
Jairne G. Cat bonell 
Computer Science Department, 

Carnegie-Mellon University, 
Pittsburgh, PA 15213 

A bst ract 

Derivational analogy, a method of solving problems based upon 
the transfer of past experience to new problem situations, is 
discussed in the context of other general approaches to problem 
solving. The experience transfer process consists of recreating 
lines of reasoning, including decision sequences and 
accompanying justifications, that proved effective in solving 
particular problems requiring similar initial analysis. The 
derivational analogy approach is advocated as a means of 
implementing reasoning from individual cases in expert systems.’ 

1. In2roduction: The Role of Analogy in 
Problem Solving 

The term “problem solving” in artificial intelligence has been 
used to denote disparate forms of intelligent action to achieve 
well-defined goals. Perhaps the most cominon usage stems frorn 
Newell and Simon’s work [22] in which problem solving consists 
of selecting a sequence of operators (from a pre-analyzed finite 
set) that transforms an initial problem state into a desired goal 
state. Intelligent behavior consists of a focused search for a 
suitable operator sequence by analyzing the states resulting from 
the application of different operators to earlier states.2 Many 
researchers have adopted this viewpoint [12,26, 231. 

However, 
McDermott r;: totally different approach has been advocated by 

91 and by Wilensky [32, 331 that views problem 
solving as plan instantiation. For each problem posed there are 
one or more plans that outline a solution, and problem solving 
consists of identifying and instantiating these pians. In order to 
select, instantiate, or refine plans, additionals plans that tell how 
to instantiate other plans or how to solve subproblems are 
brought to bear in a’ recursive manner. Traditional notions of 
search are totally absent from this formulation. Some systems, 
such as the counterplanning mechanism in POLITICS [6,3], 
provide a hybrid approach, instantiating plans whenever 
pcssible, and searching to construct potential solutions in the 
absence of applicable plans. 

A third approach is to solve a new problem by analogy to a 
previously solved similar problem. This process entails 
searching for related past problems and transforming their 
soiutions into ones potentially applicable to the new problem 
[24]. I developed and advocated such a method [7,8] primarily 

as a means of bringing to bear problem solving expertise 
acquired from past experience. The analogical transformation 

‘Thts research was supported by the Office of Naval Research (ONR) under 

grant numbers N00014-79-C-0661 and N00014.82~C-50767. 

21n means-ends analysis. the current state is compared to+he goal state and 
one or more operators that reduce the diiference are selected, whereas in 

heuristic search, the present state IS evaluaied In iso!ation and colnparcd to 
alternate states rcsultmg from the appkatlon of dlfierent operators (to states 

generated earlier In the search), and the search for a solution contmues from the 

highest-rated state. 

process itself may require search, as it is seldom immediately 
clear how a solution to a similar problem can be adapted to a new 
situation. 

A useful means of classifying different problem solving 
methods is to compare them in terms of the amount and 
specificity of domain knowledge they require, 

0 If no structuring domain knowledge is available and there 
iS no US&A past experience to draw upon, weak methods 
such as heuristic search and means-ends analysis are the 
only tools that can be brought to bear. Even in these 
knowledge-poor situations, information about goal states, 
possible actions. their known preconditions and their 
expected outcomes is required. 

Q If specific domain knowledge in the form of plans or 
procedures exists, such plans may be instantiated directly, 
recursively solving any subproblems that arise in the 
process. 

8 If general plans apply. but no specific ones do so, the 
general plans can be used to reduce the problern (by 
partittoning the problem or providing islands in the search 
space). For instance, in computing the pressure at a 
particular point in a fluid statics problem, one may use the 
general pIall of applying the principle of equilibrium of 
forces on the point ot interest (the vector sum of the forces 
= 0). But, the application of this plan tinly reduces the 
original problem to one of finding and combining the 
appropriate forces, without hinting how that may be 
accomplished in a specific problem [5]. 

