
AN AUTOl’ARTIC ALGORlTklM DES IGNER: AN Ir”dlTIAL I~fL~~~?E~~3TAT10N1 

Elaine Kant and Allien IdeweiI 

Department of Computer Science 

Carneyle~Mcllon University 

Pittsburgh, Pennsylvania 15213 

ABSTRACT 

This paper outlines a specification for an algorithm-design system 
(based on previous work involving protocol analysis) and 
describes an implementation of the specification that is a 

combination frame and production system. In the 
implementation, design occurs in two problem spaces -- one 
about algorithms and one about the task-domain. The partially 
worked out algorithms are represented as configurations of data- 
flow components. A small number of general-purpose operators 

construct and modify the representations. These operators are 
adapted to different situations by instantiation and means-ends 
ana,lysis rules. The data-flow space also includes symbolic and 
test-case execution rules that drive the component-refinement 
orocess by exposing both problems and opportunities. A domain 
space about geometric images supports test,case execution, 
domain-specific problem solving, recognition and discovery. 

E. APPRGACHES TO DESIGN 

We are interested in systems that automatically design 
algorithms and create programs for them. The process of 
algoriihm design requires a significant degree of both knowledge 
and intelligence, and may even require additional structure to 
make creative discoveries. In this paper. we briefly present our 
specifications for a design system and describe an initial 
imp!ementation. The main goal of the research is to produce a 
successful automatic design system, but a secondary goal is to 
show that careful examination of human behavior can suggest 
novel and worthwhile system organizations. 

Related research on program synthesis and transformation, 
formal derivation, and automated discovery suggests some 
possible approaches to the automation problem. However, none 
provides a satisfactory paradigm for the whole task of automatic 
algorithm design. 

Program synthesis systems [l , 5, 131 often successively reRne 
programs by transformations. Most of these systems lack 
robustness because they require numerous transformation rules 
to specify all the details about programming and because they 
have no problem-solving abilities other than simple pattern 
matching on the ru!es. This may indicate the desirability of having 
a few general operators with more sophisticated techniques for 
adapting rules to situations. 

‘This research is supported by the Defense Advanced Research Projects 

Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics 

Laboratory Under Coiitr3ct F3361581-K-1539 The views and conclusions 

con?ained I:) this document aie those of the authors and should not be interpreted 

as lepresentmg the offlclal policies, enher exptersed or implied, of the Defense 

AJvanced Research Projects Agency or the U.S. Government. 

Firrmal derivation systems typically do have a smail number of 
general operators. However, they requtre complete, formal 
speclficatior?s which may not be availzbl? initIalI\ [14]. arld they 

often apply ra::tier rigid methods to choose among applicable 
transformation rules. People still must specify the interesting 
lemmas or auxiliary definitions and decide among alternative 

axiom sets. Orle system [2] does address the choice problem by 
guessing recursive solutions tr> logical equations and verifying the 
guesses with a theorem prover and a small model. 

Discovery systems are quite rare, and those that exist are either 
open-ended exploration systems rather than problem-solving 
system3 that focus on a specific task [3. lo] or work in very narrow 

doma;ns such as algebraic models [9]. 

We propose an approach that includes relatively few basic 
operators, specific knowledge about instantiation rather than 
many transformation rules, and several problem-solving methods 
that work with domain knowledge. We also attempt a structure 
that permits discoveries. 

ii. A FUNCTIONAL SPECIF!CATION FOR 
P,Ed AbGQRITHt4-DESIGY”J SYSTEM 

The specifications for an algorithm-design system described 
here are based closely on the results of protocol analysis [6, 7].* 
We take algorithms about cornputl;tional geometry (for example, 
producing the convex huli of a set of points in the plane) as our 
tfrsl :ask domain because it forces us to consider the interplay 
between external geometric models, mental imagery, and 
computationally efficient serial algorithms. 

