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Abstract 

II DEFAULT LOGIC 

Non-monotonic logic is an attempt to take into account 

such notions as incomplete knowledge and theory 

evolution. However the decidable theorem-prover issue 

has been so far unexplored. We propose such a 

theorem-prover for default logic with a restriction on the 

first-order formulae it deals with. This theorem-prover 

is based on the generalisation of a resolution technique 

named saturation, which was initially designed to test the 

consistency of a set of first-order formulae. We have 

proved that our algorithm is complete and that it always 

terminates for the selected subset of first-order formulae. 

I INTRODUCTION 

Decision-making is a fundamental feature of some 

fields of A.I., but it cannot always be supported by a 

complete world knowledge. Non-monotonic logic [Al 801 

is an attempt to remedy to this fact. However, the present 

realisations in the field of non-monotonic logic avoid the 

decidability problem by use of heuristics. To apprehend 

this problem, we have selected a solvable class, the 

predefinite variable clauses, which determines a 

decidable subset in the context of default logic. Default 

logic [Rei 801 allows the inference of consistent though 

unvalid formulae in a first-order theory. The consistency 

of a set of formulae, which is a crucial problem in default 

logic, can nicely be solved by use of a particular 

resolution technique named the saturation. 

First of all, we recall the principles of default logic 

and then focus on an attractive default class, 

free-defaults, which allow more plausible inferences. Part 

III is devoted to the presentation of a special resolution 

technique named the saturation. We also propose a 

generalisation of saturation which constitutes the heart 

of our default theorem-prover presented in part IV. This 

default prover is complete and always terminates. 

First we introduce the default logic as proposed by 

Reiter in [Rei 801 and the proof-procedure he has set 

up. Next, we study a default subset, the free-defaults, 

which allow additional plausible inferences. A default 

rewriting rule can be applied to ordinary defaults to 

obtain free-defaults. 

A Definition of default logic 

The main goal of default logic is to provide some 

facilities to represent common-sense knowledge. For 

example, we know that generally “a bird can fly” (except 

penguins, ostriches..) This 

represented as the default 6: 

bird(x) :Mfly(x) 
fly(x) 

knowledge can be 

bird(x) is the prerequisite of the default and fly(x) the 

consequent (noted CONS(G)). This default is interpreted 

as: “if x is a bird and if it is consistent to suppose that 

x can fly, then infer that x can fly”. So defaults are 

patterns of inference schemata as “until a proof of the 

contrary, assume...” That is. a default denotes a 

plausible inference. for which a conclusion cannot be 

derived by use of classical inference rules. 

A default theory is a couple (1I.T) where A is a set 

of defaults and T a consistent first-order theory. The use 

of the defaults of A extends the theory T by building 

several consistent first-order theories called extensions, 

each of which contains T. 

Example 1: T=( A , -6 v “C ) 

A={ 
A :MB , A :MC , C :MD 

B C D ] 

This default theory has 2 extensions: 

E,=Th( A , -B v “C , B 1 

E2=Th( A , “B v “C , C , D 1 
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Definition: A formula Q has a default proof with respect We have proved the following result [ Bes 831: 

to a default theory (A,T) iff there exists a finite sequence 

Ao. Al. . . . . Ak of finite subsets of A, such that 

(1) T U CONS(As) I- Q 

Theorem 1: for any extension E of a default theory 

(A.T). there exists an extension E’ of (f(A),T) such that 

E c E’ 

(2) For lbi<k 

T U CONS(Ai) I- Prerequisites(Ai-,I 

(3) Ak=O 

III SATURATION 

(4) T u ( u CONS( is satisfiable. 

(2) expresses that the prerequisite of a default must 

be true to let the consequent of this default to be in 

the extension. 

In this chapter we first introduce a kind of resolution 

technique named the saturation. Next, we present the 

saturation by sets. a generalisation of the saturation 

which will be useful in the definition of our default 

proof-procedure. 

Reiter has shown the completeness result for default 

proofs, i.e. that a formula Q has a default proof with 

respect to (A,T) iff there exists an extension of (A.T) 

which contains Q. However (1) and (4) show clearlv that 

A Definition of the saturation 

The saturation [ Bos 81 ] is a particular resolution 

technique, decidable for predefinite variable clauses. A 
, 

the extension membership problem is not even 

semi-decidable. This leads us to consider a subset of 

first order logic, for which the decision problem is 

resolved. 

6 Defaults without prerequisite or free-defaults 

clause is a predefinite variable clause if: 

- the only function symbols that occur in the 

clause are constant symbols. 

-- all the variables occuring in a positive literal 

occur also in a negative one. 

