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Abstract 

Using default logic, we formalize NETL-like inheritance hierar- 
chies with exceptions. This provides a number of benefits: 

(1) A precise semantics for such hierarchies. 

(2) A provably correct (with respect to the proof theory of default 
logic) inference algorithm for acyclic networks. 

(3) A guarantee that acyclic networks have extensions. 

(4) A provably correct quasi-parallel inference algorithm for such 
networks. 

1. Introduction 

Semantic network formalisms have been widely adopted 
as a representational notation by researchers in AI. Schubert 
[1976] and Hayes [1977] h ave argued that such structures 
correspond quite naturally to certain theories of first-order 
logic. Such a correspondence can be viewed as providing the 
semantics which “semantic” networks had previously lacked 
[Woods 19751. 

More recent work has considered the effects of allowing 
exceptions to inheritance within networks [Brachman 1982, 
Fahlman 1979, Fahlman et al 1981, Touretzky 1982, Winograd 
19801. Such exceptions represent either implicit or explicit 
cancellation of the normal property inheritance which IS-A 
hierarchies enjoy. 

In this paper, we establish a correspondence between such 
hierarchies and suitable theories in Default Logic [Reiter 19801. 
This correspondence provides a formal semantics for networks 
with exceptions in the same spirit as the work of Schubert and 
Hayes for networks without exceptions. Having established 
this correspondence, we identify the notion of correct inference 
in such hierarchies with that of derivability in the correspond- 
ing default theory, and give a provably correct algorithm for 
drawing these inferences. As a corollary of the correctness of 
this algorithm, the default theories which formalize inheritance 
hierarchies with exceptions can be seen to be coherent, in a 
sense which we will define. 

We conclude, unfortunately, on a pessimistic note. Our 
results suggest the unfeasibility of completely general mas- 
sively parallel architectures for dealing with inheritance struc- 
tures with cancellation (c.f. NETL [Fahlman 19791). We do 
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observe, however, that limited parallelism may have some 
applications, but that these appear to be severely restricted in 
general. 

2. Motivation 

In the absence of exceptions, an inheritance hierarchy is a 
taxonomy organized by the usual IS-A relation, as in Figure 1. 
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/ I \ 
REPTILE MAGMAL INSECT 

/ \ 
DOG CAT 

/\ 
POODLE AFGHAN 

Figure 1 - Fragment of a Taxonomy 

The 8emantico of such diagrams can be specified by a collec- 
tion of first order formulae, such as: 

(z).POODLE(z) 3 DOG(z) 
(x).DOG(z) 3 MAMMAL (2) 
(z).MAMMAL(z) 3 ANIMAL(z) 
etc. 

If, as is usually the case, the convention is that the immediate 
subclasses of a node are mutually disjoint, then this too can be 
specified by first order formulae: 

(z).MAMMAL (2) 3 7REPTILE( z) 
(s).MAMMAL (2) 3 -INSECT(z) 
etc. 

The significant features of such hierarchies are these: 

(1) Inheritance is a logical property of the representation. 
Given that POODLE(Fido), MAMMAL (Fido) is provable 
from the given formulae. Inheritance is simply the 
repeated application of modus ponens. 

(2) Formally, the node labels of such a hierarchy are unary 
predicates: e.g. DOG( *), ANIMAL ( *). 

(3) No exceptions to inheritance are possible. Given that 
Fido is a poodle, Fido must be an animal, regardless of 
what other properties he enjoys. 

The logical properties of such hierarchies change dramati- 
cally when exceptions are permitted; non-monotonicity can 
arise. For example, consider the following facts about 
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elephants: 

(1) Elephants are gray, except for albino elephants. 

(2) All albino elephants are elephants. 

It is a feature of our common sense reasoning about prototypes 
like “elephant” that, when given an individual elephant, say 
Fred, not known to be an albino, we can infer that he is gray. 
If we subsequently discover - perhaps by observation - that 
Fred is an albino elephant, we must retract our conclusion 
about his grayness. Thus, common sense reasoning about 
exceptions is non-monotonic, in the sense that new informa- 
tion can invalidate previously derived facts. It is this feature 
which precludes first order representations, like those used for 
taxonomies, from formalizing exceptions. 

