
Analyzing tlic Roles of Descriptions and Actions
in Open Systems

Carl Hewitt
Peter de Jong

The Artificial Intelligence Laboratory
Massachusetts l[nstitute of Technology

Cambridge, Massachusetts 02139

Abstract

This paper analyzes relationships between the roles of
descriptions and actions in large scale, open ended,
geographically distributed, concurrent systems. Rather than
atlempt to deal with the complexities and ambiguities of
currently implemented descriptive languages, we concentrate our
analysis on what can be expressed in the underlying frameworks
such as the lambda calculus and first order logic. By this means
we conclude that descriptions and actions complement one
another; neither being sufficient unto itself. This paper provides
a basis to begin the analysis of the very subtle relationships that
hold between descriptions and actions in Open Systems.

1. Open Systems

Problems and opportunities associated with describing and
taking action in “open systems” will be increasingly recognized
as a central line of computer system development. In the future
many computer applications will be based on communication
bctwcen systems which will have been dcvelopcd separately and
indcpcndcntly. These systems arc open-ended and incremental--
undergoing continual evolution. The only thing that the
components of an open syslcm hold in common is the ability to
communicate with each other. In this paper we study description
and actions in Open Systems from the viewpoint of Message
Passing Semantics. a research programme to explore issues in the
semantics of communication in parallel systems.

In an open system it becomes very difficult to determine
what objects exist at any point in time. For example a query
might never finish looking for possible answers. If a system is
asked to find all the current mail address of people who have
graduated from MIT since 1930, it might have a hard time
answering. It can give all the mail address it has found so far, but
there is no guarantee that another one can’t, be found by more
diligent search. These examples illustrate how the “closed world
assumption” is intrinsically contrary to the nature of Open
Systems. We understand the “closed world assmi7ption” to be
that the informalion about the world being modeled is complete

*This paper describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Major
support for this work was provided by the System Development
Foundation.

in the sense that all and UII!IJ the relationships that can possibly
hold among objects are those implied by the local information at
hand (cf. [Reiter 821). Systems based on the “closed world
assumption” typically assume that they can find all the instances
of a concept that exist by searching their local storage. 111

contrast we desire that systems be accountable for having
evidence for their beliefs and be explicitly aware of the limits of
their knowledge. At first glance it might seem that the closed
world assumption, almost universal in the AI. and database
literature, is smart because it provides a ready default answer for
any query. Unfortunately the default answers providecl become
less realistic as the Open System increases in size.

2. Message Passing Semantics

2.1. Descriptions of Behavior
Message Passing Semantics builds on Actor ‘I’heoly as a

foundation. Actor Theory describes important aspects of
parallelism and serialization from the view point of message
pauing ohjjcctc. It goes beyond the sequential coroutine message
passing devcioped in systems like Simula and SmallTalk. An
actor svstem is composed of abstract objects called acton. Actors
we defined bv their behavior when they accept communications.
When a communication is accepted an actor can perform the
following kinds of actions concurrently: make sirnple decisions
(such as whether some actor it received in the communication is
the same as one of its acquaintances). create new actors, transmit
more communications to its own acquaintances as well as the
acquaintances of the communication accepted, and change its
behavior for the next message accepted (i.e. change its local state)
subject to the constraints of certain laws [Hewitt, Baker 771.

Below we describe the behavior of a simple actor which is a
shared checking account which we will call ACCOUNT43. One
kind of description might be a partiul description of what
happened when the actor ACCOUNT43 with a balance of $10
accepted a request to make a deposit with amount $2 for
customer CZ, and as a result created the actor $12, sent a
CornpIe t ion report to c2, and became an account with balance
$12:

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

ACCOUNT43
I

(an Account
(with balance $10)
(with behavior

(2 Behavior
(.

I
ACCEPTED .

”
(a Request

(with message
(2 Deposit

(with amount $2)))
(with customer ~2))

BECAME *REPLIED-TO* c2+(a Completion)

+G$

. . . .

Figure 2-1: A Happening

Later in the paper we will describe how the behavior of an
actor is written in the language Act2.

2.2. Shared Resources
The modeling of shared resources is fimdamental to Open

Systems. Actor systems aim to provide a clean way to implcmcnt
elfccts (not “side-effects” a pcjorntive term that has been used as
a kind of curse by proponents of purely applicative programming
in the Iambda calculus). By an efJ&f we mean a local state
ch:tnge in a shared actor which causes a change in behavior that
is visible to other actors. For e~rmple sending a deposit to an
account sh,tred by muhiple users should have the effect of
increasing the balance in the account.

