From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

A Chess Program That Chunks

Murray Campbell

Hans Berliner

Computer Science Deparunent
Carncgic-Mellon University

Abstract

CHUNKER is a chess program that uses chunked knowledge to
achicve success. fts domain is a subsct of king and pawn cndings in
chess that has been studied for over 300 years, CHUNKIEER has a large
library of chunk instances where cach chunk type has a property list
and cach instance has a sct of values for these propertics. 'This allows
CHUNKER to reason about positions that ccme up in the scarch that
would otherwise have to handled by means of additional search. Thus
the program is able to solve the most difficult problem of its present
dontain (a problem that would require 45 ply of scarch and on the
order of 1013 years of CPU time to be solved by the best of present day
chess programs) in 18 ply and onc minute of CPU time. Further,
CHINKER is undoubtedly the world’s foremost expert in its domain,
and has discovered 2 mistakes in the literature and has been
instrumental in discovering a new theorem about the domain that
allows the assessing of positions with a new degree of case and
confidence. In this paper we describe CHUNKER's structure and
performance, and discuss our plans for extending it to play the whole
domain of king and pawn cndings.1

1. Introduction

Humans are known to chunk chess positions [4, 5), i.c. treat logically
related groups of picces as units. They do this apparently to aid in
evaluation of positions, and to suggest strategies for continuing the
gamc. although psychotogical evidence does not make it clear exactly
how this is dene. There has been at least one program {9] that is able
to recognize some chunks, but no successful chess-playing program has
ever used a chunking approach.

The present work deals with a program, CHUNKER, that parses a
position into chunks, and reasons about the position using information
obtained from chunk libraries. There are several chunk libraries, each
corresponding to a fixed group of picces (a chunk type). Each chunk
tvpe has certain properties, and cach chunk instance (a particular
configuration of the chunk type) has values attached to the properties.
Thesc arc used both in evaluation, by allowing reasoning with chunk
property values to produce an evaluation of the whole position, and in
move sclection, to facilitate reaching positions where this is possible.
Within its domain CHUNKER is a true expert, playing the positions
with a speed and accuracy that no present human or machine can come
close to matching.

2. The Domain

‘The domain for dhis study Is Ling and threa connected passed pawns
(3CPPY vs. king and 3CPP,” for example, Figure 2-1. "This type of
ending has a number of advantages for our purposcs:

l'l'his research was sponsored in part by the Defense Advanced Rescarch Projects
Apency (DOD), ARPA Order No. 3597, monitored by the Air IForce Avionics
1 aboratory under Contract 1'33615-78-C-1551, and in part by an cducational grant from
the Provinee of Alberta, Canada, |

2\xilh certain restrictions. To avoid the inclusion of gueen and pawn endings, the first
side to promote 2 pawn sofely is considered to have won.

Figure 2-1: A position in the domain

o Parsing a position into chunks is relatively straightforward.

o The ending is non-trivial; errors have been found in the
literaware, and even strong players have difficulty with the
ending’s special intricacies.

o A table driven program, with a database of all positions, is
impractical, rcguiring about 2% entrics.

The most important chunk type in this problem domain is a king vs.
3CPP (Kv3CPP), for example Figure 2-2. Given a position such as
Figure 2-1, much can be determined by discovering propertics of the
chunks in isolation and relating them to cach other. The manageable
size of the libraries containing properties of the individual chunks is
the key ingredient in the success of this approach.

Figure 2-2: A chunk in the domain

Given that the king wins if all the pawns are captured, while the
pawns win if one safely reaches the cizhth rank, the battde within a
chunk of Kv3CPP can be viewed under various assumptions.

o Sides must alternate moves.
@ The king has the option to 'pass’, i.c. make a null move.
2 'The pawns have the option of passing,

The passing option corresponds to moving on the other side of the
board. Classifying every Kv3CPP configuration with respect to cach
assumption allows a great deal to be understood about the chunk.
Consider the positions in Figure 2-3. In position 2-3-a. it can be shown
that whichever side has the move loses (under the aliernating moves
assumption). ‘Therefore, it is clear that if one side only has the passing
option, that side will win no matter who is to move. In position 2-3-b,
it can be shown that the pawns win., whether the king has the passing
option or not. Intuitively this means that the pawns arc far enough
advanced to force a breakthrough. Position 2-3-c illustrates a situation
where one of the pawns is lost, even with the pas

cing ontion
on with the passt

SiNg OPion.