II. AlgcJrithm-design methods to be supported 

Design begins with the hypothesis of a kernei schema or 
solution plan and proceeds by successii/e refimzment. Two 
closely related methods of program execution guide the gradual 
refinement of tile initial schema. Symbol/c execu!ion uncovers 
i:lformaiion by running a partial algorithm description with 
symbols as data During execution, the algorithm and symbols are 
elaborated (new assertions and new compcr.ents are added). If 
s’imbolic execution is not sufficient to permit progress, a specific 
example is consiructed that permits detailed execution (tesr-case 
execution). 

In addition to driving the successive rclfinement, the two 
execution methods generate consequences and expose problems 

- 

2 
We analyzed protocols of human problnni-Lolvmn and design strategies in 

algori!hm-discovery tasks because a system orgar>izntlprl !:I,?: p:irallels humin 

reason!l’g lets us draw on human experrs for tr?cnnlourl’;. uro~r,ses to be fiexible 

and tobust. and has potential for learning. 

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved. 



and complications3 The test-case execution method allows the 
problem solver to generate examp!es that contain the right level of 
de?ail to make progress (the relevant knowledge must be evoked 
by concrete retrieval cues) while avoidmg comp!ications (such as 
boundary conditions) that are not important until the basic outline 
of 1l;e algorithm has been deveioped. However, test-case 

execution is more time consuming than symbolic execution 
because loops are executed for individual items, whereas 
symbolic execution is linear in the size of the algorithm structure. 
Thus, if the system understands a step well enough, it will execute 
it symbolically. Simple inferences may also be made during the 

execution process. 

Design includes problem solving and reasoning about the task 
domain. Examples are generating test cases, attempting to find 
counterexamples, and “proving” conjectures by demonstration 
(first on “typical” and later on boundary-condition examples). An 
extreme, but important, example of reasoning is discovery, the 
sudden viewing of a situation from a new perspective that 
presents an opportunity to solve an outstanding problem or make 
an improvement. What is perceived is not a solution to the main 

goal att the time the insight occurs; however, there is usually some 
preparation for the discovery -- some previously considered but 
unsolved problem. The new perspective often arises out of a 
novel and accidental alignment of objects or facts4 A general 

recognition-based control structure for all the methods seems to 
be the appropriate device to support the possibility of such 
juxtapositions. 

l3. A problem space for representing algorithms 

Much of the design process occurs within a single problem 
space of schematic structures that represent algorithms. A small 
number of basic types of components are instantiated and 
configured in multiple ways to represent algorithms. Expert 
design concepts (for example. schemas for divide and conquer 
and for dynamic programming) are built up from and coexist with 
the simoler vocabulary. 

Components may be augmented with assertions that give 
additional information such as an ordering for a generator or a 
predicate on a test. An assertion is not limited to concepts in the 
algorithm space. Fo: example, it can describe a relationship in the 
task space that must be satisfied. The assertions drive the 

decisions about how to refine a component into a new 
configuration of components. 

3Cur analysis of human protocols showed that half of the design time was spent 

on symbok and test-case execution, and design time was proportional to the 

number of components in the algorithm description. Even when subjects had 

difficullies in designing the algorithms. their unsuccessful behavior had a similar 

character of hypothesizing new structures and repeatedly attempting to execute 

the partial algorithm on sample data. Symbolic and test-case execution also had 

major roles in verifying, describing and analyzing algorithms. 

4 
Our human subjects sometimes made discoveries 

“blankly” at a figure during test-case execution. 

while feeling lost and staring 

The problem space must include operators that refine partially 
specified structures (add new components, links between 
components, or assertions) and that carry out the execution 

methods. The refinement operators must not insist that 
configurations form complete or consistent algorithms. While 
most components will have a set of standard inputs and outputs to 
represect primary data relationships, operators can add new 
connections at any time without checking for type mismatches. 
Instead, problems noticed during test-case or symbolic execution 
will be handled as they arise. All the problem-space operators 
should be very general and will require instantiation before they 

are applied. 

Since kernel ideas, instantiation, and indeed all design decisions 
can be wrong, design involves search in the problem space. Most 
search-control knowledge should be provided by rules that select 
instantiations of the operatcrs that modify components and 
assertions and select parts of the algorithm to refine or execute. 
In the absence of specific knowledge for instantiation, other 
search-control rules must provide more general techniques, such 
as means-ends analysis, to help adapt an operator to a specific 

problem state. 