ACCOUNT43 is an example of the kind of shared resource
which is important in the conceptual modeling of Open Systems.
Such shared resources should be suitable for use by a growing
collection of users. To a given user, a shared account will exhibit
indeterminacy in the balance depending on the deposits and
withdrawals made by other users. The indeterminacy arises from
the indeterminacy in the arrival order of messages at the shared
account. A common bug in attempting to model computation in
open systems is to <assume that an agent sending messages can
determine the order in which they will be seen by the recipient.
It is important to realize that the above assumption is contrary to
the nature of Open Systems. Also implementing shared resources
inherently involves being open to outside communications, even
those put forth by parties which joined the Open System after
the request being considered was received.

2.3. Multiple-Inheritance
A description, such and (2 SharedAccount), can inherit

attributes and behavior from other descriptions. In this example,
a shared account inherits from bolh the description of an
Account unJthe description of a Possess ion.

(an Account
(with balance (an Amount)))

(a SharedAccount)

Figure 2-2: h/lultiple Inheritance

Dealing with the issues raised by the possibility of being a
specialization of more than one description has become known as
the “Multiple Inheritance Problem”. A number of approaches
have been developed in the last few years including the
following: [Weinreb, Moon 811, [Curry, Baer. Lipkie, Lee 821,
[t3orning, Ingails 821, [Bobrow, Stcfik 821 and [Borgida,
Mylopoulos, Wong 821. Our approach dirfers in that it builds on
the theory of an underlying description system [Attardi, Simi 811.
This theory axiomatizes the relationship between the multiple
inherited descriptions. This theory also maintains the parallelism
inherent in actor theory, and thus is suitable for describing highly
distributed open systems.

2.4. Change
The degree of parallelism is partially determined by whether

the actor can change its local state or not. Actors which can
change their local state are called serialized actors. A serialized
actor accepts only one message at a time for processing; it will
not accept another message for processing until it has dealt with
the one which it has received. A communication received by a
serialized actor is processed in order of arrival: although, not
necessarily in the order sent. Actors which can never change
their local state are called unseriulized actors. These actors are
able to process arbitrarily many messages at the same time.
Actors such as the square root function and the text of Lincoln’s
Gettysburg Address are unserialized.

Open systems do not have welt defined global states. Effects
are implemented by an actor changing its own local state using a
become command [Hewitt, Atkudi, Lieberman 791. There are no
assignment commands. Our conceptual model of change
contrasts with the usual computer science notion in which change
is modeled by updating the state components of a universal
global state (Milne, Strachey 761. The absence of a well defined

163

global state is a fundamental diff’crcncc between the actor model
and claGca1 sequential models of computation (vi?. [‘furing 371,
[Church 411, etc.) Actor systems can perjbrm ~~ontietermi~fistic
computations jbr which there is no equivalent nondcterministic
‘Tirrinq AI&line [Clinger 811. ‘I he noncquivalcnce points up the
limitations of attempting to model parallel systems as
nondeterministic sequential machines [Milnc. Strachey 761. This
is not to say that actor systems can implement functions which
are not recursively computable (like solving the Halting
Problem). Instead the point is that recursive functions do not
provide an adequate model of parallelism. I.E. an Open System
cannot be adequately modeled as a recursive function which
maps global states to global states because at any given point in
time an Open System does not in general have a well defined
global state. Will Clinger has developed an elegant mathematical
theory [Clinger 811 (called Actor Theory) which accounts for
capabilities of actor systems which go beyond those of
nondeterministic Turing Machines. We claim that
nondeterministic Turing machines are an unsatisfactory model of
the compututional capabilities of large-scale open systems.

2.5. Concurrency
Concurrency in Open Systems stems from the parallel

operation of an incrementally growing number of multiple,
independent, communicating agents. Sites can join an Open
system in the cdurse of its normal operation--sometimes even
affecting the results of computations initiated befire they joined.
Actor TheooF has been designed to accurately model the
computaiionu! properties of Open Systems. It is a consequence of
the Actor Model that purely functional programming languages
based on the lambda calculus cannot implement shared accounts
in Open Systems. The continuation technique promoted by
Strachey and Milne [Milne, Sirachey 761 for simulating some
kinds of parallelism in the lambda calculus does not apply to
Open Systems. ‘The lambda calculus simulation is sequential
whereas Open Systems are inherently parallel. Concurrency in
the lambda calculus stems from the concurrent
reduction/evaluation of various parts of a single lambda
expression with an environment which is fixed when the lambda
expression is created. In Open Systems independent agents can
incrementally and independently spawn ongoing computations
so the evaluation of an expression can be affected by actions
which were initiated after the evaluation of the expression is
begun.