V7 /,’//,77)7 /AV///
. //A/V%
a b c

Figure 2-3: Somec chunk instances

The other chunk type relevant to this domain is king and 3CPP vs.
king (K3CPPvK), where the lonc king has the passing option (Figure
2-4). 't'his chunk type corresponds to the situation where a king
abuandons its battle against the enemy pawns and attempts to support
its own pawns.

Figure 2-4: A K3CPPvK chunk

Strictly speaking there is a third chunk type in this domain, namely
3CPP unopposed. The only property of interest here is the number of
moves required for a pawn to rcach the cight rank. It is a simple
matter o calculate this without need of a library.

It is relatively casy to produce libraries for an appropriate set of
assumptions. T'he basic technique [6, 3] could be termed retrograde
cnumeration, and involves producing an cntry for cach possible
position. ‘The immediate wins are then labelled, and the cnumeration
proceeds by successively labelling those positions whose values can be
determined based on positions they are known to lead to. When a side
is trying to win, it is enough to know that onc move leads to a win;
when a side is lost. all successors must be shown to lose. One of our
contributions is to usc the technique, not on whole board positions
(where it can have only limited use since the state space grows
cxponentially with the number of picces), but on pre-defined partial
board configurations. In this ending, cach of the Kv3CPP librarics is

50

64 Kbytes. 'These libraries are the alternating-moves (AM) library, the
pawns-can-pass (PCP) library, and the king-can-pass (KCP) library.
The K3CPPyK library restricts the kings to certain arcas of the board,
and requires 512 Kbytes.

3. The analysis method

3.1. Level O: The Base Program

The basis of CHUNKER is a full-width, depth-limited, alpha-beta
scarch. Terminal nodes are those where a pawn has safely reached the
cighth rank, stalemates/checkmates, or draws by repetition.
Undecided positions at maximum depth are normally scored as draws,
Under certain circumstances (king in check, pawn on seventh rank)
positions arc allowed to quiesce beyond the depth limit,

A number of techniques arc used to improve scarching performance:

e Moves arce statically ordered to improve the chances that
the best move is considered carly in the scarch. (Alpha-
beta achieves optimal performance if the best move is
considered first in every position [10]).

e A hash table is used to detect positions that have occurred
previously in the scarch, and if the position has been
scarched o a sufficient depth, then the stored value in the
table entry is used [11, 8).

e Moves that cannot be part of the solution tree are pruned.
For example, if White-has a passed pawn that is out of
reach of the black king, moves of the black king arc uscless
and not considered, unless the king is attempting to
support its own pawns.

The base level of CHUNKIER is able to evaluate approximately 600
positions per sccond on a VAN 11/780. Feasible search depths range
from about 15-25 ply, depending on the type of position. Since most
of the standard positions in the literature require more than 25 ply to
reach a conclusion (when delaying tactics are included), the base level
of CHUNKER has limited uscfulness. ‘The fellowing levels of
CHUNKER are cach built on the previous levels.

3.2. Level 1

If it could be shown that a particular side is winning (or losing) in
both chunks, it would be possible to classify the overall position as a
win (or a loss). The AM library provides this capability. ‘Fable
3-1 iliustrates the cases that can be classified by this method. Fach
chunk has two associated values, corresponding to the results for

WK/BP Chunk

WIMW WIMW WIMB WIMB

BIMW BIMB BIMW BIMB
BK/WP Chunk
WIMW W/W W77 W/W 27
BIMW
WIMW w77 277 w/B B
BIMB
WIMB W/W W/B B/W B/B
BIMW
WIMB 27 7B B/B B/B
BIMB

Table 3-1: Positions decided by AM library

White to move and Black to move. The labelling of the rows and
columus indicates which side is to move and which side wins (c.g.
WIMB means White to move, Black wins). ‘The columns indicate
these properties for the white-king/black-pawn chunk, and the rows
for the black-king/white-pawn chunk. ‘The first entry in a table slot is
appropriate if it is White to move, and the second it it is Black to move.
If there is not a ' in the entry at the appropriate location in the table,
then the value of the whole position is known. ‘I'he usc of this table
allows CHUNKER to terminate scarching a branch in many positions
(approximately 18% of the total legal state space) that previously
required large scarches (more than 107 nodes) to solve (sce Section 4).
Of course many types of positions cannot be classified by the above
approach, and so positions such as Figure 2-1 remain intractable.

