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ABSTRACT
This a
first order
operator.

paper presents simple extension of
%redicate logic to include a default
ules of inference governing the
operator are specified, and a nmodel theory for
interpreting sentences involving default operators
is developed based on standard Tarskian semantics.
The resulting system is trivially sound. It is
argued that “(a)” this logic provides an adequate
basis for default reasoning in A.I. systems, and
(b) unlike most logics proposed for this purpose,
it retains the virtues of standard first order
logic, including both monotonicity and simplicity.

I INITRODUCTORY COMMENTS

) Reasoning from incomplete information and from
default generalizations follows atterns  which

standard "first order predicate logic does not
reflect. The most striking deviation involves
making inferences whose “conclusions may be

counterindicated by further information which " does
;ot explicitly contradict anything previously
nown.

In standard logics, if a set of premises
entails a conclusion, any larger set containing all
those premises also entails that conclusion.
Logics “with this property are called monotonic.
The above departure from standard logic's reasoning
patterns has led researchers to adopt and develop
non-monotonic logics for wuse in A.I. systems (see
e.g. McDermott and Doyle, 1980; McDermott, 1982;
Reiter, 1980; Aronson et al., 1980; Duda et al.,
1978; and others).

Critics of non-monotonic logics have pointed
out technical weaknesses (see e.g. Davis, 1980),
and 1srael (1980) argues persuasivelg that its
supporters confuse logiC with complex gu gments of
kinds logic cannot “deal with. But unless some
alternative appears with default
reasoning, continue to
appeal.

for dealing
non-monotonic logic must

I have argued elsewhere that (1) default
reasoning only appears non-monotonic if we fail to
distinguish warranted assertions f£from warranted
assumptions (Nutter, 1982), and (2) ang logic which
adequately models default reasoning must be
monotonic (Nutter, 1983).

If this is accepted, a conservative approach
romises more than do radical ones, not because it
s "safer", but because it simultaneously preserves

what is of wvalue in standard logic -- its
simplicity, clarity, and adequacy in domains of
complete information -- and allows distinguishing
warranted assumptions from warranted assertions
(generalizations from universals, default
consequences from genuines inferences, etc.). This
paper presents an almost trivial extension of first
order  predicate logic  which distinguishes
generalizations and the resulting presumptions from
universals and their consequents and permits
reasoning from default generalizations.
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II

The logic we are aiming for must differ <£rom
standard 1logic in three ways. First, it must
distinguish “guarded” from “unguarded“ propositions
(presumptions from the related assertions).
Second, it must allow for appropriate inferences
involving guarded propositions, with "inheritence"
of the guard. Third, it's semantics must allow as
compatible a  guarded proposition and the
proposition's unguarded negation.

So our first task is to find an agpropriate
representation for this guard. it cannot be a new
connective in the ordinary truth functional sense,
the most familiar kind of logical constant, because
default generalizations are not truth functions of
their component gropositions. Nor is the guard a
uantifier: that would reduce defaults to some

ind of statistical operators. In fact, no
standard category of logical constant seems quite
appropriate. “Neither can we use a non-logical
constant, since the meaning of a non-logical
constant cannot affaect the course of reasoning in a
logic.

So we need a new kind of logical operator,
which operates on propositions and affects the
course of reasoning. There is already a unary
operator on formulas of that g¢enera kind:
negation. The default operator belongs to 2a new
class not because it binds formulas, but because it
does so without being truth-functional. The
resulting proposition is~ obviously related to its
component "in an interesting way, but its truth

value is not a function of the component's.

This paper describes how to extend standard
first order predicate logic to a logic approgriate
for default reasoning. This involves four tasks.
(1) We must characterize the grammar of the
extended language. That is, we muSt give rules for
determining whether a particular string of s ols
regresents a proposition in the extended language.
(2) We must explain how to extend the deductive
system of the original logic so that all and onl

desirable inferences will be legal. (3) We mus

describe the semantics for the language: that is,
we must say what the interpretations of the
language  are, how truth values on the
interpretations are determined, and how logical
entailment is defined. Finally (4) we should

investigate at least briefly the metalogic of the
extende system. That is, we should assure
ourselves that the new extended system is sound:
it never permits false conclusions to be derived
from true premises. We now take up these tasks.

