processes and Plans,” Cognitive Science 6( 1982). 

McSkimin, J R and Minker, J, “The Use of a Semantic 
Network in a Deductive Question Answering System,” in 

6.3. Sortcasting 
Characteristic literal resolution can be viewed as an 

inference rule that replaces the axioms that define the 
structure of S. We also need a rule that can directly use 
the mformation contained in the sorting functions for 
the non-logical symbols; otherwise we would need a set of 
axioms to encapsulate this knowledge. Eg consider the 
sorting function for the predicate symbol MOTHER: 

Froc /JCAZ 5, Cambridge ( 1977). 
Reiter, R, “On the Integrity of Typed First Order Data 
Bases,” in Advances in Data Base Theory, Volume 1 s ed 
H Gallaire, J Mmker, J M Nicolas, Plenum Press (1981) 
Robinson, J A, Logic: Form and Function, Edinburgh 
University Press (1979) 
Weyhrauch, R, Lecture Notes for a Summer-School, 
Istituto di Elaborazione dell’lnformazione, Piss (19’78) 


