From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

n ATITAORMATIO A ONADVTMIAL MTCICNER- AN INITIAL M AT AMTATION
~ FALU UM G\ AU 1 L 10 S JINAT L L. ATy T L 0T 1Y el V)8 5§ 8 I 1
Elaine Kant and Allen Mewell
nnnnnnn P Al N Aamamiidbar QAaianmAan
UU}J'\I lll(bl LU VUHITRULTT OUITHIVe
Carmvacian Mallam Hinivereihg
Carnegic-Mclion Universit
Pittsburah. Pennsvivania 15213
Pittsburgh, Pennsylvania 18213
ABSTRACT Formal derivation systems typically do have a smail number of

This paper outlines a specification for an algorithm-design system
(based on previous work involving protocol analysis) and
describes an implementation of the specification that is a
combination frame and production system. In the
implementation, design occurs in two problem spaces -- one

The nartially
parually

worked out algorithms are represented as configurations of data-
flow components. A smail number of general-purpose operators
istruct and miodify the representations.

adapted to different situations by instantiation and means-ends
nalvws rules. The data flow space aIso includes symbolic and

ahout alogrithmn and one about the task-domain

anoQul gonning ang One 42Ul InNg 1ask-aomam,.

on Thaoan anaratare ara
Of 111888 GpCiallic aic

O

process by exposing both problems and Opportumtles. A domaln
space about geometric images supports test-case execution,
domain-specific probiem soiving, recognition and discovery.

I. APPRCGACHES TO DESIGN

We are interested in sysiems that automatically design
algorithms and create programs for them. The process of
algorithm design requires a significant degree of both knowledge
and intelligence, and may even require additional structure to
make creative discoveries. In this paper, we briefly present our
snecifications for a dncmn

shelincauor cest sysiem anQ CesSCrine

implementation. The main goal of the research is to produce a

successful automatic design system, but a secondary goal is to
show that careful ex

initial

system and describe an

ation of human behavior can nggest

nove!l and worthwhile system organizations.

Related research on program synthesis and transformation,
formal derivation, and automated discovery suggests some
ailla annransrhac it tha anitamatbin ~ixla
possible approaches 1o the automation problem.

provides a satisfactory paradigm for the whole task of automatic
algorithm design.

Heawavar
ngwever, none

Program synthesis systems |1, 5, 13] often successively refine
programs by Most of these systems lack
robustness because they require numerous transformation rules
to specify all the details about programming and because they
have no problem-solving abilities other than simple pattern
matching en the rules. This may indicate the desirability of having
a few general operators with more sophisticated techniques for
adapting ruies to situations.

P S PPN
wansionmauons.

1This research is supported by the Defense Advanced Research Projects
IDONY ADDA Ordar ld-\ 2507 monitorad by tho ‘Aw Forca Avioning

ARPA QOrder 3587, monitoreG By Ine A rorce Avicnies

Agency (DOD),

Laboratory Under Contract F33615-81-K-1539. The views and conclusions
contained in this document aie those of the authors and shouid not be interpreted
as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projecis Agency or the U.S. Government.

177

However,
whizh may not he avai

general operators.

© rt-mfmqrgnn\

they require complete, formal
bz initally [14). and they

often apply rather rigid methods to choose among applicable
transformation rules. Peoz)le still must specify the interesting
inmninao i A Aacida altnrnatiua
lemmas tions snd decide among alternative
em [2] does addrass the choice problem by
guessing recursive so |UYIOH:. to logical equatu ns and verifying the

........... o R
T o)

guesses with a theorem

auxi il

inry
auxhniay

or
Gt Y
st

axiom sets. One s

UlSC’)V(,’r/ ..:Yb(&‘ﬂ'lo dare qu;E;‘ rare, ana IHUQG that UXI&I are eunu
open-ended exploration systems rather than problem-solving
systems that focus ¢n a specific task [3. 10] or work in very narrow
domains such as aigebraic modeis {9].

