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Abstract 

This paper analyzes relationships between the roles of 
descriptions and actions in large scale, open ended, 
geographically distributed, concurrent systems. Rather than 
atlempt to deal with the complexities and ambiguities of 
currently implemented descriptive languages, we concentrate our 
analysis on what can be expressed in the underlying frameworks 
such as the lambda calculus and first order logic. By this means 
we conclude that descriptions and actions complement one 
another; neither being sufficient unto itself. This paper provides 
a basis to begin the analysis of the very subtle relationships that 
hold between descriptions and actions in Open Systems. 

1. Open Systems 

Problems and opportunities associated with describing and 
taking action in “open systems” will be increasingly recognized 
as a central line of computer system development. In the future 
many computer applications will be based on communication 
bctwcen systems which will have been dcvelopcd separately and 
indcpcndcntly. These systems arc open-ended and incremental-- 
undergoing continual evolution. The only thing that the 
components of an open syslcm hold in common is the ability to 
communicate with each other. In this paper we study description 
and actions in Open Systems from the viewpoint of Message 
Passing Semantics. a research programme to explore issues in the 
semantics of communication in parallel systems. 

In an open system it becomes very difficult to determine 
what objects exist at any point in time. For example a query 
might never finish looking for possible answers. If a system is 
asked to find all the current mail address of people who have 
graduated from MIT since 1930, it might have a hard time 
answering. It can give all the mail address it has found so far, but 
there is no guarantee that another one can’t, be found by more 
diligent search. These examples illustrate how the “closed world 
assumption” is intrinsically contrary to the nature of Open 
Systems. We understand the “closed world assmi7ption” to be 
that the informalion about the world being modeled is complete 
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in the sense that all and UII!IJ the relationships that can possibly 
hold among objects are those implied by the local information at 
hand (cf. [Reiter 821). Systems based on the “closed world 
assumption” typically assume that they can find all the instances 
of a concept that exist by searching their local storage. 111 

contrast we desire that systems be accountable for having 
evidence for their beliefs and be explicitly aware of the limits of 
their knowledge. At first glance it might seem that the closed 
world assumption, almost universal in the AI. and database 
literature, is smart because it provides a ready default answer for 
any query. Unfortunately the default answers providecl become 
less realistic as the Open System increases in size. 

2. Message Passing Semantics 

2.1. Descriptions of Behavior 
Message Passing Semantics builds on Actor ‘I’heoly as a 

foundation. Actor Theory describes important aspects of 
parallelism and serialization from the view point of message 
pauing ohjjcctc. It goes beyond the sequential coroutine message 
passing devcioped in systems like Simula and SmallTalk. An 
actor svstem is composed of abstract objects called acton. Actors 
we defined bv their behavior when they accept communications. 
When a communication is accepted an actor can perform the 
following kinds of actions concurrently: make sirnple decisions 
(such as whether some actor it received in the communication is 
the same as one of its acquaintances). create new actors, transmit 
more communications to its own acquaintances as well as the 
acquaintances of the communication accepted, and change its 
behavior for the next message accepted (i.e. change its local state) 
subject to the constraints of certain laws [Hewitt, Baker 771. 

Below we describe the behavior of a simple actor which is a 
shared checking account which we will call ACCOUNT43. One 
kind of description might be a partiul description of what 
happened when the actor ACCOUNT43 with a balance of $10 
accepted a request to make a deposit with amount $2 for 
customer CZ, and as a result created the actor $12, sent a 
CornpIe t ion report to c2, and became an account with balance 
$12: 
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ACCOUNT43 
I 

(an Account 
(with balance $10) 
(with behavior 

(2 Behavior 
( . . . . . . . . 

I 
*ACCEPTED* . 

” 
(a Request 

(with message 
(2 Deposit 

(with amount $2))) 
(with customer ~2)) 

*BECAME* *REPLIED-TO* c2+(a Completion) 

+G$ 

. . . . 

Figure 2-1: A Happening 

Later in the paper we will describe how the behavior of an 
actor is written in the language Act2. 

2.2. Shared Resources 
The modeling of shared resources is fimdamental to Open 

Systems. Actor systems aim to provide a clean way to implcmcnt 
elfccts (not “side-effects” a pcjorntive term that has been used as 
a kind of curse by proponents of purely applicative programming 
in the Iambda calculus). By an efJ&f we mean a local state 
ch:tnge in a shared actor which causes a change in behavior that 
is visible to other actors. For e~rmple sending a deposit to an 
account sh,tred by muhiple users should have the effect of 
increasing the balance in the account. 