3.3. Level 2

It can be demonstrated that 3CPP with the passing option always
win against a king if nonc of the pawns can be safely captured by the
king. The PCP library uses this observation to evaluate positions in
which one side has tost a pawn. 1f Side A has lost one pawn (such that
the pawns now lose in the AM library), then side B is given a win if he
can keep all 3 of his pawns. This schema can classify about 16% of the
total legal positions, but is not entirely disjoint from level 1.

3.4.Level 3

I'he KCP library allows CHUNKER to classify positions where the
pawns win into two types: those where the pawns arc strongly cnough
placed to force a breakthrough. and those that rely on ugzwang, L.e.
the compulsion of the king to move. Only if a position appeais as a
win for the pawns in the KCP library do the pawns have a forced
breakthrough. This knowledge allows many further positions to be
terminal nodes in the scarch. 1f Player A can force a breakthrough
while Player B requires 7ugzwang to win, Player A simply forces his
pawns through: he is no longer under any compulsion to move his
king. Approximatcly 18% of the total positions can be classified in this
way, although there is some overlap with Level 1.

3.5.Level 4

Up until this point. CHUNKER has made no use of the numerical
values stored in the librarics. only their “parity’. In attempting to
classify positions where both sides can force pawn breakthroughs, it is
tempting to assume that cach side will push its pawns forward so that
the side that breaks through in the fewest ply is the winner.
Unfortunately this fails due to the fuct that certain pawn mnoves require
king responscs (c.g. the king is placed in check). The solution that
allows this typce of position to be evaluated is to keep an auxiliary
library of spare tempi for cach position, i.c. the number of free moves
the king has before the pawns break through. Thus allowing the king
to pass adds onc to the number of spare tempi, while responding to a

Position Level 0 Ievell Level 2
535: (33) 9879 (13) 6438 (13)
536: (33) 10381 (13) 10497 (13)
537: (25) 2678 (9) 2498 (9)
538: (39) 3636 (8) 3572 (8)
539: (23) 307749 (21) 1 (0) 1(0)

540: (27) 1(0) 1(0)

541: (31) - 1(0) 1(0)

542: (33) - 13 (2) 13(2)
543: (17) 9051 (15) 1(0) 1(0)

544: (30) - 8778 (11) 8829 (11)
545: (27) 940534 (23) 3804 (T) 3804 (7)
546: (33) 110468 (17) 102421 (17)
547 (45) - ees

Table 4-1:

check does not. In positions where both sides have pawn
breakthroughs. it can be showi that the side with the fewest spare
tempi (accounting for side-to-move cffects) will lose. This method
classifies approximately 12% of the legal positions.

3.6.Level 5

A tircorem has been developed about a certain class of chunks which
we call "7’ configurations. A 7 configuration is one in which the
pawns win, whichever side is to move (double win), and the win is
accomplished by zugzwang, not breakthrough (as determined from the
KCP library). Further, in a 7 configuration the pawns are able to
maintain the double win against any Xing move, cither because the
new paosition is still a 7 configuration or by making a pawn move that
cstablishes a new Z configuration. The theorem states: [f the pawns of
one side have set up a 7 configuration they cannot lose unless the other
side has a breakthrough. and they will win unless the other side also has
a Z configuration, in which case the position is a draw. Scc [2] for the
proof of this theorem. and examples of 7 configurations. This schema
classifics Jess than 1% of the total state space. but will nonctheless be
shown to have a significant cffect when it is applicable.

4. Results

The most authoritative book on this subject, Pawn Fndings[1},
contains 13 positions (535:547) in this ending. Table 4-1 gives the
results of CHUNKER’s scarch of these positions. Fach entry includes
an cstimate (in parentheses) of the scarch depth required for a
compiete solution. (Those problems that were solved at level 0 at a
lesser depth achieved this due to the guiescence search.) Within the
table. the first figure is nodes visited and the parenthesized number is
the ply limit. Entrics containing *----* are intractable (more than 108
nodes visited).

