
A THEOREM-PROVER FOR A DECIDABLE SUBSET OF DEFAULT LOGIC

Philippe BESNARD - Rene QUINIOU - Patrice QUINTON

IRISA - INRIA Rennes
Campus de Beaulieu

35042 RENNES Cedex
FRANCE

Abstract

II DEFAULT LOGIC

Non-monotonic logic is an attempt to take into account

such notions as incomplete knowledge and theory

evolution. However the decidable theorem-prover issue

has been so far unexplored. We propose such a

theorem-prover for default logic with a restriction on the

first-order formulae it deals with. This theorem-prover

is based on the generalisation of a resolution technique

named saturation, which was initially designed to test the

consistency of a set of first-order formulae. We have

proved that our algorithm is complete and that it always

terminates for the selected subset of first-order formulae.

I INTRODUCTION

Decision-making is a fundamental feature of some

fields of A.I., but it cannot always be supported by a

complete world knowledge. Non-monotonic logic [Al 801

is an attempt to remedy to this fact. However, the present

realisations in the field of non-monotonic logic avoid the

decidability problem by use of heuristics. To apprehend

this problem, we have selected a solvable class, the

predefinite variable clauses, which determines a

decidable subset in the context of default logic. Default

logic [Rei 801 allows the inference of consistent though

unvalid formulae in a first-order theory. The consistency

of a set of formulae, which is a crucial problem in default

logic, can nicely be solved by use of a particular

resolution technique named the saturation.

First of all, we recall the principles of default logic

and then focus on an attractive default class,

free-defaults, which allow more plausible inferences. Part

III is devoted to the presentation of a special resolution

technique named the saturation. We also propose a

generalisation of saturation which constitutes the heart

of our default theorem-prover presented in part IV. This

default prover is complete and always terminates.

First we introduce the default logic as proposed by

Reiter in [Rei 801 and the proof-procedure he has set

up. Next, we study a default subset, the free-defaults,

which allow additional plausible inferences. A default

rewriting rule can be applied to ordinary defaults to

obtain free-defaults.

A Definition of default logic

The main goal of default logic is to provide some

facilities to represent common-sense knowledge. For

example, we know that generally “a bird can fly” (except

penguins, ostriches..) This

represented as the default 6:

bird(x) :Mfly(x)
fly(x)

knowledge can be

bird(x) is the prerequisite of the default and fly(x) the

consequent (noted CONS(G)). This default is interpreted

as: “if x is a bird and if it is consistent to suppose that

x can fly, then infer that x can fly”. So defaults are

patterns of inference schemata as “until a proof of the

contrary, assume...” That is. a default denotes a

plausible inference. for which a conclusion cannot be

derived by use of classical inference rules.

A default theory is a couple (1I.T) where A is a set

of defaults and T a consistent first-order theory. The use

of the defaults of A extends the theory T by building

several consistent first-order theories called extensions,

each of which contains T.

Example 1: T=(A , -6 v “C)

A={
A :MB , A :MC , C :MD

B C D]

This default theory has 2 extensions:

E,=Th(A , -B v “C , B 1

E2=Th(A , “B v “C , C , D 1

27

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

Definition: A formula Q has a default proof with respect We have proved the following result [Bes 831:

to a default theory (A,T) iff there exists a finite sequence

Ao. Al. Ak of finite subsets of A, such that

(1) T U CONS(As) I- Q

Theorem 1: for any extension E of a default theory

(A.T). there exists an extension E’ of (f(A),T) such that

E c E’

(2) For lbi<k

T U CONS(Ai) I- Prerequisites(Ai-,I

(3) Ak=O

III SATURATION

(4) T u (u CONS(is satisfiable.

(2) expresses that the prerequisite of a default must

be true to let the consequent of this default to be in

the extension.

In this chapter we first introduce a kind of resolution

technique named the saturation. Next, we present the

saturation by sets. a generalisation of the saturation

which will be useful in the definition of our default

proof-procedure.

Reiter has shown the completeness result for default

proofs, i.e. that a formula Q has a default proof with

respect to (A,T) iff there exists an extension of (A.T)

which contains Q. However (1) and (4) show clearlv that

A Definition of the saturation

The saturation [Bos 81] is a particular resolution

technique, decidable for predefinite variable clauses. A
,

the extension membership problem is not even

semi-decidable. This leads us to consider a subset of

first order logic, for which the decision problem is

resolved.

6 Defaults without prerequisite or free-defaults

clause is a predefinite variable clause if:

- the only function symbols that occur in the

clause are constant symbols.

-- all the variables occuring in a positive literal

occur also in a negative one.

