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I Introduction 

While the mathematics of conditional probabilities 
in general, and Bayesian statistics in particular, would 
seem to offer a foundation for medical diagnosis (and 
other cases of decision making under uncertainty), such 
approaches have been rejected by most “artificial intelli- 
gence in medicine” researchers. Typically, Bayesian 
statistics have been rejected for the following reasons. 

1) 

2) 

3) 

In its pure form it would require an impossible 
number of statistical parameters. 

The only way to escape from (1) is to impose absurd 
statistical independence assumptions [‘7,9]. 

And at any rate, Bayesian statistics only works for 
the single disease situation [3,6] 

In this paper we will argue that while objection (1) is , . . 
correct, (2) is not, making (1) moot. Furthermore, while 
(3) seems to be valid, even there, Bayesian statistics is 
perfectly compatible with various heuristic solutions to 
the multiple-disease problem. To reject Bayesian statis- 
tics on the basis of (3) would be like rejecting closed- 
form solutions to differential equations because the 
toughest ones must be solved numerically. Thus we will 
claim that Bayesian statistics offers a realistic basis for 
practical medical diagnosis. 

On the other hand, we will not argue that adoption of 
Bayesian statistics will lead to better diagnosis pro- 
grams! Instead we will suggest that the common sense 
application of Bayesian statistics will lead to programs 
that will be hard to distinguish from current “non- 
Bayesian” programs. Or, to put it slightly differently, 
while programs such as MYCIN [6] and Internist [6] pro- 
fess to be non-Bayesian, when one ignores what their 
authors say, and concentrate on what the programs do, 

“this paper came into being in an attempt to explain the limita- 
tions of Bayesian statistics. To my initial horror, the more I 
pressed, the less important the limitations seemed to be. How- 
ever, in coming to this conclusion I had to have a lot of my con- 
ftlsions cleared up, and for this I would like to thank Stuart Ge- 
man, Drew McDermott, JeEery Vitter, and the students of 
(3201 (particularly Jim Hecdler and David Wittenberg) for 
their hrJ1n PP;r thanks also to Graeme Hirst, who made helpful 
comments on an earlier draft of this paper. The confusions 
which remain are, of course, my own. 

they turn out to be remarkably Bayesian after all. Thus 
the goal here is one of clarification. 

However, this is not to say that absolutely everyone 
is against Bayesian statistics. Duda, Hart and Nilsson [l] 
propose a scheme for combining a general inference sys- 
tem with Bayesian statistics. Indeed, the scheme 
presented here can be thought of as a continuation of 
their line of research, since we will assume, as they do, 
that the initial probabilities will be obtained from intui- 
tive “guesses” by experts. They also have a nice discus- 
sion of how to handle the inevitable -contradictory 
numbers that will arise from such a process. In related 
work, Pearl [4] shows how distributed systems can 
quickly update such probabilities. 

However, to date there is no evidence that such 
work has had any influence on AI-in-medicine research- 
ers, and it is not to hard to see why. All such systems 
require very strong assumptions, regarding both 
independence of symptoms and exclusivity of diseases - 
assumptions which are widely believed not to hold in the 
medical domain. These reservations have not been 
addressed. This we intend to do. 

II Bayes’s Theorem 

Bayesian statistics is based upon the idea of condi- 
tional probabilities. If we have observed symptoms 
Sl” *s, then the best disease to postulate would be 
that disease 6 that maximized P(c& 1 s 1 . . . s,), the con- 
ditional probability of di given s I + . * s, l. Unfortunately 
no one knows the necessary numbers to compare. 
Indeed, given that we would need such numbers for all 
possible subsets of symptoms, the number of such 
parameters is astronomical. When we are dealing with 
fifty or sixty findings, in all likelihood the particular com- 
bination is unique in the history of the universe. In such 
cases it is difficult to collect reliable statistics. 

