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Abstract 

Several attempts to define formal logic5 for some type of 
default reasoning have been made. All of these logics share the 
property that in any given state, a proposition p is either held to be 
true, it is held to be false, or no belief about it is held. But, if we 
ask what default reasoning really is, we see that it is form of 
likelihood reasoning. The goal of this paper is to show that if 
default reasoning is treated as likelihood reasoning (similar to that 
of Mycin), then natural solutions emerge for several of the 
problems that are encountered when default reasoning is used. 
This is shown by presenting 7 such problems and showing how they 
are solved. 

I. Introduction 

The need for default reasoning in artificial intelligence systems 
is now well understood 191. Such reasoning is required to enable 
systems to deal effectively with incomplete information. Several 
attempts have been made in the literature to define a formal logic 
for some type of default reasoning 15, 4, 31. All of these logic5 
share the property that in any given state, a proposition p is either 
held to be true, it is held to be false, or no belief about it is held. 
No intermediate situation is possible. But if we ask what default 
reasoning really is, we see that it, is a form of likelihood reasoning. 
Most birds fly, so it is likely that a particular bird does so. Most 
people have the same hometown as their spouse, so it is likely that 
Mary does. In many domains, negative Pacts about which we have 
no information are true, so if we do not know whether there is a 
flight from Vancouver to Oshkosh, it is likely that there is not. 

Once we recognize that default reasoning is a form of likelihood 
reasoning, it, is clear that there are more than two truth values that 
can be associated with a proposition. Different truth values 
represent differing levels of belief (or confidences in) the truth of 
the associated proposition. This corresponds to the situation in a 
variety of expert systems such as Mycin [S]. We will adopt the 
likelihood reasoning system used in Mycin. If a proposition is 
known definitively to be true, then it is held to be true with a 
certainty factor (CF) of 1. If it is known definitively to be false, it 
is known with a CF of -1. If there is equal evidence for and against 
a proposition (including the situation in which there is no evidence 
either way) then the proposition has an associated CF of 0. A CF 
in between these values indicates thaf the evidence either supports 
or disconfirms the associated proposition but it does so with some 
doubt,. 

The goal of this paper is to show that if default reasoning is 
treated as likelihood reasoning, then natural solutions emerge for 
several of the problems that are encountered when default 
reasoning is used. In the rest. of this paper, we will present 7 such 
problems and show how they can be solved through the use of 
certainty factors. 

II. Defhltions 

Before doing this, however, we must introduce some notation 
and define a likelihood reasoning system. A standard 

(nonlikelihood) default rule consists of three parts: the premises, an 
UNLESS clause 171, and a conclusion. For example, the default rule 
.Most birds fly a, can be represented as? 

bird(x) =+ fly(x) UNLESS -fly(x) (1) 
In q  normalo default rules, the UNLESS clause is exactly the 
negation of the conclusion. We will restrict our attention to 
normal default rules for two reasons. They are adequate to 
describe naturally occurring defaults. And they form a more 
tractable logical and computational system than do nonnormal 
rules [S]. Given this assumption, UNLESS clauses need not 
explicitly be represented. All we need do is to distinguish a default 
rule from a standard rule. We can do that by using * as an 
additional premise. Thus the default rule above will be represented 
as 

bird(x) A * + fly(x) (2) 
which can be read as, ‘If bird(x) and not fly(x) is not provable, 
then conclude fly(~)~. 

Now we extend this representation to associate with each 
default rule a certaintly factor (CF), which states the confidence 
that the system should have in the conclusion if each of the 
premises is known (with CF=l). So the example rule becomes 

bird(x) A * * fly(x) (CF=.9) (3) 
If bird(Tweety) is known with a CF of 1, then, using this rule, 
fly(Tweety) can be asserted with CF=.9. Notice that the meaning 
of a CF attached to a universally quantified formula represents the 
certainty that the statement holds for any particular assignment of 
values to the bound variables. The certainty that the statement 
holds for all such bindings is usually -1, since the existence of at 
least one counterexample is generally known. 

If the CF of bird(Tweety) is less than 1, that uncertainty must 
coritribute td the fihtil’CF o? fly(Tweety).‘..This ti done ‘using the 
formula: 

Given an implication P, A P, A . . . A P, =+ C (CF=k) (4) 
Then the CF attached to C will be k X TrCF(Pi) 

So if bird(Tweety) has a CF of .9, then fly(Tweety) will be asserted 
with a CF of .9X .9=.8. 