We propose an approach that inciudes relatively few basic
specific knowledge about instantiation rather than
many transformation rules, and several problem-solving methods

that work with domain knowledge. We also attempt a structure
that permits discoveries.

operators,

closely on the results of p:otocol nalyw [6,
lgorithms about compulational geometry (for example,
rradiiaing tha ~Aanuvay bl Af o acd AF 'l"lts ira tham mlamal e Ane

ProGucing e convex nuii Of a setl & poi i Wie piaing) as oul

first task domain because it forces us to consider the interplay

between external geometric models, mental imagery, and
computationally etficient serial algorithms.

A. Algorithm-design methods to be supported

Design begins with the hypeothesis ot a kernel schema or
solution plan and proceeds by successive refinement. Two

closely related methods of program execution guide the gradual

maniamt ~f

ot
iennament of

Preoy N imm i AnuAra

oyluuuu‘u (//lc‘bu ion Lh.bqulo
informaiion by running a partial algorithin description with
svmbois as data. During execution, the algorithm and symbols are
eiaborated (new assertions and new compenents are added). if
symbolic exacuticn is not sutficient to permit progress, a specific
exampie is consiructed that permits dstailec execution (test-case
execution).

initinl anhhama

{ne initial schema.

in addition io driving the successive refinement, the two
execution methods generate consequences and expose problems

2We analyzed protocols olving and design strategies in
aigorithm-discovery tasks pecause a system organization ihat
reasoning lets us draw on human experts for techniaues,
and robust. and has potentia! {or learning.

of human problem-s

paralieis human
uromises to be fiexible

and complications.3 The test-case execution method allows the

probiem solver to generate examples that contain the right level of
detail to make progress (the relevant knowledge must be evoked
by concrete retrieval cues) while avoiding complications (such as
boundary conditions) that are not important until the basic outline
of ihe algorithm has been deveioped. However, test-case
execution is more time consuming than symbolic execution
because loops are executed for individual items, whereas
symbolic execution is linear in the size of the algorithm structure.
Thus, if the system understands a step well enough, it will execute
it symbolically. Simple inferences may also be made during the
execution process.

Design includes problem solving and reasoning about the task
domain. Examples are generating test cases, attempting to find
counterexamples, and "proving" conjectures by demonstration
(first on "typical” and later on boundary-condition examples). An
extreme, but important, example of reasoning is discovery, the
sudden viewing of a situation from -a new perspective that
presents an opportunity to solve an outstanding problem or make
an improvement. What is perceived is not a solution to the main
goal at the time the insight occurs; however, there is usually some
preparation for the discovery -- some previously considered but
unsolved problem. The new perspective often arises out of a
novel and accidental alignment of objects or facts.* A general
recognition-based control structure for all the methods seems to
be the appropriate device to support the possibility of such
juxtapositions.

B. A probiem space for representing algorithms

Much of the design process occurs within a single problem
space of schematic strucitures that represent algorithms. A small
number of basic types of components are instantiated and
configured in multiple ways to represent algorithms. Expert
design concepts (for example, schemas for divide and conquer
and for dynamic programming) are built up from and coexist with
the simpler vocabulary.

Coimponents may be augmented with assertions that give
additional information such as an ordering for a generator or a
predicate on a test. An assertion is not limited to concepts in the
algorithm space. For example, it can describe a relationship in the
task space that must be satisfied. The assertions drive the
decisions about how to refine a component into a new
configuration of components.

3Our analysis of human protocols showed that half of the design time was spent
on symbolic and test-case execution, and design time was proportional to the
number of components in the algorithm description. Even when subjects had
difficulties in designing the algorithms, their unsuccessful behavior had a simitar
character of hypothesizing new structures and repeatedly attempting to execute
the partial algorithm on sample data. Symbolic and test-case execution also had
major roles in verifying, describing and analyzing algorithms.