This restriction is acceptable for an application since 

Defaults may have counter-intuitive behaviours ([ Rei 

811). In addition to those already cited, we present below 

an example of such a default: 

T={ “fly(Max) ) and 6= 
bird(x) :Mfly(x) 

fly(x) 

- in the context of databases, formulae are 

function--free 

- all the clauses without function symbol. in 

which the type of all the variables is defined by a 

predicate, are prodefinite clauses. 
The only extension of the default theory ({S] ,T) is 

T itself. It doesn’t contain “bird(Max), that we expect to 

be true, because Max doesn’t fly while generally birds 

do. 

For example, the clause C(x 1’ 
*.., Xn) can be 

transformed in the predefinite variable clause 

Type,(x,) a...& Typen(xn) => C(x,, . . . . x,1. 

:Mbird(x)=>fly(x) ( ~ :M(x) bird(x)=>fly(x)) 
Definition: a set C of predefinite variable clauses is 

Consider 6’= 
bird(x)=>fly(x) (x1 bird(x)=>fly(x) saturated if each resolvant of 2 clauses of C either is 

6’ leads to a unique extension 
a tautology or is subsumed by a clause of C. 

E’=Th(“fly(Max),bird(Max)=>fly(Max)) and E’ contains Theorem 2: a saturated set of predefinite variable 

“bird(Max). If later the formula bird(Max) & “fly(Max) clauses is inconsistent iff it contains the empty clause. 

becomes true, then the default 6’ instantiated by Max 

cannot be used and “bird(Max) is not true in the new 

default theory (6’. T U { bird(Max)}) 

The default without prerequisite 6’ expresses a 

permanent knowledge in opposite to the situational 

knowledge expressed by 6. By 6’ we always know that 

if x is a bird then he flies. By 6 only when x is a bird 

we know that he flies. We now generalise the previous 

transformation: 

6= 
P(x) :MR(x) 

R(x) 
I---> 

f(6) is called a free-default. 

:MP(x)=>R(x) 
f(6)- 

P(x)=>R(x) 

The saturation of a set of predefinite variable clauses 

produces, by resolution, a saturated logically equivalent 

set of predefinite variable clauses. Due to the previous 

theorem. the saturation gives a means to test the 

satisfiability of a set of predefinite variable clauses. The 

principle of saturation is to produce, first. all the 

resolvants one parent of which is the most recently 

produced clause. The tautologies and the clauses 

subsumed by one of their ancestors are not produced. 

A-ordering [ Kow 691 for the literals and resolution upon 

the leftmost literal permit to restrict the number of 

inferences. 



Example 2: saturation of F IV DEFAULT PROOF BY SATURATION 

F= ( -C v E , B v C , -6 v D , A v C , - 

c = -C v E 
1 

C =BvC 
2 

c = -B v D 
3 

C = rtc 
4 

2, c3)= C v D 

C 
5 

= rtc cd)= D v E 
1' 

C =AvC 
6 

c = -A 
7 

C 
8 

= rtc c7)= C 
6' 

C 
9 

= rtc cs)= E 
1' 

The set (cl, . . . . cg } is saturated. 

has not been produced then the set 

A I 

The empty clause 

F is consistent, 

B Saturation by sets 

It is obvious that a clause subsumed by a clause 

produced later in the saturation process is useless. SO 

is the clause c subsumed by c in example 2. It is 

possible to reduie the number of qhese useless clauses 

by relaxing the order of resolvant production. To reach 

this goal we have extended the notion of saturation. 

Let E and F be sets of predefinite variable clauses. 

The saturation of F on E, produces the set noted S(E,F) 

recursively defined by 

S(E.B)=E 

S(E.F)=S( E U (c} , F’ - (c} 1 

where .c E F 

.r E: F’ if 

*either r E F 

*or r is not subsumed by a clause of E 

and r is the resolvant upon the leftmost 

literal of c with a clause of E. 

This process is called saturation by sets. 

Example 3: E=( A v B } and F={ “A } 

S(E,F)=S( { A v B } , ( -A } 1 

=S( ( A v B , -A ) , ( B ) 1 

=S( ( A v B , -A , B ) , 0 1 

=( A v B , -A, B ) 

Theorem 3: S(E,F) is finite iff E and F are finite. 

Theorem 4: S(E,F) is saturated if E is saturated. 