In recent years, there have been several proposed formal- 
isms for such non-monotonic reasoning (See e.g. [AI 19801). For 
the purpose of formalizing inheritance hierarchies with excep- 
tions, we shall focus on one such proposal - Default Logic 
(Reiter 19801. A default theory consists of a set, W, of ordi- 
nary first order formulae, together with a set, D, of rules of 
inference called defaults. In general, defaults have the form: 

+1,..., &I) : B(h...AJ 

7(%.-A) 

where CX, B, and 7 are first order formulae whose free variables 
are among z1,...,2,. Informally, such a default can be under- 
stood to say: For any individuals z~,...,z,, if a(zl,...,z,) is inferr- 
able and a(~,,... ,x,) can be consistently assumed, then infer 
7(Sl,...,Z,). For our elephant example, the first statement 
would be represented by a default: 

ELEPH.4NT(x) : GRAY(z) 8 -ALBINO-ELEPHANT(x) 
GRAY(z) 

From the informal reading of this default, one can see that 
when given only ELEPHANT(Fred), GRAY(Fred) & 
TALBINO-ELEPHANT(Fred) is consistent with this; hence 
GRAY(Fred) may be inferred. On the other hand, given 
ALBlNO-ELEPHANT(Fred) one can conclude 
ELEPHANT(Fred) using the first order fact (x).ALBINO- 
ELEPHANT(x) 3 ELEPHANT(x), but ALBINO- 
ELEPHANT(Fred) “blocks” the default, thereby preventing 
the derivation of GRAY(Fred), as required. 

The formal details of Default Logic are beyond the scope 
of this paper. Roughly speaking, however, for a default theory, 
(D,W), we think of the defaults of D as extending the first 
order theory given by W. Such an extension contains W and 
is closed under the defaults of D as well as first order theorem- 
hood. It is then natural to think of an extension as defining 
the “theorems” of a default theory; these are the conclusions 
sanctioned by the theory. However, these extensions need not 
be unique [Reiter 19801. F or a default theory with more than 
one extension, any one of its extensions is interpreted as an 
acceptable set of beliefs that one may entertain about the 
world represented by that theory. 

In the next section, we show how inheritance hierarchies 
with exceptions can be formalized as default theories. Default 
Logic will then be seen to provide a formal semantics for such 
hierarchies, just as first order logic does for IS-A hierarchies. 
As was the case for IS-A hierarchies, inheritance will emerge as 
a logical feature of the representation. Those properties, 
PI, * . . , P,, which an individual, b, inherits will be precisely 
those for which P,(b), . . . . P,(b) all belong to a common exten- 
sion of the corresponding default theory. Should the theory 

We now show that Default Logic can provide a formal 
semantics for inheritance structures with exceptions. We 
adopt a network representation with five link types. Although 
other approaches to inheritance may omit one or more of 
these, our formalism subsumes these as special cases. The five 
link types,3 with their translations to default logic, are: 

(1) Strict IS-A: A.d .B: A’s are always B’s. 
Since this is universally true, we identify it with the first 
order formula: (x).A(x) 3 B(x). 

(2) Strict ISN’T-A: A.-. B: A’s are never B’s. 
Again, this is a universal statement, identified with: 
(x).A(x) 3 -B(x). 

(3) Default IS-A: A.- >.B: Normally A’s are B’s, but 
there may be exceptions. 
To provide for exceptions, we identify this with a default: 

A(x) : B(z) 

B(z) 

(4) Default ISN’T-A: A.* >.B: Normally A’s are not 
B’s, but exceptions are allowed. 
Identified with: 

A(z) : -B z 

-B(x) 

(5) Exception: A.------> 
The exception link has no independent semantics; rather, 
it serves only to make explicit the exceptions, if any, to 
the above default links. There must always be a default 
link at the head of an exception link; the exception then 
alters the semantics of that default link. There are two 
types of default links with exceptions; their graphical 
structures and translations are: 

have multiple extensions - an undesirable feature, as we shall 
see - then b may inherit different sets of properties depending 
on which extension is chosen. 