4Our human subjects sometimes made discoveries while feeling lost and staring
“blankly" at a figure during test-case execution.

178

The problem space must include operators that refine partially
specified structures (add new components, links between
components, or assertions) and that carry out the execution
methods. The refinement operators must not insist that
configurations form complete or consistent algorithms. While
most components wilt have a set of standard inputs and outputs to
represent primary data relationships, operators can add new
connections at any time without checking for type mismatches.
Instead, problems noticed during test-case or symbolic execution
will be handled as they arise. All the problem-space operators
should be very general and will require instantiation before they
are applied.

Since kernel ideas, instantiation, and indeed all design decisions
can be wrong, design involves search in the problem space. Most
search-control knowledge should be provided by rules that select
instantiations of the operators that modify components and
assertions and select parts of the algorithm to refine or execute.
In the absence of specific knowledge for instantiation, other
search-control rules must provide more general techniques, such
as means-ends analysis, to help adapt an operator to a specific
problem state.

C. A problem space for the application-domain

The application-domain space must support test-case execution
of algorithms, problem solving about the domain. and discovery.
Test-case execution requires operations that produce specific
examples (and judge their suitability) and operations that evaluate
assertions (such as predicates on tesis) in the domain space.

Our initial task domain will be a problem space for manipulating
geometric images. It includes objects, such as points, line
segments, and polygons; specific geometric operators, such as
create a point or construct a line segment; and general operators
(perceive, find, partition) that are typically specialized in geometric
ways (partition a point set). The operators help create test cases
(such as sets of points) and check assertions (such as whether a
point lies above the X-axis).

Working within a geometric task domain imposes important (but
largely unknown) constraints, as indicated by the facility with
which humans prccess visual scenes and reason spatially. Qur
design for a geometric problem space is modeled upon the
imagery simulation of Kosslyn and Shwartz [8]. It consists of a
short-term image bufter (a planar array), with the image centered
around a focal point of attention. External (perceived) and
internal (imagined) images are coalssced into a single image.
Several operators (rotate, pan, zoom and scan) change the focus
by regenerating the buffer around the focus point, rather than
shifting the center in a fixed space. A variable amount of detail is
present. depending on point of view created by the movement
operators. The image is viewed by a recognizer centered on the
focus point, with the image memory permitting recognition of
combined scenes. However, there are no operators that construct
the image directly (write new patches of image into the buffer).
Rather, all parts of the image are supported by the underlying
semantic representation, and modifications are made to this
underlying structure which is then pictured in the image.

Discovery seems to occur through a recognition of some
interesting configuration in the task space. Certain configurations
of data items lead to recognition or automatic inferences (for
example, completing polygons that are missing one edge, seeing
polygons in regular patterns of points, being reminded of related
algorithms). The image structure just described seems to be
appropriate to facilitate this recognition.

. AN IMPLEMENTATION OF
AN ALGORITHM-DESIGN GYSTEM

We are implerenting an algorithrn-design system that is both a
protocol analysis/simulation system ard a fully autcmated design
system. The basic structure is a combination frame and
production system. It is implemented in Lisp and can run with or
without the OPS5 production system [4] as the automated control
structure.

In the simulation mode, the user (rather than the production
rules) makes the decisions about which design commands to
invoke and how to instantiate them. Design commands include
component, assertion, and item construction, symbolic and test-
case executlion, and goal creation and modification. The
implementation also includes objects such as protocol phrases,
episode groupings, and comments (all represented by frames),
and it has operators that create and edit the objects and insert
them into a history of design commands. The total history
describes an actual protocol and its interpretation. The user
interface inciudes facilities for graphic display of component
configurations, for saving, restoring, and undoing history
sequences, and for command completion (with prompts for
arguments and access to help files).

The automatic moede is an augmentation of the simulation mode.
Normally, the production rules make instantiation and search-
control decisions and a history of design steps only (no protocols)
is maintained. However, the modes can be mixed and the user
can take over or relinquish control in midstream.