IIT  GRAMMAR

The first component of a formal logic is its

rammar, which determines the Jlanguage of the
ogic, which may be defined as either the set of
formuias or the set of propositions which are

considered well formed. Formulas are distinguished
from propositions by containing open  variable
occurrences, that is, placeholders which could
either be replaced b% specific individual constants
-- names -- or be bound by an existential or a
universal quantifier -- turned into an equivalent
of either “something" or “everything" =-- but which



at present occur unbound. In this section, we
present the rules of grammar for the language of
our logic.

The technical discussions
below will resugposo familiarity with the usual
ways that orma logics are déscribed, and will
presuppose a complete description of a first order
predicate logic. The informal descriptions should
conve¥ an overview for readers who lack this
familiarity and motivate some of the less obvious
decisions embodied in the technical discussions.

in the sections

A. Informal Descxiption

The grammar holds relatively few surprises.
In simple terms, wherever in English one might
reasona l{ prefix a clause with "There is reason to
beliave That" or some similar construction, the
logic will allow its equivalent of the clause to be
governed b our efault operator p (for
presumably”).

The only real decision involves whether to let
the operator govern formulas or only propositions.
While its use governing formulas gs probabl
eliminable, it seems to meé both innocuous and wel

motivated. While "Birds enerall fl¥,“ which
becomes ¥a(Bird{a) = p Flies(a)) in the formal
logic, robabl{ comes to the same thin% as "In
eneral birds fly" [p ¥a (Bird(a)) = Flies{a))] in
he long run, "both are said. Furthermore, "If
anythin is a bird, then it has wings and
resumably £lies" must be considerably reformulated
efore i can be equivalently expressed without
having p bind a formula instead of a sentence.

Hence p may directly govern either a formula or a
sentence.

B. Technical Presentation

Let L be a standard first order predicate
calculus without equality and without function
symbols, with a JasKowski-style natural deduction
system (Jaskowski, 1934) ° containing explicit
introduction and elimination rules for the standard
connectives and quantifiers and a small set of
"bookkeeping” rules. (The precise formal system is
unimportant.) The language of L is L, the logic
with defaults which we will build from L is LD, and

its language is LD. The default operator is
written p.
Throughout the discussion below, Roman

capitals varY over formulas and propositions of L,
while Greek letters ¢ and w vary over formulas and
Egopos;tions of LD, and « varies of variables of

Def. The set of formulas of LD is the smallest set
satisfying the following clauses:
(a) All atomic formulas of L are formulas of

(b) For any formula ¢

of LD ¢ is a formula
of LD; » B

(¢) For any formulas ¢,¥ of LD, the following

are all formulas of LD: ~¢; & v ¥; o0 A Vv; o =
v; & = W,
(d) For any formula ¢ of LD in which a occurs
gpen, the following are also formulas of LD: ¥a ¢;
a .

_ For any formula ¢ of LD, ¢ is a proposition of
LD if and only if ¢ contains no open oOccurrences of
variables.

IV DEDUCTIVE SYSTEM
As_commented above, the deductive system is a
standard natural deduction system, with the usual
five connectives ("not", written “~", “and",

298

written "A", "or", written “v", "if...then...",
written "=»", and "if and only if", written "z") and
pboth quantifiers {("for ail", writtem "¥", and
“there is", written "H"). This will be the least

altered portion of the logic.