8 If no specific plans apply, but the problem resembles one 
solved previously, apply analogical transformation to adapt 
the solution of that similar past problem the new situation. 
For instance, in some studies it has proven easier for 
students to solve mechanics problems by analogy to 
simpler solved problems than by appealing to first 
principies or by applying gencrai procedures presented in 
a physics text [!>I. As an example of analogy involving 
composite skills rathe: than pure cognition, consider a 
person who knows how to drive a car and is asked to drive 
a truck. Such a person may have no general plan or 
procedure for driving trucks, but is likely to perform most of 
the steps correctly by transferring much of his or her 
automobile driving knowledge. Would that we had robots 
that were so self-adaptable to new. if :eccgnirably related 
tasks! 

Clearly, these problem solving :>pproaches are not mutually 
exclusive: for instance, one approach can be used to reduce a 
problem to simpler subproblems. which can in turn be solved by 
the otner methods. In fact, Lark% and I [5] are developing a 
general inference engine for problem solving in the natural 
sciences that combines ail four approaches. 

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved. 



As discussed earlier, only direct plan instantiation and weak 
methods have received substantial attention by Al practitioners. 
For inslance, Newell and Laird’s recent formulation or a universal 
weak method 1171 as a general problem solving engine is 
developed completely within the search paradigm. Expert 
systems, for the most part, combine aspects of plan instantiation 
(often broken into small rule-size chunks of knowledge) and 
heuristic search in whatever manner best exploits the explicit and 
implicit constraints of the specific domain [30, 11, 201. I am more 
concerned with the other two approaches, as the they could 
conceivably provide powerful reasoning mechanisms not 
heretofore analyzed in the context of automatirg problem-solving 
processes. The rest of this paper focuses on a new formulation 
of the analogical problem solving approach. 

2. Analogy and Experiential Reasoning 
The term analog!/ often conjures up recollections of artificially 

contrived problems asking: “X is to Y as Z is to ?” in various 
psychometric exams. This aspect of analogy is far too narrow 
and independent of context to be useful in general problem 
solving domains. Rather, I propose the following operational 
definition of analogical problem solving consistent with past Al 

specAc Plans 

Old Problems 

SOlW?d 

Figure l-l : Problem solving may occur by a) instantiating 
specific plans, b) analogical transformation to a 
known so!ution of a similar problem, c) applying 
general plans to reduce the problem, d) applying 
weak rnethods to search heuristically for a 
possible solution, or e) a combination of these 
approaches. 

research efforts [16. 34, 35, 13, 4, 81. 
Definition: Analogical problem solving consists of 
transferring knowledge from past problem solving 
episodes to new problems that share significant 
aspects with corresponding past experience. 

In order to make this definition operational, the problem solving 
method must specify: 

o what it means for problems to “share significant aspects”, 

e what knowledge is transferred from past experience to the 
new situation, 

o precisely how the knowledge transfer process occurs, 

Q and how analogically related experiences are selected 
from a potentially vast long term memory of past problem 
solving episodes. 

The remainder of this paper discusses two major approaches to 
analogical problem solving I have analyzed in terms of these four 

criteria. The first aaproach has been succes;fuliy implemented in 
ARIES (Analogical Reasoning and Inductive Experimentation 
System), and we are actively experimenting with the other 
approach. This short paper focu s?s on a comparative analysis of 
the two methods, rather than discussing implementation 
techniques or examining our prelimmary empirical results. 

2.1. Analogical Transformation of Past Solutions 
If a particular solution 1~1s been found to work on a problem 

siniilar to the one at hand, perhaps it can be used, with minor 
modification, for the present problem. By “solution” I n-lean only 
a sequence of actions that if applied to the initial state of a 
problem brings about its goal statts. S~mplc though this process 
may appear, an effective computer implementation requires that 
many difficult issues be resolved, to wit: 

1. Past problems descriptions and their solutions must be 
remembered and indexed for later retrieval. 

2. The new problem must be matched against large numbers 
of potentially releivant past problems to find closely related 
ones, if any. An operational similarity metric is required as 
a basis for selecting the most suitable past experiences. 