2.6. Truth ml behavior
Message Passing Semantics takes a different perspective on

the meaning of a sentence from that of truth-theoretic semantics.
In truth-theoretic semantics [T‘arski 441, the meaning of a
sentence is determined by the models which make it true. For
example the conjunction of two sentences is true in a model
exactly in which both of its conjuncts are true in the model. In
contrast Message Passing Semantics takes the meaning of a
message to be the @ect it has on the subsequent behavior of the
system. In other words the meaning of a message is determined

by how it affects the recipients. F&h partial meaning of a
message is constructed by a recipient in terms of how it is
processed (cf. [Reddy 791). The meaning of a message is open
ended and unfolds indefinitely far into the future as other
recipients process the message.

At a deep level. understanding always involves
categorization. which is a function of interactional (rather than
inherent) properties and the perspective of individual
viewpoints. Message Passing Semantics differs radically from
truth-theoretic semantics which assumes that it is possible to give
an account of truth in itself. free of interactional issues, and that
the theory of meaning will be based on such a theory of truth
[Lakoff, Johnson 801.

3. Description and Action

3.1. Limitntions of Descriptions
The distinction between doing and describing is different

from the usual distinction made in the Artificial Inteliigence
literature [McCarthy, Hayes 691 [Hayes 771 between the
eprstonological adequacy of a system (its accuracy with respect to
truth-theoretic semantics ITarski 441) and the heuristic adequacy
(the @ziencv of its inferential proccdurcs in proving theorems).
Thus the distinction between epislemological adcc~aacy and
heuristic adequacy is founded on the basis of truth-theoretic
semantics. Our simple example can help clarify the distinction.
An cpistcnlologically adequate theory of financial accounts gives
an accurate description of the rules that govern them. An
heuristically adequate system can derive theorems in the theory
of financial accounts fast enough to answer queries. Both kinds
of adequacy are concerned with the description of financial
accounts: the former with its accuracy; the later with the
efficiency with which the description can be used to answer
questions.

Neither kind of adequacy actually accomplishes creating a
shared account with $10 in it so a growing set of geographically
dispersed users can make deposits and withdrawals. We could
describe a certain kind of account with an axiom such as the
following:

((d > 0) implies
(replies-after-acceptance

(a SharedAccount (with balance b))
(2 Deposit (with amount d))
(2 CompletionReport

(with ResultingBalance (b + d)))))

where the variables b and d are universally quantified and the
predicate replies-after-acceptance takes three arguments
which are a description of the local state of an actor when it
accepts a request message, a description of the request accepted,
and a description of the reply to the request. respectively. Now it
should be clear that hypothesizing that ACCOUNT43 satisfies the
following description:

(a SharedAccount
(with InitialBalance $20)
(with Place BankOfLondon)
(with Time "Midnight, December 31, 1987"))

does not by itself actually create such an account. Indeed the
above assertion is ambiguous between the following
interpretations:

- Hypothesis Interpretation: We have just discovered
that ACCOUNT43 is already such an account and want
to cxplicilly record this in the data base.

- Goal Interpretation: We want to declare our goal of
having ACCOUNT43 be such an account and we will
devote some effort to establishing the goal.

To actually create the account requires providing the money
for the initial deposit in the account. Making assertions by itself
will not suffice. Similarly asserting the ACCOUNT43 is not a
SharedAccount does not in itself destroy an account which is
located elswhere.

3.2. Taking Action
Knowing that something is true and taking action to make it

come true are tnro d$ferent things. Both are important and they
should not be confused In this section we discuss how actors can
take action to supplement the previous sections discussion of
how they can manipulate descriptions.

Actions such as creating a new shared account with balance
$12 and owner Ken can be performed by evaluating an
expression such as the one below in the programming language
Act.2 [Theriault 831, [Lieberman 81a]:

(new SharedAccount
(with Balance $12)
(with Owners {Ken}))

Below we present
Sharedaccount.

part of the implementation

(Define (new SharedAccount
(with balance =b)
(with owners =s))

(create
(is-reauest (2 balance) &

(reply (a SharedAccount
(with balance b))))

(is-reouest (3 deposit
(with amount =a) &

(become (new SharedAccount
(with balance (+ b a))))

(reoly (a deposit-receipt
(with amount a)))))

. . .