Now Bayes’s formula offers a way to compute 
numbers. The form we will use in this paper is this: 

The standard form of Bayes’s 
nator the following term: 

theorem has as its denomi- 

But, this 
exclusive 

EP(s, ' * ' sn I dj)*P(dj) 
j=1 

form requires the dj’s 
- things the East version 

to be exhaustive 
does not require. 

Unfortunately we do not have 
into Bayes’s theorem either. 

the numbers to plug 
The standard answer to 

such 

and 

‘Our use cf the terms “s:;LilptoIT,” x, i. ’ ” ‘i.. _ ” c,rz domewhat 
loose. By “symptom” we simply mean anything which could 
suggest the presence of a disease, including the presence of a 
second disease. Nothing however hangs on this. 
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assumptions. We shall return shortly to d iscuss the rea- 
sonableness of these assumptions. For the moment we 
will consider how they help the situation. We can sim- 
plify this last equation by making two such independence 
assumptions. The first is the independence of two symp- 
toms. -Formally. this assumption is this: 

Henceforth we will write this as follows: 

P(%Isj)=P(Sf,) 

From this we can infer the following: 

P(Si&Sj)=P(Si)*P(Sj) 

The other assumption we need is that two symptoms 
are not simply independent among people at large, but 
also in the subset of people suffering from the disease d. 

P(S*(Sj&d)=P(Si(d) 

This is equivalent to: 

P(Si&Sj i d)=P(Si 1 d)*P(Sj [ d) 

By making these two independence assumptions for all 
subsets of symptoms we can reduce Bayes’s theorem to: 

However, even this reduced load of statistical 
parameters are not known, but rather have to be 
obtained from physician’s subjective estimates. It seems 
plausible that physicians have some ideas about the con- 
ditional probabilities of symptoms given diseases. This is 
what one learns in medical school. However, the prior 
probabilities P(4) and P(Sj) are at best known only 

within a few orders of magnitude.s Nevertheless, to 
ignore them completely, as is- done by several programs, 
really amounts to saying that they are all the same, an 
obviously bad approximation. 

It is instructive to rewrite the last equation as: 

where we have defined I(d j s)= w This reformula- 

tion is useful because it suggests how to modify previous 
probability estimates when we get a new symptom. Ini- 
tially we give every disease its prior probability P(G). 
To take a new symptom Sj into account we multiply the 
previous probability of disease O$ by r(d, Isj) to get the 
probability in light of the newest information. 

Actually, we can make this even simpler. We virtu- 
ally always modify probabilities by multiplying them by 
some factor. Because of this, and because probabilities 
vary over such a wide range (the prior probability of a 
cough is WlO-‘, but th t f a o some rare disease might be 
-“lO-i”) it m k a es sense to use the logarithm of probabili- 
ties rather than the probabilities themselves. Taking the 
log of both sides of the last equation gives us this: 

log(P& Is 1 . " S,)>=lOg(P(di))+lOg(I(diIs,))+ 

' ' * +lOg(l(d, I sn>> 

So instead of keeping around the various conditional pro- 
babilities, we really need to know the logarithm of the I 
factors, and we modify our belief in the presence of a 
disease by adding in a number. The result will look much 
like the Internist[G] updating system (except that Inter- 
nist does not use the prior probabilities). 

III Independence 

Now let us turn to the independence assumptions we 
needed in order to get this far. As we have &en, the 
need for such assumptions has been a big argument 
against a Bayesian approach. However, a bit of reflection 
should convince YOU that wild non-indeoendence of 
symptoms will kill any scheme whatsoever. When we 
take a new symptom into account we have to know how it 
modifies our belief in different diseases. Indeoendence 
tells us that the modifications it makes are indkoendent 
of the other symptoms we have seen. If such simplifying 
assumption cannot be used, then the modifications 
change drastically depending on the exact group of 
symptoms we have seen, and, as we have already noted, 
such numbers are unavailable on a priori grounds. 