This restriction is acceptable for an application since

Defaults may have counter-intuitive behaviours ([Rei

811). In addition to those already cited, we present below

an example of such a default:

T={ “fly(Max)) and 6=
bird(x) :Mfly(x)

fly(x)

- in the context of databases, formulae are

function--free

- all the clauses without function symbol. in

which the type of all the variables is defined by a

predicate, are prodefinite clauses.
The only extension of the default theory ({S] ,T) is

T itself. It doesn’t contain “bird(Max), that we expect to

be true, because Max doesn’t fly while generally birds

do.

For example, the clause C(x 1’
*.., Xn) can be

transformed in the predefinite variable clause

Type,(x,) a...& Typen(xn) => C(x,, x,1.

:Mbird(x)=>fly(x) (~ :M(x) bird(x)=>fly(x))
Definition: a set C of predefinite variable clauses is

Consider 6’=
bird(x)=>fly(x) (x1 bird(x)=>fly(x) saturated if each resolvant of 2 clauses of C either is

6’ leads to a unique extension
a tautology or is subsumed by a clause of C.

E’=Th(“fly(Max),bird(Max)=>fly(Max)) and E’ contains Theorem 2: a saturated set of predefinite variable

“bird(Max). If later the formula bird(Max) & “fly(Max) clauses is inconsistent iff it contains the empty clause.

becomes true, then the default 6’ instantiated by Max

cannot be used and “bird(Max) is not true in the new

default theory (6’. T U { bird(Max)})

The default without prerequisite 6’ expresses a

permanent knowledge in opposite to the situational

knowledge expressed by 6. By 6’ we always know that

if x is a bird then he flies. By 6 only when x is a bird

we know that he flies. We now generalise the previous

transformation:

6=
P(x) :MR(x)

R(x)
I--->

f(6) is called a free-default.

:MP(x)=>R(x)
f(6)-

P(x)=>R(x)

The saturation of a set of predefinite variable clauses

produces, by resolution, a saturated logically equivalent

set of predefinite variable clauses. Due to the previous

theorem. the saturation gives a means to test the

satisfiability of a set of predefinite variable clauses. The

principle of saturation is to produce, first. all the

resolvants one parent of which is the most recently

produced clause. The tautologies and the clauses

subsumed by one of their ancestors are not produced.

A-ordering [Kow 691 for the literals and resolution upon

the leftmost literal permit to restrict the number of

inferences.

Example 2: saturation of F IV DEFAULT PROOF BY SATURATION

F= (-C v E , B v C , -6 v D , A v C , -

c = -C v E
1

C =BvC
2

c = -B v D
3

C = rtc
4

2, c3)= C v D

C
5

= rtc cd)= D v E
1'

C =AvC
6

c = -A
7

C
8

= rtc c7)= C
6'

C
9

= rtc cs)= E
1'

The set (cl, cg } is saturated.

has not been produced then the set

A I

The empty clause

F is consistent,

B Saturation by sets

It is obvious that a clause subsumed by a clause

produced later in the saturation process is useless. SO

is the clause c subsumed by c in example 2. It is

possible to reduie the number of qhese useless clauses

by relaxing the order of resolvant production. To reach

this goal we have extended the notion of saturation.

Let E and F be sets of predefinite variable clauses.

The saturation of F on E, produces the set noted S(E,F)

recursively defined by

S(E.B)=E

S(E.F)=S(E U (c} , F’ - (c} 1

where .c E F

.r E: F’ if

*either r E F

*or r is not subsumed by a clause of E

and r is the resolvant upon the leftmost

literal of c with a clause of E.

This process is called saturation by sets.

Example 3: E=(A v B } and F={ “A }

S(E,F)=S({ A v B } , (-A } 1

=S((A v B , -A) , (B) 1

=S((A v B , -A , B) , 0 1

=(A v B , -A, B)

Theorem 3: S(E,F) is finite iff E and F are finite.

Theorem 4: S(E,F) is saturated if E is saturated.

Corollary 5: S(0.C)

equivalent to C.

is a saturated logically

A The default prover

We now only consider default theories (A. T) where

A is a free-default set. Let A’ be a subset of A and

Q the formula to be proved. Remark that

Prerequisites(A’)=0 thus

(2’) T U CONS(A”) I- Prerequisites(6’)

(3’) A” = 0

It is worth-noting that the steps (2) and (3) of the

default proof (§ II) are immediatly verified. To solve (1)

and (4) of the default proof. we saturate T U CONEi

and T U CONS(A’) U (-Q}. By use of the saturation

by sets, these steps can be joined because

S(0, T U CONS(A’) U (“Q))

I =I SG(0, T U CONS(A’)), C-Q),

In this way no clause is computed twice. In addition,

during the elaboration of S(0. T U CONSCA') U (“Q])

the clauses of S(0, T U CONS(are computed first.