In any likelihood theory, contradictions will arise. There are 
two ways that contradictions can be handled. One is to assert, the 
more likely proposition and to modify its CF to account for the 
negative evidence (by subtracting it out as is done in Mycin). The 
other is to exploit other information about the reasoning process to 
resolve the conflict and to compute an appropriate CF for the 
resulting assertion. As we will see, there are times when each of 
these is appropriate. 

III. Statlstlcal, ProtypIcal, and DefInitional Facts 

The distinction between definitional facets and prototypical ones 
is often made (e.g., [lo]). A n additional distinction is sometimes 

1 Throughout this paper, all variables are assumed to be univemallY 
quantified SO the quantifiers will be omitted. 
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made 16) between prototypical and statistical facts. Consider the 
facts represented by the following sentences: 

People are mammals. (5) 
person(x) 4 mammal(x) 

Most people can see. (6) 
person(x) A * =a sees(x) 

Most Southerners are Democrats. (7) 
Southerner(x) A * =# Democrat(x) 

(5) is a definition. It can never fail to hold. (6) is a 
prototypical statement. It should be assumed to hold in the 
absence of evidence to the contrary. (7) is a statistical statement. 
It, too, is a reasonable default. But it seems somehow less 
necessarily true than (6). 

The distinction among these three kinds of facts can easily be 
captured using likelihoods. Definitional facts have a CF of exactly 
1. So do analytical facts, which can be derived from a set. of 
definitional facts. All other facts represent empirical observations, 
very few of which have no exceptions. Prototypical facts typically 
have fewer exceptions than do statistical ones; thus they tend to 
have higher CFs. Any fact with a CF of other than 1 or -1 is a 
default rule. It suggests something to be believed unless there is 
contradictory evidence. (5)-(7) can be represented in a likelihood 
framework as follows: 

person(x) * mammal(x) (CF=l) (8) 
person(x) * sees(x) (CF=.99) (9) 

Southerner(x) + Democrat(x) (CF=.8) (10) 

By representing CFs that differ from 1, we not only eliminate 
distinctions that are very difficult to make, but also allow more 
information about assertions to be represented in the knowledge 
base. 

Notice that we can now eliminate the explicit * part of the 
premise for default rules since any rule with a CF other than 1 or 
-1 is known to be a default rule. The implicit UNLESS clause still 
plays an important role though. Suppose we know 

-sees( John) (CF=l) (11) 
Since the truth of this assertion is certain, it will completely 
dominate all inferences derived from default rules such as (9). This 
corresponds to the role of the UNLESS clause in standard default 
logic. On the other hand, if (11) were believed with a CF of only 
.9, (9) would produce the assertion 

sees( John) (CF=.99) (12) 

Now two conflicting facts are believed and a conflict resolution 
mechanism must be applied to choose between them or perhaps to 
decide that no conclusion is justified. In standard default logic, the 
only conflict resolution technique available is time sequencing. The 
first conclusion to be drawn blocks later conflicting ones, regardless 
of t,he relative strengt.hs of each af t.he conclusions. Using .CFs 
instead, however, allows more rational mechanisms to be employed. 
See Section VII. for a further discussion of this. 

IV. The Role of Multiple Premise6 

Multiple premises can be used to increase the CF of a rule. 
Consider the rule 

animal(x) * defensemechanism(x,camoflage) (CF=.4) (13) 

which can be modified to have an increased CF by the addition of 
3 premises: 

animal(x) A color(x,c) A habitation(x,y) A color(y,c) 
* defensemechanism(x,camoflage) (CF=.9) (14) 

Whereas (13) would never appear in a knowledge base without CFs, 
(14) might. If there are no CFs represented, then there must be a 
threshold CF value (not normally explicit or consistent) below 
which statements must simply be thrown out by the knowledge 
base creator, or the statements must be refined with additional 

premises until their CFs cross the threshold. By representing CFs 
explicitly, though, the need for an arbitrary threshold disappears. 

V. Cascading Belfefs 

The explicit use of CFs not only increases the information that 
is directly available from a knowledge base; it also increases the 
information associated with assertions derived in multiple steps. 
Consider the following: 

adult(x) + employed(x) (CF=.9) (15) 
adult(x) + -dropout(x) (CF=.91) (16) 

adult(x) A -dropout(x) =# employed(x) (CF=.99) (17) 
to refine the domain In 

of 
(17) an additional premise has been added 
the assertion and thus to raise its CF. 

Suppose we know adult(Bil1). Then, using (15) we can conclude 
employed(Bil1) with CF=.9. We can also derive the same 
conclusion using (16) and (17) (by multiplying the two CFs as 
described in Section II.). If, on the other hand, we also know, with 
CF=l, -dropout(Bill), then, using (17) we can conclude 
employed(Bil1) with a CF of .99. 