ACCOUNT43 is an example of the kind of shared resource 
which is important in the conceptual modeling of Open Systems. 
Such shared resources should be suitable for use by a growing 
collection of users. To a given user, a shared account will exhibit 
indeterminacy in the balance depending on the deposits and 
withdrawals made by other users. The indeterminacy arises from 
the indeterminacy in the arrival order of messages at the shared 
account. A common bug in attempting to model computation in 
open systems is to <assume that an agent sending messages can 
determine the order in which they will be seen by the recipient. 
It is important to realize that the above assumption is contrary to 
the nature of Open Systems. Also implementing shared resources 
inherently involves being open to outside communications, even 
those put forth by parties which joined the Open System after 
the request being considered was received. 

2.3. Multiple-Inheritance 
A description, such and (2 SharedAccount), can inherit 

attributes and behavior from other descriptions. In this example, 
a shared account inherits from bolh the description of an 
Account unJthe description of a Possess ion. 

(an Account 
(with balance (an Amount))) 

(a SharedAccount) 

Figure 2-2: h/lultiple Inheritance 

Dealing with the issues raised by the possibility of being a 
specialization of more than one description has become known as 
the “Multiple Inheritance Problem”. A number of approaches 
have been developed in the last few years including the 
following: [Weinreb, Moon 811, [Curry, Baer. Lipkie, Lee 821, 
[t3orning, Ingails 821, [Bobrow, Stcfik 821 and [Borgida, 
Mylopoulos, Wong 821. Our approach dirfers in that it builds on 
the theory of an underlying description system [Attardi, Simi 811. 
This theory axiomatizes the relationship between the multiple 
inherited descriptions. This theory also maintains the parallelism 
inherent in actor theory, and thus is suitable for describing highly 
distributed open systems. 

2.4. Change 
The degree of parallelism is partially determined by whether 

the actor can change its local state or not. Actors which can 
change their local state are called serialized actors. A serialized 
actor accepts only one message at a time for processing; it will 
not accept another message for processing until it has dealt with 
the one which it has received. A communication received by a 
serialized actor is processed in order of arrival: although, not 
necessarily in the order sent. Actors which can never change 
their local state are called unseriulized actors. These actors are 
able to process arbitrarily many messages at the same time. 
Actors such as the square root function and the text of Lincoln’s 
Gettysburg Address are unserialized. 

Open systems do not have welt defined global states. Effects 
are implemented by an actor changing its own local state using a 
become command [Hewitt, Atkudi, Lieberman 791. There are no 
assignment commands. Our conceptual model of change 
contrasts with the usual computer science notion in which change 
is modeled by updating the state components of a universal 
global state (Milne, Strachey 761. The absence of a well defined 
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global state is a fundamental diff’crcncc between the actor model 
and claGca1 sequential models of computation (vi?. [‘furing 371, 
[Church 411, etc.) Actor systems can perjbrm ~~ontietermi~fistic 
computations jbr which there is no equivalent nondcterministic 
‘Tirrinq AI&line [Clinger 811. ‘I he noncquivalcnce points up the 
limitations of attempting to model parallel systems as 
nondeterministic sequential machines [Milnc. Strachey 761. This 
is not to say that actor systems can implement functions which 
are not recursively computable (like solving the Halting 
Problem). Instead the point is that recursive functions do not 
provide an adequate model of parallelism. I.E. an Open System 
cannot be adequately modeled as a recursive function which 
maps global states to global states because at any given point in 
time an Open System does not in general have a well defined 
global state. Will Clinger has developed an elegant mathematical 
theory [Clinger 811 (called Actor Theory) which accounts for 
capabilities of actor systems which go beyond those of 
nondeterministic Turing Machines. We claim that 
nondeterministic Turing machines are an unsatisfactory model of 
the compututional capabilities of large-scale open systems. 

2.5. Concurrency 
Concurrency in Open Systems stems from the parallel 

operation of an incrementally growing number of multiple, 
independent, communicating agents. Sites can join an Open 
system in the cdurse of its normal operation--sometimes even 
affecting the results of computations initiated befire they joined. 
Actor TheooF has been designed to accurately model the 
computaiionu! properties of Open Systems. It is a consequence of 
the Actor Model that purely functional programming languages 
based on the lambda calculus cannot implement shared accounts 
in Open Systems. The continuation technique promoted by 
Strachey and Milne [Milne, Sirachey 761 for simulating some 
kinds of parallelism in the lambda calculus does not apply to 
Open Systems. ‘The lambda calculus simulation is sequential 
whereas Open Systems are inherently parallel. Concurrency in 
the lambda calculus stems from the concurrent 
reduction/evaluation of various parts of a single lambda 
expression with an environment which is fixed when the lambda 
expression is created. In Open Systems independent agents can 
incrementally and independently spawn ongoing computations 
so the evaluation of an expression can be affected by actions 
which were initiated after the evaluation of the expression is 
begun. 