3. A Sernantica for Inheritance Hierarchies With Excep- 
tions 

B. 
A(z) : B(z) d -C,(z) @...@I +&(z) 

B(z) 
-_ . \ \ . . . 

A Cl . . . c, 

We illustrate with an example from [Fahlman et al I98I]. 

Molluscs are normally shell-bearers. 
Cephalopods must be Molluscs but normally are not shell-bearers. 
Nautili must be Cephalopods and must be shell-bearers. 

’ Note that strict and default links are distinguished by solid 
and open arrowheads, respectively. 
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Our network representation of these facts is given in Figure 2. 

Shell-bearer 

Mollusc 

Cephalopod 

\I 
I / 

Nautilus . -’ 

Figure 2 - Network representation of our knowledge about Molluscs. 

The corresponding default theory is: 

{ 
M(z) : Sb(z) 63 -C(z) 

SW 
, (W(Z) 3 M(z), (z).N(z’ 3 C(z), 

‘(” : +b(z’ ’ 1N(z’, (z).N(z) > Sb(x)}. 
+b(z) 

Given a particular Nautilus, this theory has a unique extension 
in which it is also a Cephalopod, a Mollusc, and a Shell-bearer. 
A Cephalopod not known to be a Nautilus will turn out to be 
a Mollusc with no shell. 

It is instructive to compare our network representations 
with those of NETL [Fahlman et al 19811. A basic difference is 
that in NETL there are no strict links; all IS-A and ISN’T-A 
links are potentially cancellable and hence are defaults. More- 
over, NETL allows exception (*UNCANCEL) links only for 
ISN’T-A (*CANCEL) links. If we restrict the graph of Figure 
2 to NETL-like links, we get Figure 3, 

Shell-bearer 

Mollusc 

Cephalopod 

Figure 9 - NETL-like network representation of our knowledge 
about Molluscs. 

which is essentially the graph 
corresponds to the theory: 

given by Fahlm an. This network 

{ 
M(x) : Sb(x) C(z) : M(z) N(x) : C(z) 

Sb(z) ’ M(z) ’ C(z) ’ 

CX : -Sb z B -N x ) N(z) : Sb(z) 
+b(z) , Sb(z) ” 

As before, a given Nautilus will also be a Cephalopod, a Mol- 
lust, and a Shell-bearer. A Cephalopod not known to be a 
Nautilus, however, gives rise to two extensions, corresponding 
to an ambivalence about whether or not it has a shell. While 
counter-intuitive, this merely indicates that an exception to 
shell-bearing, namely being a Cephalopod, has not been expli- 
citly represented in the network. Default Logic resolves the 
ambiguity by making the exception explicit, as in Figure 2. 

NETL, on the other hand, cannot make this exception explicit 
in the graphical representation, since it does not permit excep 
tion links to point to IS-A links. 

How then does NETL conclude that a Cephalopod is not 
a Shell-bearer, without also concluding that it is a Shell- 
bearer? NETL resolves such ambiguities by means of an infer- 
ence procedure which prefers shortest paths. Interpreted in 
terms of default logic, this “shortest path heuristic” is 
intended to favour one extension of the default theory. Thus, 
in the example above, the path from Cephalopod to +hell- 
bearer is shorter than that to Shell-bearer so that, for NETL, 
the former wins. Unfortunately, this heuristic is not sul?icient 
to replace the excluded exception type in all cases. Reiter and 
Criscuolo [1983] and Etherington [1982] show that it can lead 
to conclusions which are unintuitive or even invalid - i.e. not 
in any extension. Fahlman et al [1981] and Touretzky [1981, 
19821 have also observed that such shortest path algorithms 
can lead to anomalous conclusions and they describe attempts 
to restrict the form of networks to exclude structures which 
admit such problems. From the perspective of default logic, 
these restrictions are intended to yield default theories with 
unique extensions. 