So if the empty clause belongs to S(0. T U CONS(

then T U CONS(A’) is unsatisfiable and the saturation

process is stopped (because no default proof can be

found, given that (4) cannot be true). Then it is useless

to test if Q is a consequence of T U CONS(A’). During

the search of a refutation of T U CONEi U (-Qj we

have discovered one of T U CONS(A’). This never

happens with linear resolution, for example.

Let A={61, 6n}. The proof procedure evaluates

the consistency of T U CONStA’) for A’=0, A’=(61),

A’={s2}, A’={61, 62}... (A’ ranges over the set of the

subsets of A). It then computes successively S(0. T).

S(0. T U CONS(G1)). S(0. T U CONS(62)),

S(0. T U CONS(G1. 62))...

The preceding remark remains true, so:

S(0. T U CONS(6 1)) I = I SG(0.T). CONS(G1))

S(0, T U CONS(G2)) I = I S(S(0.T). CONS(B2))

S(0. T U CONS(G1. 62))

I = I S(S(0, T U CONS(GIH, CONS(G2))

If for example S(0. T U CONS(contains the

empty clause then, for every A’ subset of A containing

6i, S(0. T U CONS(A’)) also contains the empty clause

and it is useless to compute it. Due to this optimisation,

only the consistent or minimally inconsistent sets T U

CONEi are computed.

By operating like this, a default proof is nothing but

a global saturation, S(0. T U CONS(A) U (-Q}). knowing

that only some subsets of these clauses are really

V CONCLUSION computed. Note also that

S(0. T U CONS(A) U {“Q},

I=I S(S(0. T U CONS(A)), {“Q})

S(0, T U CONS(A)) can then be computed once and

for all and remains the same for every query. The

saturation by sets provides a kind of compilation of the

extensions of a default theory.

Theorem 6: the prover is complete.

Theorem 7: the prover always terminates.

B Example of a default proof by saturation

T={ C v D, E]
6 =:M-C v “E

1 “C v “E
6 -:M-D v “E

2- “D v “E
6 =:MB v “E
3 B v “E

The default theory ({ 6 1, 62, 6 3 } , T) has 2 extensions:

El=Th(T U CONS(G1, 6s))

E2=Th(T U CONS(G2, 6s))

This default theory is submitted to the prover:

S1=S(O. T)={ C v D , E }

S2=SW0. T), CONS(

=S1 U { “C v “E , D v “E }

S3=S(S(0, T), CONS(B2)) = S1 U { “D v “E }

S =S(S(S(B, T), CONS(G1)), CONS<6 1)
4 2

=S2 U { “E , 0 }

S5=S(s(0. T), CONS(6s))= S1 U { B v “E)

S6=SWS(0, T), CONS(G1)), CONS(6s)I

=S2 U { B v “E }

S7=S(S(S(0, T). CONS(G2)), CONS(6s))

=s3 U{Bv-E}

The remaining clauses of Ss=SIS4,CONS(6s)) are not

computed since S contains the empty clause. Now we

can use these set: of clauses to answer any query. To

answer a query Q we evaluate S(Si, (“Q)) with i

increasing in order to take advantage of the inclusion

of the Si’s.

For example, a default proof of D is given by:

scsl. {-D}>={ C v D , E , “D }

S(S2. (-D})=S(S1. (“D})

u t “C v “E , D v “E , “E , 0 }

We have proposed a theorem-prover for a subset

of default logic. The default theories of this subset only

contains free-defaults and all the consequents and

axioms can be transformed in predefinite variable clause

form. Our theorem-prover based upon saturation by sets

Is complete and always terminates. We are about

implementing It in PROLOG.

The main advantage of the prover is to deal efficiently

with querying and default updating, once the compilation

phase has been realised. However, the prover is not

adapted to axiom updating. This provides a direction for

further investigations as extending the subset of formulae

the theorem-prover is able to deal with.

REFERENCES

[Al 801 Special issue on non-monotonic logic

Artificial Intelligence. vol. 13, 1980

[Bes 831 Besnard. P.

A proof-procedure for a non-monotonic logic

Technical Note 198, University of Rennes I, 1983

[Bos 811 Bossu, G. & Siegel, P.

La saturation au secours de la non-monotonie

Thesis, University of Aix-Marseille II, 1981

[Kow 691 Kowalski, R. & Hayes, P. J.

Semantic trees in automatic theorem-proving

Machine Intelligence 4, pp. 87-101, 1969

[Rei 803 Reiter, R.

A logic for default reasoning

Artificial Intelligence vol. 13, pp. 81-132. 1980

[Rei 811 Reiter, R. & Criscuolo. G.

On interacting defaults

Proc. IJCAI-81 pp. 270-276, Vancouver, 1981

30