2.6. Truth ml behavior 
Message Passing Semantics takes a different perspective on 

the meaning of a sentence from that of truth-theoretic semantics. 
In truth-theoretic semantics [T‘arski 441, the meaning of a 
sentence is determined by the models which make it true. For 
example the conjunction of two sentences is true in a model 
exactly in which both of its conjuncts are true in the model. In 
contrast Message Passing Semantics takes the meaning of a 
message to be the @ect it has on the subsequent behavior of the 
system. In other words the meaning of a message is determined 

by how it affects the recipients. F&h partial meaning of a 
message is constructed by a recipient in terms of how it is 
processed (cf. [Reddy 791). The meaning of a message is open 
ended and unfolds indefinitely far into the future as other 
recipients process the message. 

At a deep level. understanding always involves 
categorization. which is a function of interactional (rather than 
inherent) properties and the perspective of individual 
viewpoints. Message Passing Semantics differs radically from 
truth-theoretic semantics which assumes that it is possible to give 
an account of truth in itself. free of interactional issues, and that 
the theory of meaning will be based on such a theory of truth 
[Lakoff, Johnson 801. 

3. Description and Action 

3.1. Limitntions of Descriptions 
The distinction between doing and describing is different 

from the usual distinction made in the Artificial Inteliigence 
literature [McCarthy, Hayes 691 [Hayes 771 between the 
eprstonological adequacy of a system (its accuracy with respect to 
truth-theoretic semantics ITarski 441) and the heuristic adequacy 
(the @ziencv of its inferential proccdurcs in proving theorems). 
Thus the distinction between epislemological adcc~aacy and 
heuristic adequacy is founded on the basis of truth-theoretic 
semantics. Our simple example can help clarify the distinction. 
An cpistcnlologically adequate theory of financial accounts gives 
an accurate description of the rules that govern them. An 
heuristically adequate system can derive theorems in the theory 
of financial accounts fast enough to answer queries. Both kinds 
of adequacy are concerned with the description of financial 
accounts: the former with its accuracy; the later with the 
efficiency with which the description can be used to answer 
questions. 

Neither kind of adequacy actually accomplishes creating a 
shared account with $10 in it so a growing set of geographically 
dispersed users can make deposits and withdrawals. We could 
describe a certain kind of account with an axiom such as the 
following: 

((d > 0) implies 
(replies-after-acceptance 

(a SharedAccount (with balance b)) 
(2 Deposit (with amount d)) 
(2 CompletionReport 

(with ResultingBalance (b + d))))) 

where the variables b and d are universally quantified and the 
predicate replies-after-acceptance takes three arguments 
which are a description of the local state of an actor when it 
accepts a request message, a description of the request accepted, 
and a description of the reply to the request. respectively. Now it 
should be clear that hypothesizing that ACCOUNT43 satisfies the 
following description: 



(a SharedAccount 
(with InitialBalance $20) 
(with Place BankOfLondon) 
(with Time "Midnight, December 31, 1987")) 

does not by itself actually create such an account. Indeed the 
above assertion is ambiguous between the following 
interpretations: 

- Hypothesis Interpretation: We have just discovered 
that ACCOUNT43 is already such an account and want 
to cxplicilly record this in the data base. 

- Goal Interpretation: We want to declare our goal of 
having ACCOUNT43 be such an account and we will 
devote some effort to establishing the goal. 

To actually create the account requires providing the money 
for the initial deposit in the account. Making assertions by itself 
will not suffice. Similarly asserting the ACCOUNT43 is not a 
SharedAccount does not in itself destroy an account which is 
located elswhere. 

3.2. Taking Action 
Knowing that something is true and taking action to make it 

come true are tnro d$ferent things. Both are important and they 
should not be confused In this section we discuss how actors can 
take action to supplement the previous sections discussion of 
how they can manipulate descriptions. 

Actions such as creating a new shared account with balance 
$12 and owner Ken can be performed by evaluating an 
expression such as the one below in the programming language 
Act.2 [Theriault 831, [Lieberman 81a]: 

(new SharedAccount 
(with Balance $12) 
(with Owners {Ken})) 

Below we present 
Sharedaccount. 

part of the implementation 

(Define (new SharedAccount 
(with balance =b) 
(with owners =s)) 

(create 
(is-reauest (2 balance) & 

(reply (a SharedAccount 
(with balance b)))) 

(is-reouest (3 deposit 
(with amount =a) & 

(become (new SharedAccount 
(with balance (+ b a)))) 

(reoly (a deposit-receipt 
(with amount a))))) 

. . . 

. . * 
-**))I 

of 

At this point we would like to take note of several unusual 
aspects of the above implementation. The ACT2 language is an 
open system, i.e. each command and expression parses and 
evaluates itself. New commands and expressions can easily be 
added to the language. They are also actors, so they can execute 
in parallel. For example, in the communication handler for 
Deposit requests above, the following two commands are 
executed concurrently: 

(become (new SharedAccount 
(with balance (+ b a)))) 

(reolv (2 deposit-receipt 
(with amount a))) 

The principle of maximizing concurrency is fundamental to the 
design ofactor programming languages. It accoums for many of 
the differences with conventional languages based on 
communicating sequential processes. 