. . *
-**))I

of

At this point we would like to take note of several unusual
aspects of the above implementation. The ACT2 language is an
open system, i.e. each command and expression parses and
evaluates itself. New commands and expressions can easily be
added to the language. They are also actors, so they can execute
in parallel. For example, in the communication handler for
Deposit requests above, the following two commands are
executed concurrently:

(become (new SharedAccount
(with balance (+ b a))))

(reolv (2 deposit-receipt
(with amount a)))

The principle of maximizing concurrency is fundamental to the
design ofactor programming languages. It accoums for many of
the differences with conventional languages based on
communicating sequential processes.

4. Rchled Work

The object-oriented programming languages (e.g.
[Birtwistle, Dahl, Myhrhaug, Nygaard 731. [Liskov, Snyder,
Atkinson, Schaffert 771, [Shaw, Wulf, London 771, and [Ichbiah
801) are built out of objects (sometimes called “data
abstractions”) which are completely separate from the
procedures in the language. Similarly the lambda calculus
programming languages (e.g. [McCarthy 621, [I.andin 651,
[Friedman, Wise 761, [Backus 781, and [Steele, Sussman 781) are

built on functions and data structures (viz. lists, arrays, etc.)
which are separate. SmallTalk [Ingalls 781 is somewhat a special
case since it simplified Simula by leaving out the procedures
entirely, i.e. it has only classes. The Simula-like languages
provide effective support for coroutines but not for concurrency.
In contrast the Actor Model is designed to aid in conceptual
modeling of shared objects in a highly parallel open systems.
Actors serve to provide a unified conceptual basis for functions,
data structures, classes, suspensions, futures, procedure
invocations, exception handlers, objects, procedures, processes,
etc. in all of the above programming languages [Baker, Hewitt
771, [Lieberman 81b], [Hewitt, Attardi, Liebernlan 791. For
example sending a request communication generalizes the
traditional procedure invocation mechanism which requires that
control return to the point of invocation. A request
communication contains the mail address of a customer to which
the response to the request should be sent as well as the message
specifying the task to be performed. In this way, exception
handlers [Liskov, Snyder, Atkinson, Schaffcrt 771, [Ichbiah 801
and co-routines [Uirtwistle, Dahl. Myhrhaug, Nygaard 731 are
conveniently unified with other more general control structures.
7 he Actor Model unifies the conceptual basis of the lambda
calculus and the object-oriented schools of programming
languages--being malhematically defined, it is independent of all
programming languages.

Prolog based systems such ;IS Intermission [Kahn 821 and
Concurrent prolog [Shapiro 831 arc pragmatically useful and

165

interesting expcrimcnts in their own right, Unfortunately,
neilhcr as yet has a well dcvcloped malhcmatical semantics
which would make it possible to clircctly analy~c them as WC have
done for the lambda calculus and first order logic. To rile extent
lhat Intermission and Concurrent Prolog are based on j?rsr order
logic and the lumbda calculus, they inherit limitations discussed in
this paper.

5. Conclusion

The fundamental thesis of this paper is that knowing that
something is the case and taking action to make it the case are
two different things which should not be confused. Asserting a
proposition P can mean that we have established that P is the
case and want to explicitly record this in the data base. Or it can
mean that we want to declare that P is our goal and we will
devote some effort to planning how to do it. Neither of the
above possibilities inherently involves taking any action. The
capability to take action as well as to describe the world is very
important. The relationships between description and action are
quite subtle.

We claim that actors (unlike lambda expressions, logical
implications, etc.) are the universal objects of concurrent systems
and that they can serve as a efficient interfuce between the
hardware and sofiwure. Actors provide an absolute conceptual
interface between the software and hardware of parallel
computer systems. The function of the hardware is to efficiently
implement the primitive actors and the ability to communicate in
parallel. Software systems in turn can be implemented in terms
of actors completely independently of the hardware
configuration. The actor concept itself is defined mathematically
and is thus logically independent of all programming languages
and hardware architectures. A system consisting of multiple
processors -- called the APIARY -- is being developed to use the
inherent parallelism of actor systems to increase the efficiency of
computation [Hewitt SO].

Message Passing Semantics deals coherently with both doing
and describing whereas truth-thcorctic semantics only addresses
sonic of the issues of describing. WC claim that it is impossible to
implement shared resources for Open Systems using description
systems such as first order logic and the lambda calculus because
they lack the necessary communication capabilities.