C. A problem space for the application-domain 

The application-domain space must support t&-case execution 
of algorithms. problem solving about the domain. and discovery. 
Test-case execution requires operations that produce specific 
examples (and judge their suitability) and operations that evaluate 

assertions (such as predicates on tests) in the domain space. 

Our initial task domain will be a problem space for manipulating 
geometric images. It includes objects, such as points, line 
segments. and polygons; specific geometric operators, such as 
create a point or construct a line segment; and general operators 
(perceive, find, partition) that are typically specialized in geometric 
ways (partition a point set). The operators help create test cases 
(such as sets of points) and check assertions (such as whether a 
point lies above the X-axis). 

Working within a geometric task domain imposes important (but 
largely unknown) constraints, as indicated by the facility with 
which humans prccess visual scenes and reason spatially. Our 
design for a geometric problem space is modeled upon the 
imagery simulation of Kosslyn and Shwartz [8]. It consists of a 
short-term image buffer (a planar array), with the image centered 
around a focal point of attention. External (perceived) and 
internal (imagined) images are coalesced into a single image. 
Several operators (rotate, pan, zoom and scan) change the focus 
by regenerating the buffer around the focus point, rather than 
shifting the center in a fixed space. A variable amollnt of detail is 
present. depending on point of view created by the movement 
operators. The image is viewed by a recognizer centered on the 
focus point, with the image memory permitting recognition of 
combined scenes. However, there are no operators that construct 
the image directly (write new patches of image into the buffer). 
Rather, all parts of the image are supported by the underlying 
semantic representation, and modifications are made to this 
underlying structure which is then pictured in the image. 

Discovery seems to occur through a recognition of some 
interesting configuration in the task space. Certain configurations 
of data items lead to recognition or automatic inferences (for 
example, completing polygons that are missing one edge, seeing 
polygons in regular patterns of points, being reminded of related 
algorithms). The image structure just described seems to be 
appropriate to facilitate this recognition. 

178 



III. AN IMPLEMENTATION OF 
AN ALGQRITHM-UESIGN SYSTEM 

We are implementing an algorithrn-design system that is both a 
protocol analysis/simulation system ar,d a fully automated design 
system. The basic structure is a combination frame and 
production system. It is implemented in L.isp and can run with or 

without the CPS5 production system [4] as the automated control 
structure. 

In the simulation mode, the user (rather than the production 
rules) makes the decisions about which design commands to 
invoke and how to instantiate them. Design commands include 
component, assertion. and item construction, symbolic and test- 
case execution, and goal creation and modification. The 
implementation also includes objects such as protocol phrases, 
episode groupings, and comments (all represented by frames), 
and it has operators that create and edit the objects and insert 
them into a history of design commands. The total history 
describes an actual protocol and its interpretation. The user 
interface inciudes facilities for graphic display of component 
configurations, for saving, restoring, and undoing history 
sequences, and for command completion (with prompts for 
arguments and access to help files). 

The automatic mode is an augmentation of the simulation mode. 
Normally, the production rules make instantiation and search- 
control decisions and a history of design steps only (no protocols) 
is maintained. However, the modes can be mixed and the user 
can take over or relinquish control in midstream. 

A. Representing algorithms with data-flow configurations 

Partially specified algorithms are represented as states in a 
data-f!ow problem space, DFS Each state is a data-flow 

configuration.” The algorithm steps are represented by process 

components. There are a small number of generic process 

components (a me.mory, and the flow-control components 
generate, tesi, and select) and a general apply component that 
can be specialized to domain operations such as make-line- 
segment. The inputs and outputs of the process components are 
represented by ports connected by links. Process components 
can be further specified by assertions. The components and 
assertions together modify and control the flow of items that 
represent data objects such as points and line segments. Items 
can fill several roles -- generic descriptions, symbols (for symbolic 
execution), and specific domain-space data. Assertions can be 
attached to any object, including an item, a process component, a 
whoI* conliguration of components, and a problem space. 