3. The solution to a selected old problem must be 
transformed to satisfy the requirements of the new problem 
statement. 

In order to achieve these objectives, the initial analogical 
problem solver [8] required a partial matcher with a built-in 
similarity criterion. a set of possible transformations to map the 
solution of one problem into the solution to a closely related 
problem, and a memory indexing mechanism based on a MOPS- 
like memory encoding of events and actions [28]. The solution 
transformation process was implemented as a set of primitive 
transform operators and a means-ends problem solver that 
searched for sequences of primitive transformations yielding a 
solution to the desired problem. The resultant system, called 
ARIES-I, turned out to be far more complex than originally 
envisioned. Partial pattern matching of problem descriptions and 
searching in the space qf solution transformations are difficult 
tasks in themselves. 

In terms of the four criteria, the solution transformation process 
may be classified as follows: 

1. Two problems share significant aspects if they match 
within a certain preset threshcld in the initial partial 
matching process, according to the built-in similarity 
metric. 

2. The knowledge transferred to the new situation is the 
sequence of actions from the retrieved solution, whether or 
not that sequence is later modified in the analogical 
mapping process. 

3. The knowledge transfer process is accomplished by 
copying the retrieved solution and perturbing it 
incrementally according to the primitive transformation 
steps in a heuristically guided manner until it satisfies the 
requirements of the new problem. (See [8] for details.) 

4. The selection of relevant past problems is constrained by 
the memory indexing scheme and the partial pattern 
matcher. 

Since a significant fraction of problems encountered in 
mundane situations and in areas requirmg significant domain 
expertise (but not in abstract mathematical puzzles) bear close 
resemblance to past solved problems, the ARIES I method 
proved effective when tested in various domains, including 
algebra problems and route pianning tasks. An experiential 

65 



learning component was added to ARIES that constructed simple 
plans (generalized sequences of actions) for recurring classes of 
problems, hence allowing the system to solve new problems in 
this class by the more direct plan instantiation approach. 
However, no sooner was the solution transformation method 
implemented and analyzed than some of its shortcomings 
became strikingly apparent. In response to these deficiencies, I 
started analyzing more sophisticated methods of drawing 
analogies, as discussed in the following sections. 

3. The Beriwational Analogy Method 
In formulating plans and solving problems, a considerable 

amount of intermediate information is produced in addition to the 
resultant plan or specific solution. For instance, formulation of 
subgoal structures, generation and subsequent rejection of 
alternatives, and access to various knowledge structures all 
typically take place in the problem solving process. But, the 
solution transformation method outlined above ignores all such 
information, focusing only upon the resultant sequence of 
actions and disregarding, among other things, the reasons for 
selecting those actions. Why should one take such extra 
information into account? It would certainly complicate the 
analogical problem solving process, but what benefits would 
accrue from such an endeavor? Perhaps the best way to answer 
this question is by analysis of where the simple solution 
transformation process falls short and how such problems may 
be alleviated or circumvented by preserving more information 
from which qualitatively different analogies may be drawn. 

3.1. The Need for Preserving Derivation Histories 
Consider, for instance, the domain of constructing computer 

programs to meet a set of pre-defined specifications. In the 
automatic programming literature, perhaps the most widely used 
technique is one of progressive refinement [2: 1, 151. In brief, 
progressive refinement is a multi-stage process that starts from 
abstract specifications stated in a high level language (typically 
English or some variant of first order logic), and produces 
progressively more operational or algorithmic descriptions of the 
specification committing to control decisions, data structures 
and eventually specific statements in the target computer 
language. However, humans (weil, at least this writer) seldom 
follow such a long painstaking process, unless perhaps the 
specifications call for a truly novel program unlike anything in 
one’s past experience. Instead, a common practice is to recall 
similar past programs and reconstruct the new programming 
problem along the same directions. For instance, one should be 
able to program a quicksort algorithm in LISP quite easily if one 
has recently implemented quicksort in PASCAL. Similar!y, 
writing LISP programs that perform tasks centered around depth- 
first tree traversal (such as testing equality of S-expressions or 
finding the node with maximal value) are rather trivial for LISP 
programmers but surprisingly difficult for those who lack the 
appropriate experience. 