A. Representing algorithms with data-flow configurations

Partially specified algorithms are represented as states in a
data-flow problem space, DFS. Each state is a data-flow
configuration.® The algorithm steps are represented by process
components. There are a small number of generic process
components (a memory, and the flow-control components
generate, test, and select) and a general apply component that
can be specialized to domain operations such as make-line-
segment. The inputs and outputs of the process components are
represented by ports connected by links. Process components
can be further specified by assertions. The components and
assertions together modify and control the flow of items that
represeni data objects such as points and line segments. ltems
can fill several roles -- generic descriptions, symbols (for symbolic
execution), and spscific domain-space data. Assertions can be
attached to any object, including an item, a process component, a
whote configuration of components, and a problem space.

Figure 1 shows an example of a simple DFS configuration that,
given z set of points, finds the subset that lies above (on the left
side of) the X-axis. The input. {i}. is 2 memory containing a set of
points, {A B C D}, which are enumerated by Generate,. Those
points that satisfy the predicate associated with Test, are added
to the output set memory {o}. In the figure, points A, B and C
have been enumerated. A was discarded, B has been added to
the output, and C has not yet been tested.

5Data»flow representations have been studied in computer architecture
research and have been used to describe artificial intelligence programs [t1, 12]
and to express algorithm transformations [15].

179

{i} contains point set {A B C D}
{o} contains point set {B}

Figure 1: A subset test.

Compenents, links, ports, assertions, and items are all
implemented by frame data structures chained in a tangled
hierarchy (a directed acyclic graph). A refinement of a component
is represented by a slot containing the names of the components
in the configuration that implements it. For example, the TOP-
LEVEL component frame has a slot called Components-list whose
value is (MEMORY-1 GENERATOR-1 TEST-1 MEMORY-2). Two
frames that define the Test, component of Figure 1 are shown in
Figure 2. Backpointers between related frames (such as the
Component-of slot in TEST-1) are automatically maintained. In
addition to the value and default facets shown in the figure,
it-needed servant functions and if-added/if-removed demons are
provided via facets. Furthermore, all objects have a life time
(creation and deletion dates) so that ditferent DFS states can be
represented concisely, and the history of events is tree-structured
to enable alternate design paths to be tried. Different inheritance
mechanisms allow objects to be viewed from different historical
perspectives -- such as the current configuration of "visible"”
objects, or a "remembered" version of past states.

The current knowledge base of thz system (before an algorithm
is developed) includes the basic components described above,
three types of ports (input, output, and signal-interrupt) and
several named port instances for each component type. This
algoritnm-component knowledge base is fairly stable, although it
is missing specialized expert schemata, such as divide and
conquer. We do not expect it to grow to more than several times
the current size.

Component: TEST
stot facet value
Creation-date Value HISTORY-0
AKO Value COMPONENT
input-ports Default-filler TEST-IN
Output-ports Default-filler TRUE-EXIY
Instances Value TEST-1

Component: TEST-1
slot facet value
Creation-date Value HISTORY-3
AKO Value TEST
Component-of Value TOP-LEVEL
Input-ports Value TEST-IN-1
Qutput-ports Value TRUE-EXIT-1
Assertions Value ASSERTION-2

Figure 2: Frames for the test components.

B. Implementing component operators

DFS operators that construct and refine the structures in an
algorithm description accomplish simple but general tasks:
adding, deleting. or changing the siot values of components and
links. Other operators move items across links and execute
components. A reasonably complete set of approximately fifty
Lisp functions implement these operators. They are quite
straightforward, and not many more appear to be needed.

The operators to construct the subset-test configuration of
Figure 1 are given in Figure 3. The new-component operator adds
a new instance of the specified component to the current
configuration, but does not link it up in any way. The
add-component operator adds the new component specified in its
first argument and links it to an existing output port, described by
the second argument, using the input port on the new component
described by the third argument. If an argument is missing (or is
nif), defaults are used. In this case, the new components are
linked to the most recently added component, using Default-filler
ports for each component type. The process of instantiating these
operators is discussed in section D.