Figure 1 shows an example of a simple DFS configuration that, 
given 2 set of points, finds the subset that lies above (on the left 

side of) the X-axis. l-he input. {ij. is a memory containing a set of 

points. (A B C D), which are enumerated by Generate,. Those 
points that satisfy the predicate associated with Test, are added 
to the output set memory (0). In the figure, points A, B and C 
have been enumerated. A was discarded, B has been added to 
the output, and C has not yet been tested. 

5 
Data-flow representations have been studied in computer architecture 

research and have been used to describe artificial intelllgcnce programs [ll, 121 

and to express algorithm transformations [15]. 

ii> contains point set {A B C D} 

101 contains point set {B} 

{i}--------->Generaie, --_CCl--_>~est~C”e__--_~~~~~o~ 

Figure 1: A subset test. 

Components, links, ports, assertions, and items are all 
implemented by frame data structures chained in a tangled 
hierarchy (a directed acyclic graph). A ~cfinement of a component 
is represented by a slot containing the names of t!-le components 
in the configura?ion that implements it. For example, the TOP- 
LEVEL component frame has a slot called Components-list whose 
value is (MEMORY-l GENERATOR-l TEST-1 MEMORY-Z). TVJO 
frames that define the Test, component of Figure 1 ace shown in 
Figure i. Backpointers between related frames (such as the 
Component-of slot in TEST-l) are automatically maintained. In 
addition to the value and default facets shown in the figure, 
it-needed servant Functions and If-added/if-removed demons are 
provided via facets. Furthermore, all objects have a life time 
(creation and deletion dates) so that ditferent DFS states can be 
represented concisely, and the history of events is tree-structured 
to enable alternate design paths to be tried. Different inheritance 
mechanisms allow objtlcts to be viewed from different historical 
perspectives -- such as the current configuratron of “visible” 
objects, o: a “remembered” version of past states. 

The current knowledge base of thz system (before an algorithm 
is developed) includes the basic components described above, 
three types of ports (input, output, and signal-interrupt) and 
several named port instances for each component type. This 
algorithm-component knowledge base is fairly stable, although it 
is missing specialized expert schemata, such as divide and 

conquer. We do not expect it to grow to more than several times 
the current size. 

TEST 

t-filler 

t-filler 

value 
__----____ 

HISTORY-O 
COMPONENT 
TEST- IN 

TRUE-EXIT 
TEST-l 

.-_-- ___-- - 

I 

value 
_____---____ 

HISTORY-3 
TEST 
TOP-LEVEL 
TEST-IN-l 
TRUE-EXIT-l 
ASSERTION-Z 

____________ 

Figure 2: Frames for the test components. 

B. implementing component operators 

DFS operators that construct and refine the structures in an 
algorithm description accomplish simple but general taslts: 
adding, deleting, or changing the slot values of components and 
links. Other operators move items across links and execute 
components. A reasonably complete set of approximately fifty 
Lisp functions implement these operators. They are quite 

straightforward, and not many rnore appear to be needed. 

179 



The operators to construct the subset-test configuration of 
Figure 1 are given in Figure 3. The Ned-component operator adds 
a new instance of the specified component to the current 
configuration, but does not link it up in any way. The 
add-comaonent operator adds the new component specified in its 
first argument and links it to an existing output port, described by 
the second argument, using the input port on the new component 
described by the third argument. If an argument is missing (or is 
nil), defaults are used. In this case, the new components are 
linked to the most recently added component, using Default-filler 
ports for each component type. The process of instantiating these 
operators is discussed in section D. 

(new-component ‘memory) 
(add-componefv ‘generator) 
(add-component ‘test) 
(add-component ‘memory nil ‘add-elem) 

Figure 3: Constructing th.e subset test. 

C. Representing and testing assertions 

Assertions, which are also represented as frame objects (see 
Figure 4), can be attached to any type of object. Assertions can 
take values from the component inputs as parameters (for 
example. the TEST-IN port of the test above is a parameter in the 
assertion show below). There are currently about twenty-five 
assertions in several categories (for example: Booleans 
connectives, test-predicates, assertions about generator 
orderings, and references to geometry space operations), but 
assertions can denote anything (for example, that a configuration 
has not yet been refined to handle initialization). This set will grow 
as new algorithms are developed. 