the key decisions in light of the new situation. In particular, the 
derivation of the LISP quicksort program starts from the same 
specifications, keeping the same divide and conquer strategy, 
but may diverge in selecting data structures (e.g. lists vs arrays), 
or in the method of choosing the comparison element, depending 
on the tools available in each language and their expected 
efficiency. However, future decisions (e.g. whether to recurse or 
iterate, what mnemonics to use as variable names, etc.) that do 
not depend on earlier divergent decisions can still be transferred 
to the new domain rather than recomputed. Thus, the 
derivational analogy method walks through the reasoning steps 
in the construction of the past solution and considers whether 
they are still appropriate in the new situation or whether they 
should be reconsidered in light of significant differences between 
the two situations. 

The difference between the solution transformation approach 
and the derivational analogy approach just outlined can be stated 
in terms of the operational knowledge that can be brought to 
bear. The former corresponds to a person who has has never 
before programmed quicksort and is given the PASCAL code to 
help him construct the LISP implementation, whereas the latter is 
akin to a person who has programmed the PASCAL version 
himself and therefore has a better understanding of the issues 
involved before undertaKing the LISP implementation. Swartout 
and Balzer [31] and Scherlis [25] have argued independently in 
favor of working with program derivations as the basic entities in 
tasks relating to automatic programming. The advantages of the 
derivational analogy approach are quite evident in automatic 
programming because the of the frequent inappropriateness of 
direct solution transformation, but even in domains whether the 
latter is useful, one can create problems that demonstrate the 
need for preserving or reconstructing past reasoning processes. 

3.2. The Process of Drawing Analogies by Derivational 
Transformation 

Let us examine in greater detail the process of drawing 
analogies from past reasoning processes. The essential insight is 
that useful experience is encoded in the reasoning process used 
to derive solutions to similar problems, rather than just in the 
resultant solution. And, a method of bringing that experience to 
bear in the problem solving process is required in order to make 
this form of analogy a computationally tractable technique. Here 
we outline such a method: 

1. When solving a problem by whatever means store each 
step taken in the solution process, including: 

0 The subgoal structure of the problem 

o Each decision made (whether a decision to take 
action, to explore new possibilities, or to abandon 
present plans), including: 

The solution transformation process proves singularly 
inappropriate as a means of exploiting past experience in such 
problems, A PASCAL implementation of quicksort may look very 
different than a good LlSP implementation. In fact, attempting to 
transfer corresponding steps from the PASCAL program into 
LISP is clearly not a good way to produce any LISP program, let 
alone an elegant or efficient one. Although the two problem 
statements may have been similar, and the problem solving 
processes may preserve much of the inherent similarity, the 
resultant solutions (i.e., the PASCAL and LISP programs) may 
bear little if any direct similarities. 

The useful similarities lie in the algorithms implemented and in 
the set of decisions and internal reasoning steps required to 
produce the two programs. Therefore, the analogy must take 
place at earlie: more abstract stages of the original PASCAL 
implementation, and it must be guided by a reconsideration of 

o Alternatives considered and rejected 

o The reasons for the decisions taken (with 
dependency links to the problem description 
or information derived therefrom) 

o The start of a false path taken (with the reason 
why this appeared to be a promising 
alternative, and the reason why it proved 
otherwise, again with dependency links to the 
problem description. Note that the body of the 
false path and other resultant information need 
not be preserved,) only its end points are kept 
for future reference 