VI. Applying the Closed World Assumption 

Examples like the last one arise often if the closed world 
assumption is used. Consider again the last example, but suppose 
(16) were missing and we had no knowledge of whether or not Bill 
was a dropout. Then we might still like to apply (17) to conclude 
that Bill is employed. This can be done by using the closed world 
assumption to assert -dropout(Bill). In some restricted domains 
this can be done without decreasing the CF of the final assertion. 
In an airline database system, if flightfrom(cityl,city2) is not 
known, then with CF=l there is not such a flight. But in many 
other domains, that is not the case. In such domains, the use of 
the closed world assumption must affect the CF of the resulting 
assertion. The more knowledge that is available, the more 
accurately this can be done. A simple thing is to assign as the CF 
of the assertion -p the quantity (.l-prob(p)). A more accurate 
answer can be obtained if interactions between p and other relevent 
predicates are known. This is, in fact, what we did by inserting 
(16). In addition, other sources of information can be used if they 
are available. For example, the absence of an assertion p that 
would be important if it were true more strongly suggests -p than 
does the absence of an unimportant assertion 111. 

VII. Conflfcting Beliefs 

In many knowledge bases that contain default rules, 
contradictory inferences may arise through the use of more than 
one default rule. Consider the following example from IS]: 

Typically Republicans are not pacifiits. 
Republican(x) + -pacifist(x) (18) 

Typically Quakers are pacifists. 
Quaker(x) * pacifist(x) (19) 

Bill is a Republican and a Quaker. 
Republican(Bil1) A Quaker(Bil1) (20) 

There are two ways in which a nonlikelihood logic might deal 
with this situation. One is that described in 15) in which a default 
knowledge base may have one or more extensions. Each extension 
is a consistent set of assertions, but the set of extensions of a given 
knowledge base may not be consistent. In this example, there are 
two extensions, one containing the assertion that Bill is a pacifist 
and one containing the assertion that he is not. A reasoning 
system built around such a logic would produce one or the other 
extension nondeterministically. 

The other nonlikelihood approach is that described in [S], in 
which the default rules in the knowledge base are modified to 
handle the interactions between them and to guarantee that, in the 
case of conflict, no conclusion at all will be drawn. Thus, in place 
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of statements (18) and (19) above we must write: FLY link emerges. 
Most non-Quaker Republicans are not pacifists. 

Republican(x) A -Quaker(x) =+ -pacifist(x) (21) 
Most non-Republican Quakers are pacifists. 

Quaker(x) A -Republican(x) ==+ pacifist(x) (22) 
Since the hypotheses of neither of these assertions are satisfied in 
the case of Bill, no inference will be drawn as to whether Bill is a 
pacifist. 

The major drawback to this approach is that, for a large 
knowledge base, there may be many such rule interactions and the 
rule writer is forced to find those interactions and to modify each 
rule so that it mentions explicitly all of the other rules with which 
it conflicts. It would be more accurate if the reasoning system 
itself were able to detect these interactions and to decide whether 
or not a particular conclusion is warranted. 

A likelihood reasoning scheme can both guarantee a 
determinsitic result and detect rule interactions automatically. 
(l8)-(20) are rewritten as 

Republican(x) * -pacifist(x) (CF=.8) (23) 
Quaker(x) + pacifist(x) (CF=.99) (24) 

Now we can assert 

pacifist(Bil1) (CF=.l9) (25) 

by simply accepting the more likely belief but modifying its CF to 
account for the conflicting evidence. We do this by subtracting the 
CF of the 
chosen. 

conflicting assertion from the CF of the assertion that is 

This approach does not remove all difficulty from this problem. 
In particular, a fine-tuning of the CFs in the knowledge base may 
affect the outcome of the reasoning process. But, given a 
particular knowledge base, the outcome of the reasoning process 
can be predicted by a static analysis of the knowledge base itself. 
The reasoning process is not subject to the race conditions that are 
inherent in the multiple extension approach. Additionally, it is 
possible to introduce more sophisticated techniques for conflict 
resolution if that is important. 

?CIII. Property Inherftance Across ISA Links 

A common form of default reasoning is the inheritance of 
properties in the ISA hierarchies of semantic networks. The 
reasoning rule that is used is not usually stated as a rule but rather 
is contained in the code of the network interpreter. This rule is 
that a node nl can inherit any property p that is true of any other 
node n2 above nl in an ISA chain unless a contradiction is found at 
some node that is in the chain and that is below n2 and not below 
nl. When the knowledge in the network is represented instead in a 
logical framework, it is more difficult to define a corresponding 
rule. But the rules of likelihood reasoning we have described can 
solve this problem easily, with the additional advantage that a 
confidence measure can be attached to the resulting inference. 