4. Rchled Work 

The object-oriented programming languages (e.g. 
[Birtwistle, Dahl, Myhrhaug, Nygaard 731. [Liskov, Snyder, 
Atkinson, Schaffert 771, [Shaw, Wulf, London 771, and [Ichbiah 
801) are built out of objects (sometimes called “data 
abstractions”) which are completely separate from the 
procedures in the language. Similarly the lambda calculus 
programming languages (e.g. [McCarthy 621, [I.andin 651, 
[Friedman, Wise 761, [Backus 781, and [Steele, Sussman 781) are 

built on functions and data structures (viz. lists, arrays, etc.) 
which are separate. SmallTalk [Ingalls 781 is somewhat a special 
case since it simplified Simula by leaving out the procedures 
entirely, i.e. it has only classes. The Simula-like languages 
provide effective support for coroutines but not for concurrency. 
In contrast the Actor Model is designed to aid in conceptual 
modeling of shared objects in a highly parallel open systems. 
Actors serve to provide a unified conceptual basis for functions, 
data structures, classes, suspensions, futures, procedure 
invocations, exception handlers, objects, procedures, processes, 
etc. in all of the above programming languages [Baker, Hewitt 
771, [Lieberman 81b], [Hewitt, Attardi, Liebernlan 791. For 
example sending a request communication generalizes the 
traditional procedure invocation mechanism which requires that 
control return to the point of invocation. A request 
communication contains the mail address of a customer to which 
the response to the request should be sent as well as the message 
specifying the task to be performed. In this way, exception 
handlers [Liskov, Snyder, Atkinson, Schaffcrt 771, [Ichbiah 801 
and co-routines [Uirtwistle, Dahl. Myhrhaug, Nygaard 731 are 
conveniently unified with other more general control structures. 
7 he Actor Model unifies the conceptual basis of the lambda 
calculus and the object-oriented schools of programming 
languages--being malhematically defined, it is independent of all 
programming languages. 

Prolog based systems such ;IS Intermission [Kahn 821 and 
Concurrent prolog [Shapiro 831 arc pragmatically useful and 
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interesting expcrimcnts in their own right, Unfortunately, 
neilhcr as yet has a well dcvcloped malhcmatical semantics 
which would make it possible to clircctly analy~c them as WC have 
done for the lambda calculus and first order logic. To rile extent 
lhat Intermission and Concurrent Prolog are based on j?rsr order 
logic and the lumbda calculus, they inherit limitations discussed in 
this paper. 

5. Conclusion 

The fundamental thesis of this paper is that knowing that 
something is the case and taking action to make it the case are 
two different things which should not be confused. Asserting a 
proposition P can mean that we have established that P is the 
case and want to explicitly record this in the data base. Or it can 
mean that we want to declare that P is our goal and we will 
devote some effort to planning how to do it. Neither of the 
above possibilities inherently involves taking any action. The 
capability to take action as well as to describe the world is very 
important. The relationships between description and action are 
quite subtle. 

We claim that actors (unlike lambda expressions, logical 
implications, etc.) are the universal objects of concurrent systems 
and that they can serve as a efficient interfuce between the 
hardware and sofiwure. Actors provide an absolute conceptual 
interface between the software and hardware of parallel 
computer systems. The function of the hardware is to efficiently 
implement the primitive actors and the ability to communicate in 
parallel. Software systems in turn can be implemented in terms 
of actors completely independently of the hardware 
configuration. The actor concept itself is defined mathematically 
and is thus logically independent of all programming languages 
and hardware architectures. A system consisting of multiple 
processors -- called the APIARY -- is being developed to use the 
inherent parallelism of actor systems to increase the efficiency of 
computation [Hewitt SO]. 

Message Passing Semantics deals coherently with both doing 
and describing whereas truth-thcorctic semantics only addresses 
sonic of the issues of describing. WC claim that it is impossible to 
implement shared resources for Open Systems using description 
systems such as first order logic and the lambda calculus because 
they lack the necessary communication capabilities. 

Description languages based on first order logic and/or the 
lambda calculus have been designed to express properties but are 
incapable of taking action. On the other hand procedural 
languages (such as current dialects of Lisp and Ada) have been 
designed to efficiently take action but they suffer from a lack of 
descriptive capabilities. We need good ways to integrate the 
roles of descriptions and actions in our systems. Some of the 
ideas in this paper have been applied to the analysis of the 
relationship between the roles of descriptions and actions in 
organizational work [Barber, de Jong, Hewitt 831. 
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