But are these independence assu-mptions the right 
assumptions to make? In this section we will show that 
they a;e not as bad as they have been made out. 

A. Independence of Symptoms 

We made two assumptions, the independence of 
symptoms, and the independence of symptoms given a 
disease. 

P(Si 1 sj>=P(Si) 
P(Si 1 Sj &d)=P(Si 1 d) 

Of these, the second is more reasonable than the first, if 
only because the first is completely unreasonable. To 
see why the independence of symptoms is such a bad 
assumption, note that if we have two symptoms that are 
typically the results of the same diseases, then we will 
tend to see them together a lot. As such, they will not be 
independent. For example, vomiting and diarrhea go 
together so commonly that 

~(dia?-?%ea&vomiting )>>P(diarrhea) *P(uomiting ) 

This example is only the most obvious. A little thought 
should convince you that if two or more symptoms tend 
to suggest the same disease, that virtually assures that 
they will not be independent.a 

Indeed, the independence-of-symptoms assumption 
is so bad that it is fortunate that it doesn’t matter. Look 
again at Bayes’s formula with the two independence 
assumptions factored in. 

3 There is a misunderstanding in the literature related to this 
point. Pednault et. a1[5] claim to show that for a system that 
obeys both of the independence assumptions, plus exhaustive- 
ness and mutual exclusivity of diseases, “no updating can take 
place”. Subsequently Pearl[4] argues that Pednault must be 
wrong because he has a provably correct updating scheme. 
Pednault’s result is correct, but it has nothing to da with the 
process of updating. As suggested from the above discussion, 
it is rather the case that any such system must also have the 
unfortunate property that none of the symptoms shed any light 
011 the diseases. Thus, updating works correctly, but because 
the symptoms are completely uncorrelated with diseases, the 
posterior probabilities are the same as the prior probabilities. 
It is for this reason that “no updating can take place”. 
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The independence of symptoms gives us the denomina- 
tor. It is important to note that since the denominator 
does not mention the disease we are talking about, it will 
be the same for all diseases. Thus, the error we make by 
assuming independence of symptoms will be equally fac- 
tored into our estimate of the probability of all diseases. 
So not only will this have no effect on the rank ordering 
of which diseases are most probable, but the ratio of the 
probabilities of two diseases will remain unaffected (or 
equivalently, the difference between two log’s of proba- 
bilities will stay the same). This simply suggests that we 
should not base decisions on the absolute values of the 
probabilities, a conclusion that Pople [S], citing an arti- 
cle by Sherman argues for on empirical grounds4 

B. Independence of Symptoms Given a Disease 

The other assumption we made was the indepen- 
dence of symptoms given aparticular disease. 

P(s,b&d)=P(s,ld) 

This is a much better assumption than plain indepen- 
dence of symptoms, but, as opposed to the latter, if it 
fails for particular cases it could affect the ranking of 
disease possibilities. 

Let us consider a typical case where it does fail. A 
person with arterial sclerosis (which we abbreviate U-SC) 
will sometimes show lung symptoms. Also, if the patient 
shows one such lung symptom then he is more likely to 
show a second. In other words: 

P(lung-qm21 asc&lung-sym,)>>P(lung-sym21asc) 

Thus the two symptoms are not independent given asc. 

Again, however, there is an easy solution to this 
problem. To see it, consider the “common sense” expla- 
nation of what is going on in this case. A doctor will 
explain these happenings by saying that asc can cause 
heart complications. In particular, it can cause one of 
two pathological states called right heart syndrome and 
left heart syndrome. In the left heart syndrome, blood 
backs up into the lungs, so we see various lung symp- 
toms. Thus, seeing one lung symptom probably means 
that the patient has left heart syndrome, and is more 
likely to show other lung symptoms. 