An inference algorithm for network structures is correct 
only if it can be shown to derive conclusions all of which lie 
within a single extension of the underlying default theory. 
This criterion rules out shortest path inference for unrestricted 
networks. In the next section, we present a correct inference 
algorithm. 

4. Correct Inference 

The correspondence between networks and default 
theories requires defaults all of which have the form: 

a(q, . . . A) : a(% . * * AJ f.3 7(x,, . . . 9,) 4 

B(Zl, . * * J,) 

Such defaults are called aemi-normal , and can be contrasted 
with normal defaults, in which 7(z1, . . . , zn) is a tautology. 
Our criterion for the correctness of a network inference algo- 
rithm requires that it derive conclusions all of which lie within 
a single extension of the underlying default theory. Until 
recently, the only known methods for determining extensions 
were restricted to theories involving only normal defaults 
[Reiter 19801. Etherington [1982] has developed a more gen- 
eral procedure, which involves a relaxation style constraint 
propagation technique. This procedure takes as input a 
default theory, (D,W), where D is a finite set of closed 

defaults,5 and W is a finite set of first order formulae. In the 
presentation of this procedure, below, the following notation is 
used: 

S k w means formula w is first order provable from premises S. 
S k w means that w is not first order provable from S. 

CONSEQUENT( y) is defined to be 7. 

4 a(q, . . . ,z,) and (a(~,, . . . ,z,) d r(zl, . . . ,zn)) are called 
the prerequisite and justification of the default, respectively. 

6 A default, (y: B 
7 ’ 

is closed iff CY, B, and 7 contain no free 

variables. 



H,, + W; j + 0; 

repeat 
j+j+ 1; h,+ W; CD,+{}; i+O; 

repeat 

Di + { + 6 D I (hi I-- 4, (h, bc -a), W,-I bc -B) 1; 

if lnull(Di - CDi) then 
choose S from (Di - GDJ; 

GDi+, + GDi U {6); 

hi+l + h, U {CONSEQUENT(G)}; end& 

i+i+ 1; 

until r~ull(D1-~ - GDkl); 

Hj = hi-, 

untll HJ = Hjel 

Extensions are constructed by a series of successive 
approximations. Each approximation, Hj, is built up from any 
first-order components by applying defaults, one at a time. At 
each step, the default to be applied is chosen from those, not 
yet applied, whose prerequisites are “known” and whose 
justifications are consistent with both the previous approxima- 
tion and the current approximation. When no more defaults 
are applicable, the procedure proceeds to the next approxima- 
tion. If two successive approximations are the same, the pro- 
cedure is said to converge. 

The choice of which default to apply at each step of the 
inner loop may introduce a degree of non-determinism. Gen- 
erality requires this non-determinism, however, since exten- 
sions are not necessarily unique. Deterministic procedures can 
be constructed for theories which have unique extensions, or if 
full generality is not required. 

Notice that there are appeals to non-provability in this 
procedure. In general, such tests are not computable, since 
arbitrary first order formulae are involved. Fortunately, such 
difficulties disappear for default theories corresponding to 
inheritance hierarchies. For these theories, all predicates are 
unary. Moreover, for such theories, we are concerned with the 
following problem: Given an individual, b, which is an instance 
of a predicate, P, determine all other predicates which b inher- 
its - i.e. given P(b) determine all predicates, PI, . . . , P,, such 

that 
this 

P(b), P,(b), . . . . P,(b), 
problem it is clear 

belong to a common extension. For 
that predicate arguments can be 

ignored; the appropriate default theory becomes purely propo- 
sitional. For propositional logic, non-provability is computable. 

Ezample 

Consider the network of Figure 4. Given an instance of 
A, the corresponding default theory has a unique extension in 
which A’s instance is also an instance of B, C, and D. When 

&={A) 

H, = { A, B, -D, C ) 

H2 = ( A, B, C ) 

H, = H., = { A, B, D, C ) 

Figure 4 - Example of Procedure Behaviour 

the procedure is applied to this theory, it 
approximations shown. (The formulae in each 
a& listed in the order in‘ which they are derived.) -D occurs 

generates the 
approximation 

in HI since it can be inferred before 6. 