A. Informal Description

status of default generalizations
must be inherited through inferences, and from a
guarded proposition, it must be possible to infer a
guarded version of any conclusion which could be
inferred from the ungquarded version of the premise.
That is, if you could infer from "Roger flies" that
"If my dog sees Roger, he will f£ind  him
fascinating," then £rom "Presumably Roger flies"
you may infer "Presumably, if my dog sees Roger, he

The guarded

will find him fascinating," and so on. However, it
enerally takes more than one premise to warrant an
inference. How many of the premises may be
gﬁeralizations? There are several ways to go on
is.
We could allow only one guarded premise per
inference. But suppose we have “In general, if A

then B,"” and we have "There is reason to believe
that A." We would normally feel free to infer
“There is reason to believe that B." But this
inferenca has two guarded premises, and without
further information, there is no way to avoid usin

both guarded premises a single inference an

still get the conclusion.

in

Alternatively, we could )
guards, putting as many ps on the front of the
conclusion as~ there "were guarded remises
contributing to it. Primae facie, this might seem
to give not only a guard, but also & sort of
certainty measure.  Unfortunately, it's a very poor
measure for anything interesting. Here's why.

"string out” the

pDefault generalizations are not statistical.
They don't necessaril{ "accumulate”. There are
sevaral reasons for hi First, the embod

judgments of typicallity. As such, related defaul

eneralizations will Ttrequently stand or fall
ogether: if the instance is t¥pical, they all
hold, while if the instance is atypical, each is
likely to fail. Certainly this phenomenon cannot
be relied upon, but it is common enough to upset
the measure. (For more on this and related points,
see Nutter, 1982 and Nutter, 1983b.)

roposition might be

Second, a single guarded p L
e course of a long

used five or six times in t

derivation. Is the result any less certain for
having that proposition enter ~many times rather
than once? B¥ the time a chain of inferences have
taken place, the number of ps on the front may no
longer represent even the number of distinct
generalizations involved in reaching it.

Third, there is no reason to suppose that all

the original generalizations are equally reliable.
Five extremely strong generalizations probabl
provide better sufgort than one relatively wea

one. If we cou assign weights reflecting
reliability -- i.e. groba ilities -- we would be
dealing with statistical generalizations and not

with defaults anyhow.

Furthermore, from “Generally, if A than B" and
"There is reason to believe "that A," we don't
conclude "There is reason to believe that there is
reason to believe that B." We conclude that there
is reason to believe B. Stringing out ps does not
reflect ang practice gresent in English usage.
that practice played a role in_ the kind of
reasoning we are trging ~to model, it seems
reasonable to suppose hat language would reflect
it. 1 have therefore decided ~to "inherit" the
guard if any or all premises involved it, without
regard to how many. is is the force of the first
rule of inference below.

Even with the rule in that form, it would be
possible to generate long strings of s. The
second rule says that if there are more than one
consecutive qualifications, they may be collapsed
into a single one.



B. Technical Development

We retain all the standard rules of
in L (generalizing them to allow for sentences
LD and"not Jjust of L),

inference
of
and add the following two

rules.

Rpl: Suppose that v = {(wl,... ,wn} ¢ LD, v° =
{wi’,...,vn"} g LD, ¢ ¢ LD and for all i, 1 s i ¢
n, vi- = vi or wi‘’ = pvi.

¢ Supgose further that
some rule of inference warrants inferring ¢ from w.
Then from v- you may infer pe.

Rpk:

From pp® you may infer pe.

Given ¢ ¢ LD, w € LD, we say that v is
provable from ¢ (or ¢ proves Vv, written ¢ + W)
rovided that ¥ can be derived from premises in ¢
‘ollowing the rules of inference in the usual and
obvious way.

v SEMANTICS

This is the portion of the logic which deals
with issues of "meaning" and truth. The sense of
meaning involved is eXtremely primitive. For the
non-logical terms, it reflects only the function of
words as referring in some wag to objects,
completely neglecting not only how they refer, but
even to what they refer 'in ordinary English.
Formal semantics are formal: they deal” with what
can be said about inheritance of " truth conditions
on the basis of logical form alone, which throws
out the overwhelming majority of what we would
ordinarily mean when we talk about meaning.