Corollary 5: S(0.C) 

equivalent to C. 

is a saturated logically 

A The default prover 

We now only consider default theories (A. T) where 

A is a free-default set. Let A’ be a subset of A and 

Q the formula to be proved. Remark that 

Prerequisites(A’)=0 thus 

(2’) T U CONS(A”) I- Prerequisites(6’) 

(3’) A” = 0 

It is worth-noting that the steps (2) and (3) of the 

default proof (§ II) are immediatly verified. To solve (1) 

and (4) of the default proof. we saturate T U CONEi 

and T U CONS(A’) U (-Q}. By use of the saturation 

by sets, these steps can be joined because 

S(0, T U CONS(A’) U ( “Q)) 

I =I SG(0, T U CONS(A’)), C-Q), 

In this way no clause is computed twice. In addition, 

during the elaboration of S(0. T U CONSCA') U ( “Q]) 

the clauses of S(0, T U CONS( are computed first. 

So if the empty clause belongs to S(0. T U CONS( 

then T U CONS(A’) is unsatisfiable and the saturation 

process is stopped (because no default proof can be 

found, given that (4) cannot be true). Then it is useless 

to test if Q is a consequence of T U CONS(A’). During 

the search of a refutation of T U CONEi U ( -Qj we 

have discovered one of T U CONS(A’). This never 

happens with linear resolution, for example. 

Let A={61, . . . . 6n}. The proof procedure evaluates 

the consistency of T U CONStA’) for A’=0, A’=( 61 ), 

A’={s2}, A’={61, 62}... (A’ ranges over the set of the 

subsets of A). It then computes successively S(0. T). 

S(0. T U CONS(G1)). S(0. T U CONS(62)), 

S(0. T U CONS(G1. 62))... 

The preceding remark remains true, so: 

S(0. T U CONS(6 1)) I = I SG(0.T). CONS(G1)) 

S(0, T U CONS(G2)) I = I S(S(0.T). CONS(B2)) 

S(0. T U CONS(G1. 62)) 

I = I S(S(0, T U CONS(GIH, CONS(G2)) 

If for example S(0. T U CONS( contains the 

empty clause then, for every A’ subset of A containing 

6i, S(0. T U CONS(A’)) also contains the empty clause 

and it is useless to compute it. Due to this optimisation, 

only the consistent or minimally inconsistent sets T U 

CONEi are computed. 

By operating like this, a default proof is nothing but 

a global saturation, S(0. T U CONS(A) U (-Q}). knowing 

that only some subsets of these clauses are really 



V CONCLUSION computed. Note also that 

S(0. T U CONS(A) U {“Q}, 

I=I S(S(0. T U CONS(A)), {“Q}) 

S(0, T U CONS(A)) can then be computed once and 

for all and remains the same for every query. The 

saturation by sets provides a kind of compilation of the 

extensions of a default theory. 

Theorem 6: the prover is complete. 

Theorem 7: the prover always terminates. 

B Example of a default proof by saturation 

T={ C v D, E] 
6 =:M-C v “E 

1 “C v “E 
6 -:M-D v “E 

2- “D v “E 
6 =:MB v “E 
3 B v “E 

The default theory ({ 6 1, 62, 6 3 } , T) has 2 extensions: 

El=Th(T U CONS(G1, 6s)) 

E2=Th(T U CONS(G2, 6s)) 

This default theory is submitted to the prover: 

S1=S(O. T)={ C v D , E } 

S2=SW0. T), CONS( 

=S1 U { “C v “E , D v “E } 

S3=S(S(0, T), CONS(B2)) = S1 U { “D v “E } 

S =S(S(S(B, T), CONS(G1)), CONS<6 1) 
4 2 

=S2 U { “E , 0 } 

S5=S(s(0. T), CONS(6s))= S1 U { B v “E ) 

S6=SWS(0, T), CONS(G1)), CONS(6s)I 

=S2 U { B v “E } 

S7=S(S(S(0, T). CONS(G2)), CONS(6s)) 

=s3 U{Bv-E} 

The remaining clauses of Ss=SIS4,CONS(6s)) are not 

computed since S contains the empty clause. Now we 

can use these set: of clauses to answer any query. To 

answer a query Q we evaluate S(Si, (“Q)) with i 

increasing in order to take advantage of the inclusion 

of the Si’s. 

For example, a default proof of D is given by: 

scsl. {-D}>={ C v D , E , “D } 

S(S2. ( -D})=S(S1. (“D}) 

u t “C v “E , D v “E , “E , 0 } 

We have proposed a theorem-prover for a subset 

of default logic. The default theories of this subset only 

contains free-defaults and all the consequents and 

axioms can be transformed in predefinite variable clause 

form. Our theorem-prover based upon saturation by sets 

Is complete and always terminates. We are about 

implementing It in PROLOG. 

The main advantage of the prover is to deal efficiently 

with querying and default updating, once the compilation 

phase has been realised. However, the prover is not 

adapted to axiom updating. This provides a direction for 

further investigations as extending the subset of formulae 

the theorem-prover is able to deal with. 
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