(new-component 'memory)
(add-component 'generator)
(add-component 'test)

(add-component '‘memory nil 'add-elem)

Figure 3: Constructing the subset test.

C. Representing and testing assertions

Assertions, which are also represented as frame objects (see
Figure 4), can be attached to any type of object. Assertions can
take values from the component inputs as parameters (for
example, the TEST-IN port of the test above is a parameter in the
assertion show below). There are currently about twenty-five
assertions in several categories (for example: Booleans
connectives, {est-predicates, assertions about generator
orderings, and references to geometry space operations), but
assertions can denote anything (for example, that a configuration
has not yet been refined to handle initialization). This set will grow
as new algorithms are developed.

DFS operators have been written to add, remove, search for, test
the truth of, and find the consequences of assertions. For
example, to make the subset algorithm in Figure 1 be a test for the
points above the x-axis, we apply the following operator which
results in a new assertion frame.

(add-assertion ’(test-predicate (on-side test-in x-axis left))
"test-1)
Component: ASSERTION-2
siot facet value
Creation-date Value HISTORY-4
Body Value (TEST-PREDICATE
(ON-SIDE TEST-IN X-AXIS LEFT))
AKO Value TEST-PREDICATE
About Value TEST-1

Figure 4: An assertion frame.

Consider the evaluation of this assertion for point C during the
test-case execution of Figure 1. The system looks for the Truth
slot of the assertion. Nothing is recorded there, but the assertion
is an instance of a TEST-PREDICATE, which is in turn an instance
of a BOOLEAN-ASSERTION, and there is an if-needed function
that computes the truth value. During this computation, the value
of the ON-SIDE subassertion is needed. If it has not been
previously stored, it is calculated by calling a geometry space
funciion that uses the coordinates of the point C. The result is
then stored for future reference.

180

D. Controlling search with a production system

Search is controlled primarily by production rules, with major
goals expiicitly represented in frame structures and with default
fillers for slots to represent typical port or assertion types (e.g., to
indicate that tests have test-predicate assertions). The goal
structure is simple -- goais have lypes (e.g.. to refine a component
or to execule a component) and can ke in a number of states
-- active, suspended (vaiting for subgoals), sidelined (for lack of
immediate relevance or a way to preceed), succeeded, failed, or
cancelled. A hierarchy of subgoal relalionships is maintained, but
all goals are in working memory s¢ the productions can notice
whenever any goal is achieved, even if it is not active in the
current state.

Operators are instantiated by production rules. For frequently
used generic components, specific instantiation rules describe
which process components to add to the algorithm description
under different circumstances, defaults for how to link
components together, and so on. Default-fillers are used by
instantiation rules in absence of more specific ruies. The current
implementation has about 25 instantiation rules, and we anticipate
that several orders of magnitude more will be needed.

In the absence of specific knowledge, means-ends analysis rules
find differences and select operators io reduce the differences.
Production rules a'so describe hove to execute components. The
current implementation has approximately 20 rules that control
means-ends analysis, voting on alternatives, and subgoaling, and
another 10 that provide the control for symboiic and test-case
execution and assertion checking. Specific Lisp functions
associated with objects determine how to execute individual
components and test assertions. As new specializations of
components and assertions are added, corresponding functions
and instantiation rules may need to be added, but the control
should not change.