~The semantics given below represents the most
complete departure from standard logic in LD. The
standard core of the system retains the familiar
semantic properties, but’ across the portion of LD
which is not in L, the logic is three-valued. This
can be represented in many ways; I have chosen to
represent the truth wvalues as non-empty subsets
(instead of elements) of the set {t,f} o familiar
truth values. Intuitively, {(t} means "onlY true”,
and occurs where in ordinary logic one would expect
t; similarly {£} means "only false". The
"newcomer"” is {t,f}, which can best be thought of
as "well, yes and no," or both true and false.
Taken in this way, LD provides an intriguing face
for lovers of radical departures: it remains sound

while violating the traditional law of
non-contradiction.
A. [valuating Truth of Presumptions

What does it mean for a default generalization
to be true? It does not mean that the statement

inside the p is true. It does not even mean that
there is no reason to believe that it is false: po
A ~¢ means something like, "There is reason to
believe that ¢ is true, but there is also reason to
believe that it is false." That sentence is
consistent if unhelpful.

Part of what we want our default operator to
mean which cannot be modeled b formal semantics:
neither causality nor typicality is a formal
semantic concept. But we can state certain
constraints on how our p operator works.

Any true proposition is evidence for itself.
(If we knew that ¢ is true, then we would certainl
be willing to suppose it. The logic canno
distinguish the truth value of p¢ depending on
whether we know it or not.) Hence if & is ttrue,
then po should be at least true. If ¢ and ¢ are

both = only true, then c¢learly their conjunction
should be only true as well; if either "is only
false, their ~conjunction should be only false.

Otherwise, the conjunction should be both true and
false. Similar comments work for the other
connectives.
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There is a restriction on our interpretations
which is not obvious from an intuitive standpoint.
It arises from the fact that for any ¢, ¢ & po.
Sugpose we have ¢ = %, and also p¢. Then we can
in

er pv. For this to be sound, it must be the
case that whenever p¢ and ¢ = ¥ are both true, so
is pw.

But consider an interpretation on which ¢ is

false. Then ¢ = ¥ is true regardless of the truth
value of v (or anything else about w, for that
matter; this is one of thé so-called paradoxes of

implication of first order logic). Suppose further
that the interpretation makes p¢ true (as well as
false). This interpretation must make every
roposition of the form pv at least true, in order
o support the inference of pv from ¢ = v and po.
Now from what we said above, if w is true, then pv
is already at least true. But pv must also be at
least true for false v.

Hence for anz interpretation, if even one
false proposition has the Erogerty that there is
reason to believe it on tha nterpretation, then
all false gropositions have that property on that
interpretation (though the presumption forms of the
true propositions may be only true, so this does
not <trivialize these interpretations.) This fact
has its basis in the ordinary truth functional
definition of "if ... then ...". Relevance logic
can prevent the undesired deductions, but so far a
denotational model theory which distinguishes
relevance logic from standard logic is lacking.

B. Interpretations

An interpretation i (U,e) of LD is defined
from ordinary Tarskian interpretations of L by much
the obvious sort of extension given the comments
above, except that we alter "the treatment of
ordinary propositions slightly. In particular,
where before t represented” txue and false, we
will now wuse {t} and {f} respectively. That is,
for all propositions ¢, e(e) ¢ (t,f}; as one would
expect, for A € L, e(A) = {t} or e(A) {£}. It
works out that for ¢ e LD e(o) = {f} or e(o) = (t}

or ef{e) = {t,f} (i.e. the gresum tion is either
true, false, or both), but i will never happen
that e(¢o) = A.

In particular,

having defined the evaluation
function over atomic

ropositions of LD in the

usual wa¥ {except for the substitution of (£} and
{t; for and t), we use the following induction
clauses:

1. For all ¢ ¢ LD, if ¢ has the form pA for A e

L, then e(A) g e(e®),

For all ¢ € LD, if ¢ has the form ppv for some
v € LD, then a(e) = el{pw).