Description languages based on first order logic and/or the
lambda calculus have been designed to express properties but are
incapable of taking action. On the other hand procedural
languages (such as current dialects of Lisp and Ada) have been
designed to efficiently take action but they suffer from a lack of
descriptive capabilities. We need good ways to integrate the
roles of descriptions and actions in our systems. Some of the
ideas in this paper have been applied to the analysis of the
relationship between the roles of descriptions and actions in
organizational work [Barber, de Jong, Hewitt 831.

6. Acknowledgments

Much of the work underlying our ideas was conducted by
members of the Message Passing Semantics group at MIT. We
especially would like to thank Jon Amsterdam, Jerry Barber,
Henry Lieberman, and Dan Theriault. Extensive discussions
with our collaborators Elihu Cerson and Leigh Star have been of
fundamental importance in improving the organization and
content of this paper. A chat with Marvin Minsky and Danny
Hillis helped to clarify the nature of the differences between
actions and descriptions.

The development of the Actor Model has benefited from
extensive interaction with the work of Jack Dennis, Bob Filman,
Dan Friedman, Bert Halstead, Tony Hoare, Gilles Kahn, Dave
MacQueen. Robin Milner. Gordon Plotkin, Steve Ward, David
Wise over the past half decade. The work on Simula and its
successors SmallTalk. CLU, Alphard, etc. has profoundly
influenced our work. We are particularly grateful to Alan Kay,
Peter Deutsch. Laura Gould, and the other members of the
Learning Research group for interactions and useful suggestions.

This paper describes research done at the Artificial
lntelligcnce Laboratory of the Massachusetts lnstitute of
Technology. Major support for the research reported in this
paper wps provided by the System Development Foundation.
M:ljor support for other rclatcd work in the Artificial in tclligence
Laboratory is provided, in part. by the Advanced Research
Projects Agency of the Department of Dcfcnse under Office of
Naval Research contract N0014-80-C-0505. We would like to
thank Charles Smith, Mike Brady, and Patrick Winston for their
support and encouragement.

References

[Attardi, Simi 811 Attardi. G. and Simi. M. Semantics of
Inheritance and Attributions in the Description System
Omega. Proceedings of IJC.41 81, IJCAI, Vancouver,
B. C., Canada, August, 1981.

[Backus 781 Backus, J. Can Programming be Liberated from
the von Neumann Style? A Functional Style and Its
Algebra of Programs. Communicalions of the ACM 21, 8
(August 1978), 613-641.

[Baker, Hewitt 771 Baker, H. and Hewitt. C. The Incremental
Garbage Collection of Processes. Conference Record of
the Conference on AI and Programming Languages,
ACM, Rochester, New York, August, 1977.

[Barber, de Jong, Hewitt 831 Barber. G. R., de Jong, S. P., and
Hewitt, C. Semantic Support for Work in Organizations.
Proceedings of IFIP-83, IFIP, Sept., 1983.

[Birtwistle, Dahl, Myhrhaug, Nygaard 731 Birtwistle, G. M.,
Dahl, O-J., Myhrhaug, B., Nygaard, K. Simula Begin.
Van Nostrand Reinhold, New York, 1973.

[Bobrow, Stefik 821 Bobrow, D. G., Stefik, M. J. Loops: An
Object Oriented Programming System for Interlisp.
Xerox PARC, 1982.

[Borgida, Mylopoulos, Wong 821 Borgida, A., Mylopoulos, J. L.,
Wong, H. K. T. Generalization as a Basis for Software
Specification. Perspectives on Conceptual Modeling,
Springer-Verlng, 1982.

[Borning, Ingalls 821 Borning, A. H., Ingalls, D. H. Multiple
Inheritance in Smalltalk-80. Proceedings of the National
Conference on Artificial Intelligence, AAAI,
August, 1982.

[Church 411 Church, A. The Calculi of Lambda-Conversion.
In Annuls of Muihemutics Studies Number 6, Princeton
University Press, 1941.

[Clinger 811 Clinger, W. D. Foundations of Actor Semantics.
AI-TR- 633, MIT Artificial Intelligence I,aboratory, May,
1981.

[Curry, Raer, Lipkie, Lee 821 Curry, G.. Bacr, L., I,ipkie. D..
Lee, B. Traits: An Approach to Multiple-Inheritance
Subclassing. Conference on Office Information Systems,
ACM SIGOA, June, 1982.

[Friedman, Wise 761 Friedman, D. P., Wise, D. S. The Impact
of Applicative Programming on Multiprocessing.
Proceedings of the International Conference on Parallel
Processing, ACM, 1976, pp. 263-272.