The monotonic improvement across rows is striking.3 The addition
of a singic new schema for classifying positions can produce speed-ups
of 6 orders of magnitude or more by avoiding the scarches that would
be required without that schema. In many positions, adding a schema
produces littic or no improvement in the performance. This could
mean that the solution was alrcady minimal, or that the new
knowledge item had limited relevance io the given position. When a
new schema is relevant though, scarch improvements can be
spectacular: there are many instances of improvements of over three
orders of magnitude.

3Two exceptions oceur in the table. Paradexically, it is possible for alpha-beta search
to perform more poorly when knowledge is added. Consider the case where the first
move cxamined in a position loses. Suppose a search with a certain schema finds this
loss, while the search atone cannot {and scores the position as a draw). In the latter case,
the improved alpha value of 0 (draw) up from the starting value of -1 (assumed loss),
allows more cutoffs in the remainder of the search.

Level 3 level 4 Level 5
1944 (13) 108 (6) 108 (6)
6002 (13) 185 (8) 185 (8)
1677 (9) 60 (4) 60 (4)
1917 (8) 223 (8) 2()
1(0) 1(0) 1(0)
1(0) 1(0) 1(0)
1(0) 1(0) 1(0)
13(2) 13(2) 1(0)
1(0) 1(0) 1(0)
1232 (10) 509 (10) 509 (10)
25(4) 25(4) 1(0)
9905 (14) 3332(14) 1(0)
211513 (18) 23962 (18)

Performance on Test Positions

The effect of the hash table on these scarches should not be
discounted. For example. position 547. searched at level 5 without the
hash table. required 420,507 nodes. @ factor of 17 slower. Other
positions also show considerable performance benefits, especially those
requiring large scarches.

To gain a fecling for the importance of the respective schemas, the
percentage of terminal nodes classified by cach are fisted below. ‘The
data is derived from the level 5 scarch of position 547 (Figure 2-1):

o terminal nodes - 6.6%

o hash table lookups - 11.8%
e level 1-06.8%

o lcvel 2-5.3%

o level 3-0.6%

e leveld - 1.7%

elevel 5-1.2%

Clearly the level 1 schema is dominant in terms of positions
classified, but this is partly due to the fact that it is the first to be tried.
Although level S accounts for only 1.2% of the positions classified, it
produced an almost nine-fold speedup in the scarch. A similar
improvement also occurs at level 4 with an additional classification of
only 1.7% of tie positions. ‘Thus, the ability to classify cven a small
additional percentage of positions can produce very large savings in
search. "Uhis must be dependent to some degree on how ncar the root
of the tree the knowledge can be applied. We can only assume this is
randormn: however. cach problem clearly evinces a point where it begins
to become tractable, and from then on the addition of knowledge
produces dramatic improvements until what appears to be a minimal
scarch is hit.

The above results were obtained using the ‘automatic’ parse of
positions into two chunks of Kv3CPP, which is the intended theme for
this set of problems. Since we wanted to investigate alternate position
parsings. we examined the possibility of decomposing a position inte
one chunk of K3CPPvK, and another of 3CPP unopposed. The
K3CPPvK library contains the number of spare tempi the lone king
has bhefore the pawns force promotion. If the king and pawns in
couperation can force a pawn through before an unopposed pawn
promotes in the other chunk, the position is classified as a win. The
choice of this alternate chunk parsing is made based on both the result
of the position under the usuat decomposition, and an estimate of the
probability of success of such a strategy determined from the picce
placement. For example. if the position in Figure 4-1 is interpreted in
the usual way, it is clear that White is lost (sce Level 2). Realizing that
the white pawns arc far advanced gives rise to the possibility of the
alternate parse. which leads to the conclusion after a short investigation
that White can win by joining his king to the pawns in an attack on the
black king.

Since the problem set was solved correctly when chunk interaction is
ignored, adding interaction to the Level 5 version of CHUNKER doces
not significantly affect any of the results or scarches of the test
positions. Only positions 536 (about 5% more nodes) and 547 (about
% more nodes) showed any effect at all, Of course in some positions
(that arc not in the text set, for example Figure 4-1), the possibility of
an alternate parsing is essential in determining the correct solution.