Such explanations form a typical argument for 
“causal” reasoning about diseases. Causal reasoning is 
indeed powerful, but the next step is usually to contrast 
it with a Bayesian approach. The two are not mutually 
exclusive. Indeed there is a Bayesian analog of this kind 
of reasoning. To see how it works, we first introduce the 
pathological state left heart syndrome into our Bayesian 
reasoning, by defining the following: 

P(asc\left-heart-syndrome) 
P(left-heart-syndromellung-symptom) 

Then, by analogy with causal reasoning we have this: 

P(d [s)=P(d Ipath-state)*P(path-state Is) 

Strictly, this equation only holds given two conditions. 
The tist is this: 

P(d 1 not path-state&s)*P(not path-state 1 s) 
<<P(d [path-state&s)*P(path-state 1 s> 

‘Unfortunately, my (possibly early) copy of the Pople 
has no reference information about the Sherman article. 

article 

IllfOl ,,,;llly t..liiS SuJ ,; thtil .Z is only related to d through 
pathological state. The second assumption is this: 

P(d Ipath-state&s)=P(d Ipath-state) 

That is, it requires that d and s are independent given 
the pathological state. In cases where causal reasoning 
is appropriate, both of these assumptions should hold. 

Thus, to mimic causal reasoning, we would first cal- 
culate the new probability of the pathological state in 
light of the symptom observed, and then see how our 
belief in a disease is modified by our belief in the patho- 
logical state. 

If we have two symptoms associated with the patho- 
logical state, when we observe the second the appropri- 
ate equation is this: 

LP(d Is,&sz)=LP(d Is,)+LI(path-state 1s~) 

Given Ll(path-state i s,)>Ll(d 1 sz), this equation 
correctly predicts the following relation: 

LP(d \s,&s2)>LP(d Is,)+Ll(d (s2) 

This result is of interest because it shows how the intro- 
duction of the pathological state accounts for the fact 
that s i and s2 are not independent given d. 

The point is that by assuming the existence of this 
pathological state we remove this common objection to 
our independence assumptions. On the-other hand, note 
that we had to introduce another statistical parameter 
to get rid of the independence assumption, namely 
P(d Ipath-state). But this is not a case of merely substi- 
tuting one parameter for another. If, as seems reason- 
able, all of the symptoms si associated with path-state 
are independent given path-state, then we have intro- 
duced only one new parameter while accounting for 
many previous cases of symptom dependence. 

C. What To Do When All Else Fails 

In the Iast section we saw that we could ignore the 
non-independence of symptoms, and fix the non- 
independence of symptoms given a disease by the inclu- 
sion of commonly recognized pathological states. How- 
ever, this latter technique will not always work. 

One example is given by Szolovits and Pauker [9]. 
The probability of finding a second heart murmur given a 
diagnosis of heart disease will not be independent of the 
first murmer. While it would be possible to introduce a 
“pathological state” to account for this, my medical 
informant tells me that this is not natural (as opposed to 
the “right heart syndrome” situation), and instead the 
doctor must simply learn the relations. 

But if a doctor must handle this as a special case, 
then it does not seem unreasonable for our program to 
do the same thing. Furthermore, we already have at 
hand a natural way to do this. The technique is provided 
by MYCIN [8]. In MYCIN, rather than restrict the pro- 
gram to inference rules of the form 

symptom ==> disease (with likelihood = X) 

(which would be the MYCIN equivalent of a Bayesian con- 
ditional probability), the program also allows 

(and symptom1 
symptom2 . . . 
symptomfl) ==> disease (with likelihood = X) 

This latter situation will handle the case when the symp- 
toms are not independent. Admittedly, we need to worry 
about cases where, say, all but one of the symptoms are 
present, and the last is unknown (a case MYCIN does not 
really handle well), but the extension is not all that 
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complicated. 

The point is that if there are cases where indepen- 
dence is violated, then reasonably obvious extensions to 
the “normal” independent case seem to do the job. 