[IIayes 771 Hayes. P. J. In Defense of Logic. Proceedings of
the Fifth International Joint Conference on Artificial
Intelligence, Cambridge, Ma, 1977, pp. 559-565.

[Ifewitt SO] Hewitt C. E. The Apiary Network Architecture for
Knowledgeable Systems. Conference Record of the 1980
Lisp Conference, Stanford University, Stanford,
California, August, 1980.

[Illewitt, Attardi, Lieberman 791 Hewitt C., Attardi G., and
Lieberman H. Specifying and Proving Properties of
Guardians for Distributed Systems. Proceedings of the
Conference on Semantics of Concurrent Computation,
INRIA, Evian, France, July, 1979.

[Ilewitt, Baker 771 Hewitt, C. and Baker, H. Laws for
Communicating Parallel Processes. 1977 IFIP Congress
Proceedings, IFIP, 1977.

[Ichbiah SO] Ichbiah, J. D. Reference Manual for the Ada
Progmmmijzg Language. November 1980 edition, United
States Department of Defense, 1980.

[lngalls 781 Ingalls D. The Sma!lTaIk-76 Programming System,
Design and Implementation. Conference Record of the
Fifth Annual ACM Symposium on Principles of
Programming Languages, ACM, Tucson, Arizona,
January, 1978.

[Kahn 821 Kahn, K. M. Intermission - Actors in Prolog. In
Logic Progrtrmming, Academic Press, 1982.

[Lakoff, Johnson 801 Lakoff, G., Johnson, M. Metaphors We
Live By. The University of Chicago Press, 1980.

]I ,:mndin 651 I,andin, P. A Corrcspondcncc Between ALGOL 60
and Church’s Lambda Notation. Communiccltion of fhe
ACM 8,2 (February 1965).

[Lieherman 81a] Lieberman, H. A Preview of Act-l. A.I.
Memo 625, MIT Artificial Intelligence Laboratory, 1981.

[Lieberman 8lb] Lieberman, H. Thinking About Lots ofThings
At Once Without Getting Confused: Parallelism in Act-l.
A.I. Memo 626, MIT Artificial Intelligence Laboratory,
1981.

[Liskov, Snyder, Atkinson, Schaffert 771 Liskov B., Snyder A.,
Atkinson R., and Schaffert C. Abstraction Mechanism in
CLU. Communications of the ACM 20, 8 (August 1977).

[McCarthy 621 McCarthy, John. LISP 2.5 Programmer’s
Manual. The MIT Press, Cambridge, Ma., 1962.

[McCarthy, Hayes 691 McCarthy, J. and Hayes, P. J. Some
Philosophical Problems from the Standpoint of Artificial
Intelligence. In Machine Intelligence 4, Edinburgh
University Press, 1969, pp. 463-502.

[Milne, Strachey 761 Milne, R. and Strachey, C. A Theov of
Programming Languages. John Wiley & Sons, New York,
1976.

[Reddy 791 Reddy, M. The Conduit Metaphor. In Metaphor
and Thought, Ortony, A., Ed., Cambridge University
Press, 1979.

[Reiter 821 Reiter, R. Towards a Logical Reconstruction of
Relational Database Theory. Perspectives on Conceptual
Modeling. Springer-Verlag, 1982.

[Shapiro 831 Shapiro. E. A Subset of Concurrent Prolog and Its
Interpreter. Technical Report TR-003, ICOT, January,
1983.

[Shaw, Wulf, London 771 Shaw, M., Wulf, W. A., London, R. L.
Abstraction and Verification in Alphard: Defining and
Specifying Iteration and Generators. Commwications of
the ACM 20, 8 (August 1977).

[Steele, Sussman 781 Steele G. I,. Jr., Sussman, G. J. The
Revised Report on SCtiEM E: A Dialect of LISP. Al
Memo 452, MIT, January, 1978.

jTarski 441 Tarski, A. The Semantic Conception of Truth.
Philosophy and Phenomenological Research 4 (1944),
341-375.

[Theriault 831 Theriault. Issues in the Design and
Implementation of Act2. Master Th., Massachusetts
Institute of Technology, 1983.

[Turing 371 Turing, A. M. Computability and h-definability.
Journal of Symbolic Logic 2 (1937), 153-163.

[Weinreb, Moon 811 Weinreb, D. and Moon D. LISP Machine
Manual. MIT, 1981.

167