The design of the simple algorithm in Figure 1 is sketched in
Figure 5. The first two production-rule applications decide to add
a new component because the difference between the existing
configuration and the desired one is that nothing is present. The
operator is instantiated to add a memory, because the givens of
the problem include a set of points. A new difference is selected
(application 3), which is that the algorithm contains no active
process component. The add-component operator can solve this
(4), and it is instantiated to a generator after a voling process
(applications 9-17). Both generators and selectors can follow
memories, but a generator is more likely because it creates a set
rather than a singie item as output, and the desired output of the
algorithm is a subset of the input. The components are linked
according to the default rules. The system tries to refine the new
component, but other than deciding to use the default ordering
assertion, no refinement is necessary at this level (applications
41-59). Since an active process component is present, symbolic
execution is applied (applications 62-89). This proceeds
successfully until there is nothing to do with the output of the
generator. A test is added (90-102}, and atiempts are made to
refine it (103-146). The production rules find a test predicate by
looking for assertions about the types of items that are inputs to
the test. Symbolic execution then continues (147-172) until the
output of some component (the test) matches the description of
elements in the algorithm output (both are points, both have
matching assertions about position relative to the X-axis), and the
results are collected in a final memory.

The full derivation of the subset test includes 190 production-rule applications.
The summary trace here omits most of the applications refaled to housekeeping
tasks, voting procedures, talse paths. and means-ends analysis steps. Operator
applications are shown in square brackets, and comments are in braces.

{the top leval goal is to refine algorithm Subset}
1. notice~difference::empty-configuration
2. reduce-diiference::empty-configuration
[new-component memory] {a memory component is added}
3. notice-difference::no-active~process-component
4. raduce-diffarence::no~-active-process-component
{it nas bsen decided to apply the operator add-component}
5. instantiate::add-component:from-port
{the trom-port is instantiated according to default rules}
9. instantiate::add-comporent:generator-since-need-set
10. instantiate::add-componont:gensrator~follows-memory
11. instantiate::add-component:select-follows-memory
13. vote {decide on componsnt to instantiate add-component}
14. dnstantiate::add~component:to-port
18. instantiation-complete {a genarator component is added}
[add-component generator mem-out-1 gen-in]
41. reduce~difference::no-assertions
{the current goal is to refine the generator}
42. instantiate::add-assertion:defaults
{assertion about default gensrator ordering is added}
59, goal::sideline-goal-with-no-roduce~difference
{cannot further refine ganerator, so sideline goal}
60. goal::rasume-if-suspended-with~sidelined-subgoals
{resume goal of refining whole algorithm}
62. reduce-difference::symbolic-exscution
74. symbolic-execution::instantiate-inputs-succeeds
78&. symbolic-execution::set-up-for-roefinements
{find most refined componsnts}
82. symbolic-execution::executable
{symbolically execute memory component}
ag. symbolic-execution::executable
{symbolically execute generator component}
90. symbolic-execution::unconnected-link
{notice generator output not connected to a component}
{decide to appiy add-component operator}
95. instantiate::add~component:compare-~follows-component
96. instantiate::remove-if-not-enough-inputs
97. instantiste::add-component:test-follows-active-component
98. dinstantiate::add-componsnt:apply-folilows-active-component
99. instantiate::remove-if-not-enough-inputs
{test 1is only component with the proper inputs}
102. instantiate::add-component:to-port
[add-componant test gen-out-1 test-in] {test added}
127. reducs-differsnce::no-assertions
{new goal is to refine test}
128. instantiate::add-assertion:test-relevants
{a relevant test predicate is found}
[add~assertion (on-side test-in x-axis left) test]
146. goal::sideline-goal-with-no-reduce-difference
{no way to refine test further}
147. goal::resume-if-suspended-with-sidelined-subgoals
{rasume goal of refining whole algorithm}
166. symbolic-execution::set-up-for-refinsmants
{haven't executed test yot}
170. symbolic-execution::exscutable {so execute test}
172. symbolic-exacution::unconnected-link-alg-complete
{notice that output on link from test satisfies assertion
on algorithm output, so add final memory component}
[add-component memory true~exit add-elem]
{algorithm is now complete}

Figure 5: Sketch of system’s design of algorithm in Figure 1.