DFS operators have been written to add, remove, search for, test 
the truth of, and find the consequences of assertions. For 
example, to make the subset algorithm in Figure 1 be a test for the 
points above the x-axis, we apply the following operator which 
results in a new assertion frame. 

(add-assertion 

‘test-l) 
‘(test-predicate (on-side test-in x-axis left)) 

slot 
__ -_ 
Crca 
Body 

AK0 

Abou 
-___ 

Figure 4: An assertion frame. 

Consider the evaluation of this assertion for point C during the 
test-case execution of Figure 1. The system looks for the Truth 
slot of the assertion. Nothing is recorded there, but the assertion 
IS an insiance of a TEST-PREDICATE, which is in turn an instance 
of a BOOLEAN-ASSERTION, and there is an if-needed function 
that computes the truth value. During this computation, the value 
of the ON-SIDE subassertion is needed. If it has not been 
previously stored, it is calculated by calling a geometry space 
funciion that uses the coordinates of the point C. The result is 
then stored for future reference. 

D. Controlling search with ;4 production system 

Search is controlled prirnarily by produ:;tion I ul~s, v<ith mctjor 
goals explicitly r2presenttid in fralrlc? s!ruc?L:rcs and wilh default- 
fillers for slots to represent typical pert or asse:tlon types (z.g., to 
indicate that tests have test-predicate assertions). The goal 

structure is simple .- goais have types (e.g.. to refine a component 
or to execute a component) and can be in a number of states 
_- active. suspended (waiting for subgohls), sidelined (for lack of 
immedlLtte relevance or a way to prccecd;, sa:c:eedcd, failed, or 
cancelled. A hierarchy of subgoal reldlionships is maintained, but 
all goals are in working memory so the prirductions can notice 

whenever any goal is achieved, even if il is not active in the 
current state. 

Operators are instantiated by production rules. For frequently 
used generic components, specific instantiation rules doscribe 
which process coinponents to add to the algoritl-rm descrip!ion 
under different circumstances, defaults for how to link 
co,mponents together, and so on. Default-fillers are used by 

inst.?nti&tion rules in absence of more specific r&s. The current 
implementation has about 25 instantiation rules, and we anticipate 
that several orders of magnitude more will be needed. 

In the absence of specific knowledge, means-ends analysis rules 
find differences and select operators ;o reduce the differences. 
Production rules a!so describe how to execute components. The 
cur:ent implementation has approximately 20 rules that control 
means-ends analysis, voting on alternatives, and subgoaliny, and 
another IO that provide the control for symboiic and test-case 
execution and assertion checking. Specific Lisp functions 
associated with objects determine how to execute individual 
components and test assertions. As new specializations of 

components and assertions are added, corresponding functions 
and instantiation rules may need to be added, but the conZrol 
should not change. 

The design of the simple algorithm in Figure 1 is sketched in 
Figure 5. The first two production-rule applications decide to add 
a new component because the difference between the existing 
configuration and Ihe desired one is that nothing is present. The 
operator is instantiated to add a memory, because the givens of 
Ihe problem include a set of points. A new difference is selected 
(applicat:on 3), which is that the algorithm contains no active 
process component. The add-compone/G operator can solve this 
(4), and it is instantiated to a generator n!ter a vo!l!lg process 
(applications 9-l 7). Both generators and selectors can follow 

memories, but a generator is more likely because it creates a set 

rather than a singie item as output, and the desired output of the 
algorithm is a subset of the inpu!. The components are linked 
according to the default rules. The system tries to refine the new 
component, but other than deciding to use the default ordering 
assertion, no refinement is necessary at Ihis level (applications 
41-59). Since an active process component is present, symbolic 
execution is applied (applications 62-89). Thus proceeds 

successfully until there is nothing to do with the output of the 
generator. A test is added (90-102), and attempts are made to 
refine it (103-146). The production rules find a test predicate by 
looking for assertions about the tyi>cs of items that are inputs to 
the test. Symbolic execution then continues (147-172) until the 
output of some component (the test) makcnes the description of 
elements in the algorithm output (both are poil;ts, both have 
matching assertions about position relative to the X-axis), and the 
results are collected in a final memory. 