IV Multiple Diseases 

The last of the major objections is that Bayesian 
statistics can only deal with situations where the alterna- 
tives are mutually exclusive. Thus there is a real prob- 
lem in interpreting Bayesian results in cases where more 
than one disease may be present. If we know there is a 
single disease then we need only pick the one with the 
highest posterior probability. If there may be more than 
one, then what do we do? 

There is a standard way to accommodate Bayesian 
statistics to the multiple-disease situation, and that is by 
creating new “diseases” which are really all pairs, tri- 
ples, etc. of diseases. Of course, we will have to stop 
somewhere, or else we would have an infinite number of 
these new “diseases”, but this number could be made 
large. As is commonly recognized, however, this “solu- 
tion” is computationally untractable. 

Thus Bayesian statistics probably says nothing use- 
ful about the multiple-disease situation. However, it is 
false that Bayesian statistics precludes handling multiple 
diseases. Firstly, the version of Bayes’s theorem we used 
does not require the diseases to be mutually exclusive 
(the more typical version does, which is why we did not 
use the typical version). Next, suppose we use Bayes’s 
theorem as in the single-disease case, and get a list of 
diseases, ordered by probability. Now, of course, more 
than one may have high probability. While Bayesian 
statistics says nothing about how to make use of such a 
list, there are well known heuristic techniques which 
take off from this point. In particular we refer here to 
the method used in Internist. There the highest ranking 
disease is used to define a subset of the previously postu- 
lated diseases which all explain roughly the same symp- 
toms. Internist assumes, (in accordance with Occams 
Razor) that only one of these diseases will be present, 
and tries to distinguish between them by calling for 
further tests. If these support the previous highest 
ranking disease, then it is concluded to be present. At 
this point the “winning” disease, and its competitors, 
are all removed from the list of postulated diseases 
along with the symptoms the winner accounted for. If 
there are still remaining diseases on the list, the process 
is repeated, with the new probabilities computed on only 
the remaining symptoms. This goes on until no more 
diseases are left, or until the assumption of no further 
diseases is more plausible than any of the remaining 
diseases. 

Now admittedly, this procedure owes nothing to 
Bayesian statistics. However, there is nothing in it 
incompatible with Bayesian statistics. We can start by 
collecting Bayesian statistics on the probabilities of each 
of the diseases. Indeed, this is virtually exactly what 
Internist does, although it is not labeled as such. 

v Conclusion 

Our conclusions can be summarized as follows: 

1) While nobody has detailed probabilities for diseases, 
symptoms, etc. doctors do have order of magnitude 
estimates. 

2) The independence assumptions are not nearly as 
bad as commonly portrayed. The lack of indepen- 
dence of symptoms is no problem, and the lack of 
independence of symptoms given diseases often 

(most of the time?) can be removed by introducing 
pathological states and causal reasoning - some- 
thing most AI programs do anyway. 

3) Where independence does break down completely, 
we can use techniques such as those in MYCIN. 
(Indeed, the lack of independence should be the 
only reason for introducing such techniques.) 

4) As far as we can tell, multiple diseases cannot be 
handled by Bayesian methods. However, using Baye- 
sian methods as if there were no multiple diseases 
will produce valid results up until the end, when it is 
no longer possible to pick the top disease as the 
“winner”. Then we must use heuristic methods. 

Overall our position in this paper has been conserva- 
tive in that we have only endeavored to reconstruct 
already existing programs from a mathematically secure 
basis. It is possible to hope, however, that more might 
result from the recognition that mathematical rigor, and 
common sense practicality, do not necessarily conflict in 
the domain of medical diagnosis. The recognition that 
formal logic need not be divorced from knowledge 
representation theory [2] has lead to renewed interest in 
the insights of mathematicians and philosophers. Any 
statistician will recognize that the mathematics in this 
paper is a couple of hundred years old. Statistics has 
not stood still in that time. 

1. 

2. 

3. 

4. 

5. 
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