The chess machine Belle [7] was run on positions 535, 539, 543 and
545. Belle is capable of searching 130,000-160,000 nodes a sccond. In
the 4 positions tested, Belle, taking on the order of 2.5 hours per
position, played a correct move in cach case. 1owever only in onc of

the positions was Belle able to actually sce that the sclected move,

forced a win (or a draw). In fact, we estimate that Belle would require
on the order of 1077 years to completely sotve Figure 2-1. IFor a more
detailed discussion of Belle's performance on these positions, sec [2]. Tt
should be noted that. though Belle would probably be able to play
correctly the 4 positions presented to it, it is extremely doubtful if it
could correctly evaluate them if they occurred deep in its scarch tree.
IFurther, in position 547 (Figure 2-1) where a small misstep such as
initial P-QN3 (b3) turns a winning position into a losing one, it would
scemn that only a "theory” of what the ending is all about, such as
gained by our schemas. would suffice to play correctly.

52

Figure 4-1: A position that requires an alternate chunk parse

During the course of this rescarch. CHUNKER discovered errors in
the solutions [1] to problems 546 and 547. In position 546 the kings do
not have to oscillate between the designated squares (£3/f4, ¢5/¢6) to
draw: both sides have alternate methods of drawing. In position 547 1.
P-QR4 (a4) does not win as stated in the book. 1t actually allows the
clever setting up of a Z configuration, the importance of which is
clearly not appreciated by the authors.

5. Generalization

5.1. The analysis method

While the scheme of chunked knowledge with propertics, exploited
by scarch, works extremely well in the given domain, the question
should be asked as te how general this scheme is. [n the given domain
there are only three chunk types, and the problem of parsing a board
position into chunks is simplified duc to the fact that there are only
three possible position decompositions.

We expect to generalize the basic scheme to the whole domain of
king and pawn cndings. To do this many more chunk librarics will be
required. and these will require many new properties. New reasoning
schemas that correspond to the needs of particular positions will be
developed te use the new properties. We consider that a modcrate sct
of such schemas will suffice for this domain so that it will not be
necessary to have a general reasoning engine. ‘The ultimate analysis
method in CHUNKER will be a scarch through a set of alternative
parsings of a position, rather than the standard scarch through a sct of
states of the domain. When a parsing does not lead to an immediate
cvaluation, further scarching must be done, as in the present work.
Typically both players will have the option of cnforcing certain
parsings on a position. ‘The scarch through alternate parsings
terminates when it is shown that one player can win (or draw) against
any position decomposition chosen by the opponent. A detailed
account of analysis/scarch methods and librarics can be found in [2].

5.2. Libraries

We expect o build a permanent set of libraries dealing with
configurations that arc frequently encountered. These would include
typical battles between pawn formations, for example king and pawn
vs. king, or two pawns facing two. Relations other than those used in
the present work would included number of moves to establish a
passcd pawn, spare moves available without losing material, invasion
points for opposing king, ctc.

Some types of chunks that could occur are so complex and rare that
o build libraries for all possibilitics would require unrealistically large
memorics. For such chunks (containing doubled pawns for instance) it
will be necessary to do the analysis to produce propertics on the fly.
However, once such an analysis is done. these properties can be
retained in a temporary chunk library for the duration of the solution
process.

5.3. Search

In the present domain CHUNKER performs adequately using a
depth-limited depth-first alpha-beta scarch with hash-table support.
In & more general case, the scarch may be oriented o specific
purposes, started from various sub-trees, and restricted in format. Itis
expected that some form of scarch will be necessary for most positions.
However. positions very likely fall into two clisses: 1) Those where it
appears possible to make a determination of the exact game-theoretic
value of the position, and 2) those where general principles have to be
invoked to tind a likely value and a most-likely-best move. In the first
case, chunk schemas and search should be able to handle the problem.
In the sccond case an evaluation polynomia! in the properties, in

conjunction with a scarch will be needed 1o give a direction to the

solution process when it is not expected to reach any known goal. ‘This
method is also necessary for defensive play in losing positions, since if
all losing positions arc classified as equal there will be no criterion for
the defense to put up a fight.

6. Summary and Conclusions

We have presented a new methodology; ene for allowing a program
to manipulate properties of chunks found in chunk libraries in order to
cvaluate whole chess positions. While it has been known that humans
usc chunked knowledge to come to grips with the complexitics of a
chess position, no eftective method for doing this has previously been
demonstrated. This is also apparently true for other domains of cven
moderate complexity.