E. Implementing the domain space

We have implemented a simple version of the geometry space,
with frame objects representing geometric objects (including
points, line segments and polygons). Lisp functions implement
operators (to construct and modify the objects) and determine the
relationships between objects (such as above, between, inside,
and convex) that are used in assertions. General operators such
as perceive or find an item with a given property are not yet
implemented. Currently the system uses analytic geometry
computations, and the imagery model is not yet implemented.

181

1V. DISCUSSION

Our initial implementation is currently operational. In addition to
consiructing email exainples such as the subset test described
here, we are using the convex hull algorithm (whose discovery has
been worked out by hand in our protocot-analysis research (6, 7])
as a large test case. This example contains instances of a variety
of critical issues for an algorithm-discovery system. There are
both generate-and-iest and divide-and-conquer algorithms. The
former was found initially and was used in part in ubtaining the
latter, so interesting issues of knowledge transfer arise. Some
genuine discoveries occur, providing good tests of whether our
system can recognize and capitalize on adventitious situations.
The coupling between the algorithm space and the geometry
space is continuous and intimate, and this will test whether our
proposed imagery scheme will have the desired properties. On
the other hand, we have stiil to address tiie task of passing from
the DFS representation of an algorithm to a program in some
standard language.

ACKNOWLEDGEMENTS

We thank David Steier for helpful comments on this paper.
Steier, Brigham Bell, and Edward Pervin are helping implement
the system.

REFERENCES

[1] Balzer, R. "Transformational implementaticn: an exarple.”
IEEE Transactions on Software Engincering SE-7, 1 (January
1981).

[2] Bibel, W. and Horning, K. M. LOPS - A System Based on a
Strategical Approach to Program Synthesis. Proccedings of the
International Workshop on Prograim Constructicn, France,
September, 1980.

[3] Davis, R. and Lenat, D. B.. Know!edge-based Systems in
Artiiicial Intelligence. McGraw-Hill, 1881.

{4] Forgy, C.L. OPS5 User's Manual. Tech. Rept. CMU-
CS-81-135, Carnegie-Meilon University, July, 1881.

5] Kant, E. and Barstow, D. R "The Refinement Paradigm: The
Interaction of Coding and Efficiency Knowledge in Program
Synthesis." IEEE Transactions on Software Engineering SE-7,5
(September 1981), 458-471. '

[6] Kant, E. and Newell, A. Naive algorithm design techniques: a
case study. Proceedings of the European Conference on Artificial
Intelligence, Orsay, France, July, 1982.

{7] Kant, E. and Newell, A. Problem Solving for the Design of
Aigorithms. Tech. Rept. CMU-CS-82-145, Carnegie-Mellon
University, November, 1982.

[8] Kosslyn, S. M.. Image and Mind. Harvard University Press,
Cambridge, Massachusetts, 1980.

[9] Langley, P. A., Bradshaw, G. L., and Simon, H. A. Bacon.5:
the Discovery of Censervation Laws. Proceedings of 1JCAI-81,
1981, pp. 121-126.

{10] lenat, D. B. "The Nature of Heuristics." Artificial
Intelligence 19, 2 (1982), 189-249.

[11] Moore, J. A. The Design and Evaluation of a Knowledge Net
for MERLIN. Ph.D. Th., Carnegie-Mzellon University, 1971.

[12] Newell, A. Heuristic programming: Ill structured problems.
In Progress in Operations Research, Aronofsky, J., Ed.,Wiley,
19€9, pp. 360-414.

[13] Rich, C. Inspection Methods in Programming. Ph.D. Th,,
Massachusetts Institute of Technology, June 1980.

[14] Swartout, W., and Balzer, R. "On the Inevitable Intertwining
of Specification and Implemantation.” CACM 25,7 (July 1982),
438-440.

[15] Tappel, S. Some Algorithm Design Mcthods. Proceedings
of the First Annual National Conference on Artificial intelligence,
August 13-21, 1980, pp. 64-67.