Figure 1: A Simple Semantic Network 

Consider the network shown in Figure 1. Using a traditional 
network inference scheme, the question of whether Sandy can fly 
would be answered by chaining up the ISA hierarchy starting at the 
node labeled Sandy and stopping at the first node from which a 

This same knowledge can be represented as the following set of 
likelihood formulae: 

bird(x) =+ fly(x) (CF=.9) (26) 
ostrich(x) * bird(x) (CF=l) (27) 
ostrich(x) * -fly(x) (CF=l) (28) 
ostrich(Sandy) (CF=l) (29) 

Applying the rules of likelihood reasoning to (26)-(29), we can 
derive 

fly(Sandy) (CF=.9) (30) 

Gly(Sandy) (CF=l) (31) 
A contradictory set of beliefs has been derived. Just as in the last 
section, we must choose the belief with the higher CF value. But 
this time, rather than attaching to that belief a CF that reflects 
the conflict, we attach the higher value. This is done by examining 
the reason for the conflict,. observing that the rule about ostriches 
is a special case of the rule about birds and thus should override 
the latter, and then concluding -fly(Sandy) with the CF suggested 
by the special case rule. This provides an example of the process of 
reasoning to resolve conflicts that was suggested in Section II.. 

To guarantee that likelihood reasoning will produce the same 
result that would be produced by chaining through an ISA 
hierarchy, it is necessary that what we call the monotonic 
consistency constraint (MCC) hold for the CFs in the system. 
MCC is defined as follows: 

If there is a rule pi(x) =+ p2(x) (CF=kl) and a rule 
p3(x) * p4(x) (CF=k2) and p3(x) + pi(x) by an ISA 
chain and (p2(x) A p4(x)) is a contradiction, then 
k2>kl. 

In other words, properties attached to higher nodes in an ISA chain 
must have lower CFs than all conflicting properties lower in the 
chain. This is always possible. For all ISA hierarchies, there exists 
an assignment of CFs that satisfies MCC. In fact, any assignment 
of CF values that forms a partial ordering that is isomorphic to the 
partial ordering formed by the ISA hierarchy is adequate. MCC is 
consistent with the intuition that more specific rules are more 
accurate than more general ones. 

IX. The Failure of the Shorted Path Rule 

The property inheritance problem is more complex in tangled 
hierarchies [2] such as the one shown in Figure 2(a). One way of 
implementing inheritance in such a network is to use the shortest 
path rule, but as pointed out in [S], this rule does not always work. 
The rule is sensitive to the insertion and deletion of nodes that 
should have no effect on inheritance. This is illustrated in Figure 
2(b). The problem is that the shortest path rule counts steps in the 
reasoning chain as an approximation to a certainty level. But this 
is often a poor approximation. 

Likelihood reasoning solves this problem by using certainty 
factors directly. The use of a rule with a CF of 1 has no effect on 
the CF of the resulting assertion. The use of a rule with some 
other CF does. The knowledge of Figure 2(a) is represented as: 

bird(x) =+ -tame(x) (CF=.8) (32) 

ostrich(x) + bird(x) (CF=l) (33) 
pet(x) * tame(x) (CF=.95) (34) 

ostrich(Sandy) (CF=l) (35) 
pet(Sandy) (CF=l) (36) 

The knowledge of Figure 2(b) is represented as 

bird(x) =+ -tame(x) (CF= .8) (37) 

pet(x) * tame(x) (CF=.95) (38) 
rarepet =+ pet(x) (CF=l) (39) 
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rarepet(Sandy) (CF=l) (40) 
bird(Sandy) (CF=I) (41) 

From both (32) - (36) and (37) - (41) we derive: 

wtame(Sandy) (CF=.8) (42) 

tame(Sandy) (CF=.95) (43) 
We assert (43) since it has the higher CF. The insertion and 
deletion of rules with CFs of 1 did not affect, the derivation. 

Figure 2: A Tangled Network 

X. Concluelon 

Default reasoning is likelihood reasoning and treating it that 
way simplifies it. This is important in problem-solving systems, 
which must manipulate their knowledge, incomplete as it may be, 
to construct the best possible solution to a problem. Thus, for 
example, it is important to be able to choose to believe the most 
likely of a set of conflicting assertions rather than simply to believe 
nothing. There are, of course, other domains in which this is not 
true. It may be desirable for a database system, for example, to 
assert nothing in such a situation and to allow the user of the 
database to decide what to do next. 

It is important also to keep in mind that the introduction of 
likelihoods poses new questions such as how best to assign CFs 
when there are conflicts. But these questions are central to the 
process of default reasoning and should be addressed. 
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