One of the difficultics that "practical™ Al systems that reason have
had is that the "facts” that they reason from are almost always ad hoc
collections input by the system designers. This creates great difficulties
both in maintaining the consistency of a sct of "facts” and in
producing adequate coverage of the domain in the face of the
difficultics it maintaining consistency. Our method avoids both these
problems. By gencrating our facts from an cxhaustive search, we
guarantee accuracy for the facts. ‘This makes the conclusions derived
from them completely trustworthy, and would, in principle, allow the
building of several levels of reasoning upon such a structure.

We demonstrate a simple instance of our method on a subsct of king
and pawn endings in chess. ‘The higher level of abstraction due to
chunking provides a framework for powerfu! reasoning schemas in the
domain. It is quite remarkable to sec the effect of the additional
concentration of knowledge on the tractability of the problems in the
test sct. As additional facts and reasoning schemas arc invoked, even
the extremely complex base position recedes to a point where one
minute of CPU time reveals all its mysteries, an 18 order of magnitude
speed-up.

We have shed some light on the role that chunks have in problem
solving, It was previously known that chunks are a way of breaking up
images into component parts. In a large domain, it is more reasonable
to catalog parts than total images which will probably never be
encountered again. However, the computational utility of chunking
was not clear. In our method, chunks and the relations among them
serve as data for a problem solver. While this combination may use
morce time than looking up of images, in a large domain there is no
meaningful alternative. The nature of a chunk is apparently
determined by functional considerations.” Thesc functional
considerations define the information needed for the problem solving
process. In the end, a chunk name becomes a slot to which properties
and their valucs can be attached.

4While this method appears to be quite general, we make no claim that it is ready for
implementation in more than a few select domains. Clearly. there must be a way of
defining uscfu! chunk boundaries and a method of generating property valucs before the
enterprise can be undertaken.

5ln the present case, a chunk is an assemblage required to assess the outcome of a
battle of pawns (possibly supported by king) versus king.

53

The method can be extended to more complicated pawn endings [2].
This involves the creation of additional chunk libraries with new
properties, and the extension of the scarch and reasoning methods o
take advantage of these. We estimate that the domain can be covered
with on the order of 60 to 100 reasoning schiemas and approximately 30
properties that would be employed in the schemas.

The program that has been developed in the course of this rescarch
is the world’s foremost expert in its restricted domain and has found
two corrections in the existing literature, made it possible to develop a
new theorem about its domain. and allowed the composition of a
number of worthwhile additions to the existing literature. Despite the
fact that both present authors are expert chess players and have had
quite a bit of exposure to the domain of this study both from books
and from the results of computing experiments, CHUNKER regularly
outperforms its creators in novel situations. 'This augurs well for the
promisc of the technique.

References

1. Averbakh, Y. and Maizelis, 1. Paown Endings. BT Batsford Lid.,
1974.

2. Berliner, H. and Campbell, M. Using chunking to solve chess pawn
endgames. Carnegic-Meclton University, April, 1983.

3. Bramer, M. A. Computer-generated databases for the endgame in
chess. The Open University, October, 1978.

4. Chase, W. G. and Simon, H. A. "Pcrception in Chess." Cognitive
Psychology 4, 1 (January 1973).

5. Chase, W. G. and Simon, H. A. The Minds Fyc in Chess. In &
Annual Psychology Symposium Volume: Visual Information
Processing, Chase, W. G., Ed.,Academic Press, 1973, ch. 8, pp.
215-281.

6. Clarke, M. R. B. A Quantitative Study of King and Pawn against
King. In Advances in Computer Chess'l, Clarke, M. R. B.,
Ed..Edinburgh University Press, 1977.

7. Condon. J. H. and Thompson, K. Belle Chess Hardware. In
Advances in Computer Chess 3, Clarke, M. R. B.. Ed.,Pergammon
Press, 1982.

8. Marsland, T. A. and Campbell, M. “Parallel Scarch of Strongly
Ordered Game Trees.” Computing Surveys 14, 4 (1December 1982),
533-551.

9. Simon, H. A., and Gilmartin, K. A Simulation of Memory for
Chess Positions.” Cognitive Psychology 5 (1974), 29-46.

10. Slagle, J. and Dixon, J. "Fxperiments with some programs that
scarch game trees.” JACA 2 (April 1969), 189-207.

11. Slate. ID. and Atkin, I.. CHESS 4.5 - The Northwestern University
chess program. In Chess Skill in Man and Machine, 1'rey, P.,
Id. Springer-Verlag, 1977, ch. 4.