L7

For all ¢,
el(~¢)

¢ LD, we have

(£} if el(o)={t};

{t} if e(o)={f};
{t,f} if el(eo)={t,£).

(£} if t & el(o)

or t ¢« e(v);
{t} if £ & e(e)

and £ € elv);
{t,£} otherwise.

e(d A w)

v)

ele

or £ & e(v);
{t,£} otherwise.

(£} if £ & elo)
and t & e(v);

{t} if t & e(o)
or £ & el(v);

{t,f} otherwise.

{£} if el(e®) n el(w)

{t} if el(eo) = e(w)
or el(e) = alvy)

{t,£} otherwise.

n

elo $)

2 9)

nnn
—~—
e
oo

.



{f} if there is a u ¢
such that e(¢iu/a
{t} if for all u u,
e(oiu/a) = {t};
{t,f} otherwise.

{£} if for all u e U,
e{oiu/a) = (£};
{t} if there is aue U
such that e(¢iu/a) = {t};
{t,£} otherwise.

e(¥a ¢) = U
Yy = {£};

e(da o)

4. 1If there is a ¢ € LD such that e(¢) = {f} but
t € e(pe), then for all v ¢ LD, £ € e(pv).

el{e®:iu/a) means the result of
as if it were a constant

(Notational remark:
evaluating ¢, treating a
and e(a) = u.)

The standard equivalences £follow trivially
from these definitions. Now we define satisfaction
as follows: for all i = (U,e) an interpretation of
LD, and for all ¢ € LD, i satisfies ¢ {(written i k
o) if and only if t € e(o},

VI oy

As has been indicated <from the outset, the
characteristic we are most concerned with for
logics in inference system implementations is
soundness. For this logic, the following theorem

follows trivially from the soundness of  standard

first order predicate logic:

Theorem 'The logic LD is sound,
LD, ¢ ¢ LD, if v + ¢ then ¥ & ¢.

i.e. for all w ¢

VII  CONCLUDING REMARKS
A. Issues of relevance
As noted above, the apgarently aradoxical
features which result rom adopting a

truth-functional view of implication can be avoided
by wusing a deductive system based on relevance
logic. Such a  deductive system will permit
inferences which are a proper subset of those
allowed under the traditional view presented here.
Martins (1983) has developed a variant of relevance
logic for belief revision, which has been
implemented in SNePS (Shapiro, 1979). An inference
sgstem including default operators as described in
this paper is” being implemented on this belief
revision system. Limitations of space prohibit
%fé%gg)discussion here; for details, see Nutter

B. Significance of the logic

It is important not to overestimate what a
logic for default reasoning can do once we have
one. As Israel (1980) points out, arriving at
useful generalizations and resolving conflicts
among conclusions of default reasoning both exceed
the Scope of logic. To those who wonder what help
the system will be once it has deduced "p¢ A p~o",
the answer is, none at all. If the non-logical
ortion of your system contains heuristics saying
hat conflicting “evidence indicates a need for
further investigation, and iIf your system further
contains some sUbsystem for investigating, then the
ability to deduce statements of the kind above can

be use to trigger investigation; but this goes
beyond the logic alone.

It does not follow that such a logic is
useless. 1 have already argued that implementing a
logic of the kind outlined here allows implementing
useful salience rules in natural language
generation, for instance. Furthermore, this kind
of inference will la an intimate role in any
system which investigates failed expectations,
conflicting expectations, and the like. Only it
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will not constitute such a system: instead it is a

tool for the system to use.

The logic presented here makes no pretense to
philosophical depth. As a_ logic, it is trivial;

as a philosophical view of generalization, it is
perhaps the " shallowest ossible. But it can be
used to form non-trivial systems modeling deep

views.

From one point of view, that is what ~logic
is for.
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