The following result is proved in (Etherington 19831: 

For default theories corresponding to acyclic inheri- 
tance networka with ezceptiona, the procedure alwaya 
convergea on an extension. 

As a simple corollary we have: 

The default theory corresponding to an acyclic inheri- 
tance network with ezceptione ha8 at leaat one ezten- 
sion. 

The latter result is comforting. It says that such 
always coherent, in the sense that they define 
acceptable set of beliefs about the world represented by the 

networks are 
at least one 

network. 

5. Parallel Inference Algorithms 

The computational complexity of inheritance problems, 
combined with some encouraging examples, has sparked 
interest in the possibility of performing inferences in parallel. 
Fahlman [1979] has proposed a massively parallel machine 
architecture, NETL. NETL assigns one processor to each 
predicate in the knowledge base. “Inferencing” is performed 
by nodes passing “markers” to adjacent nodes in response to 
both their own states and those of their immediate neighbours. 
Fahlman suggests that such architectures could achieve loga- 
rithmic speed improvements over traditional serial machines. 

The formalization of such networks as default theories 
suggests, however, that there might be severe limitations to 
this approach. For example, correct inference requires that all 
conclusions share a common extension. For networks with 
more than one extension, inter-extension interference effects 
must be prevented. This seems impossible for a one pass paral- 
lel algorithm under purely local control, especially in view of 
the inadequacies of the shortest path heuristic. 

Even in knowledge bases with unique extensions, struc- 
tures requiring an arbitrarily large radius of communication 
can be created. For example, both the default theories 
corresponding to the networks in Figure 5 have unique 
sions. A network inference algorithm must reach F 

ex ten- 
before 

propagating through B in the first network and conversely in 
the second. The salient distinctions between the two networks 
are not local; hence they cannot be utilized to guide a purely 
local inference mechanism to the correct choices. Similar net- 
works can be constructed which defeat marker passing algo- 
rithms with any fixed radius. 

F /7:3t. . --- 
7. 

T D . 

T A . / 

Figure 5a 

B F 

E 7. 
T D . 

1 A . / 

Figure 56 

B 
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Touretzky [1981] h as observed such behaviour and has 8. References 
developed restrictions-on network structures which admit par- 
rallel inferencing algorithms. In part, such restrictions appear 
to have the effect of limiting the corresponding default theory 
to one extension. Unfortunately, it is unclear how these res- 
trictions affect the expressive power of the resulting networks. 
Moreover, Touretzky has observed that it is not possible to 
determine in parallel whether a network satisfies these restric- 
tions. 

A form of limited parallelism can be achieved by parti- 
tioning a network into a hierarchy of subnetworks, using an 
algorithm given in [Etherington 1983). A parallel algorithm can 
then be applied to the individual subnets, in turn. The 
number of subnets which must be processed is bounded by the 
number of exception links in the network. Unfortunately, it 
can be shown that this technique may exclude some extensions 
of the theory. We have not yet characterized the biases which 
this induces in a reasoner. 
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By formalizing inheritance hierarchies with exceptions 
using default logic we have provided them with a precise 
semantics. This in turn allowed us to identify the notion of 
correct inference in such a hierarchy with that of derivability 
within a single extension of the corresponding default theory. 
We then provided an inference algorithm for acyclic 

inheritance hierarchies with exceptions which is provably 
correct with respect to this concept of derivability. 

Cur formalization suggests that for unrestricted hierar- 
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marker passing hardware of the kind envisaged by NETL. 
Fortunately, this pessimistic observation does not preclude 
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raises several open problems: 

la) Determine a natural class of inheritance hierarchies with 
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lb) Define such a parallel algorithm and prove its correctness 
with respect to the derivability relation of default logic. 

2) In connection with (la), notice that it is natural to res- 
trict attention to those hierarchies whose corresponding 
default theories have unique extensions. Characterize 
such hierarchies. 
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