The full derivation of the subset test include 3 1Wl fx 0duction.l ulr applications. 
Tile summary tlacc- lxzrc omits most of the appl~cal~on:; r&dbl tti t~ousekct-pin9 
tasks, voting procedures talse psths. and me:115 ends iinnlys:s steps Operator 
apphcatlnns ale sl~o~n In square brackets. anJ comments ale In braces. 

{the top level goal is to refine algorithm Subset} 
1. notico~~difCorence::empty-configuration 
2. reduce-difference::smpty-configuration 

[new-component memory] (a memory component is added} 
3. aotice-difference. .:no-active-procbss-component 
4. reduce-difforence::no-fictive-process-component 

(it has been decided to apply the operator add-c@mpoPont} 
5. jnstantiato:: add-component:from-port 

{the tram-port is instantiated according to default rules} 
9. instantiate:: add-componont:generator-since-need-set 

10. 
11. 
13. 

14. 

18. 

41. 

42. 

59. 

60. 

62. 

74. 
78. 

O?. 

ae. 

90. 

95. 
96. 
97. 
93. 
99. 

102. 

127. 

128 

146. 

147. 

166. 

170. 
172. 

instantiota. .:add-componont:generator-follows-memory 
Instantiate::add-componen~:selezt-follows-memory 
rote {decide on cor,;ponant to instantiate add-component} 
instsntiate:: add-component:to-port 
iclstantiation-complete {a generator component is added} 

[add-component generator mem-out-l gen-in] 
*educe-differenca::no-assertions 
[the currant goal is to refine the generator} 
instantiate: :ado-assertion:default,s 
[assertion about default generator ordoring is added} 
Joal:: sideline-goal-with-no-reduce-djfference 
[cannot further refine generator, so sideline goal} 
Joal:: rosume-if-suspended-with-sidelined-subgoals 
[resume goal of refining whole algorithm} 
reduce-difference::symbolic-execution 
syi,ibolic-execution ::instantiate-inputs-succeeds 
symbolic-execution::set-up-for-refinements 
[find most ref!ned components} 
symbolic-execution::exacutable 
(symbolically execute memory component} 
symbolic-execution::executable 
(symbolically execute generator component} 
symbolic-execution::unconnected-link 
(notice generator output not connectad to a component) 
{decide to apply add-component opsrator} 
instantiate::add--com~onent:compare-follows-component 
instantiate:: remove-if-not-enough-inputs 
instanti8te::add-componont:test-follo~~s-active-component 
instantiato::add-component:apply-fo'lloras-active-compOnent 
instantiate::removo-if-not-enough-inputs 
{test is only component with the proper inputs} 
instantiate::add-component:to-port 

[add-component test gen-out-l test-in] {test added} 
reduce-differance::no-assertions 
{new goal is to refine test} 
instantiate::add-assertion:test-relevants 
{a relevant test predicate is fcund} 

[add-assertion (on-side test-in x-axis left) test] 
goal ::sideline-goal-with-no-reduce-difference 
(no way to refine test further} 
goal:: resume-if-suspended-with-sidelined-subgoals 
(resume goal of refining whole algorithm} 
symbolic-execution:: set-up-for-refinements 
(haven't executed test yet} 
symbolic-execution::executable {so execute test} 
symbolic-execution ::unconnscted-link-alg-complete 
(notice that output on link from test satisfies assertion 
on algorithm output. so add final memory component} 

[add-component memory true-exit add-elem] 
{algor!thm is now complete} 

Figure 5: Sketch of system’s design of algorithm in Figure 1. 

E. Implamenting the domain space 

V!e have implerr,ented a simple version of the geometry space, 

wit!! rrarne objects representing geometric objects (including 

points line segments and polygons). Lisp functions implement 

operators (to construct and modify the objects) and determine the 

relationships between objects (such as above, between, inside, 

and convex) that are used in assertions. General operators such 

as pe,,ceive or fi:?d an item with a given property are not yet 

imple,ncn:ed. Currently the system uses analytic geometry 

computations, and the imagery model is not yet implemented. 

IV. DISCUSSION 

Our initial implementa!ion is currently operational. In addition to 

consu-ucting :mail examples such as the subset test described 

here, we are using the convex hull algorithm (whose discovery has 

b?en worked out hy hand in our protocol-analysis research [6, 71) 

as a large test case. This example contains instances of a variety 

of critical issues for an algorithm-discovery system. There are 

both generaie and-iest and divide-and-conquer algorithms. The 

former was found initially and was used in part in ubtaining the 

latter, so interesting issues of knowledge transfer arise. Some 

genuine discoveries occur, providing good tests of whether our 

systcrn can recognize and capitalize on adventt:ious situations. 

The coupling between the algorithm space and the geometry 

space is continuous and intir,late, and this will test whether our 

proposed imagery scheme wil! have the desired properties. On 

the other hand, we have stiil to address the task of passing from 

the DFS representation of an algorithm to a program in some 

standard language. 

ACKNOWLEDGEMENTS 

We thank David Steier for helpful comments on this paper. 

Steier, Brigham Bell, and Edward Pervin are helping implement 

the system. 

[l] Bz!zer, R. “Transformationcll irnplementsticn: an exalnple.” 
IEEE Transactions on Software Engineering SE-7, 1 (January 

1981). 
[‘2] Bibel, W. and Horning, K. M. LOPS - A System Based on a 

Strategical Appr oath to Program Synthesis. Proceedings of the 

Ir;terr;ational Workshop on Program Construction, France, 

September, 1980. 
131 Davis, R. and Lenat, D. B.. Knowledge-based Systems in 

Artjiicial /nte///gence. McGraw-Hill, 1981. 

[4] Forgy, C. L. OF!% User’s Manual. Tech. Rept. CMU- 
CS-8’1-135, Carnegie-Meilon University, July, 1981. 

[5] Kant, E. and Barstow. D. R “The Refinement Paradigm: The 

Inierac!ion of Coding and Efficiency Knowledge in Program 

Synthesis.” IEEE Transactions on Software Engineering SE-7, 5 

(September 1981), 458-471. ’ 
[Ci] Kant, E. and Newell, A. Naive algorithm design techniques: a 

case study. Proceedings of the European Conference on Artificial 
Intelligence, Orsay. France, July, 1982. 

[7] Kant, E. and Newell, A. Problem Solving for the Design of 
Algorithms. Tech. Rept. CMU.C%32- 145, Carnegie-Mellon 

University, November, 1982. 
[8] Kosslyn, S. M.. image and Mind. Harvard University Press, 
Cambridge, Massachusetts, 1980. 
[S] Langley, P. A., Bradshaw. G. L., and Simon, H. A. Bacon.5: 

the Discovery of Conservation Laws. Proceedings of IJCAI-81, 
1981, pp. 121-126. 

[l Q] Lenat, D. B. “The Nature of Heuristics.” Artificial 

intelligence 19,2 (1982), 189-249. 
[I I] Moore, J. A. The Design and Evaluation of a Know/edge Net 
for L?Ef?L/N. Ph.D. Th., Carnegie-Mellon University, 1971. 

[12] Newell, A. Heuristic programming: III strl;ctured problems. 
In Progress in Operations Research, Aronofsky, J., Ed.,Wiley, 
1369. pp. 360-414. 
[I 31 Rich, C. inspection Methods in Programming. Ph.D. Th., 
Massachusetts Institute of Technology, June 1980. 
[l 43 Swartotit, W., and Balzer. R. “On the Inevitable !ntertwining 
of Specification and lmplem%tation.” CACM 25, 7 (July 1982), 
438-44G. 

[I 51 Tappel, S. Some Algorithm D &qn Mc?hods. Proceedings 
of the First Annual National Conferen& on Artificial Intelligence, 

August 18-21, 1980, pp. 64-67. 

181 