0 Dependencies of later decisions on earlier 
ones in the derivation. 

o Pointers to external knowledge structures that were 



accessed and that proved useful in the ew?ntUal 

construction of the solution 

o The resultant solution itself 

o In the event that the problem solver proved 
incapable of solving the problem, the closest 
approach to a solution should be stored, along 
with the reasons why no further progress could 
be made (e.g., a conjunctive subgoal that 
could not be satisfied). 

o In the event that the solution depends, perhaps 
indirectly, on volatile assumptions not stated in 
the problem description (such as the 
cooperation of another agent, or time- 
dependent states) store all dependencies t0 
such assumptions made by the problem solver. 

2. When a new problem is encountered that does not fend 
itself to direct plan instantiation or other direct recognition 
of the solution pattern, start to analyze the problem bY 
applying general plans or weak methods, whichever is 
appropriate to the situation. 

3. ff after commencing the analysis of the problem, the 
reasoning process (the initial decisions made and the 
information taken into account) parallels that of past 
problem situations, retrieve the full reasoning traces with 
the same initial segments and proceed with the derivationaf 
transformation process. lf such traces are formed, 
consider the possibility of solution transforyation analogy 
Or, failing that, proceed with the present fine of non- 
analogical reasoning. 

o Two problems are considered similar if their analysis 
results in equivalent reasoning processes, at least in 
its initial stages. This replaces the more arbitrary 
con text-free similarity metric required for partial 
matching among problem descriptions in drawing 
analogies by direct solution transformation. Hence, 
past reasoning traces (henceforth derivations) are 
retrieved if their initial segments match exactly the 
first stages of the analysis of the present problem, 

10 The retrieved reasoning processes are then used 
much as individual relevant cases in medicine are 
used to generate expectations and drive the 
diagnostic analysis. Reasoning from individual 
cases has been recognized as an important 
component of expertise [29], but little has been said 
of the necessary information that each case must 
contain. And no simple method has been proposed 
for retrieving the appropriate cases in a manner that 
does not rely on arbitrary similarity metrics. Here, I 
take the stand that reasoning from individual cases 
require that the stored analysis of these past cases 
contain a derivational history that justifies all the 
decisions taken to arrive at the conclusion. It is also 
neccessary to store pointers to external data that 
proved useful, list of alternative reasoning paths not 
taken, and failed attempts (coupled with both 
reasons for their failure and reasons for having 
originally made the attempt). Case-based reasoning 
is nothing more than derivational analogy applied to 
domains of extensive expertise. 

d) It is important to know that although one may view 
derivational analogy as an interim step in reasoning 

from particular past experience as more general 
plans are acquired, it is a mechanism that remains 
forever useful, since knowledge is always incomplete 
and exceptions to the best formulated general plans 
require that the problem solver reason from past 
individual reasoning episodes. 

4. A retrieved derivation is applied to the current situation as 
follows: For each step in the derivation, starting 
immediately after the matched initial segment, check 
whether the reasons for performing that step are still valid 
by tracing dependencies in the retrieved derivation to 
relevant parts of the old problem description or to volatile 
external assumptions made in the initial problem solving. 

e If parts of the problem statement or external 
assumptrons on which the retrieved situation rests 
are also true in the present problem situation, 
proceed to check the next step in the retrieved 
derivation. 

8 If there is a violated assumption or problem 
statement, check whether the decision made would 
still be justified by a different derivation path from the 
new assumptions or statements. If so, store the new 
dependencies and proceed to the next step in the 
retrieved derivation. The ideas of tracing causal 
dependences and verifying past inference paths 
borrow heavily from TMS [lo] and some of the non- 
monotonic logic literature [i8]. It should be noted 
that dependancies and therefore consistancy 
maintenence is local to each derivation. Hence 
verifying justifications is constrained to the 
information computing that proved relevance in 
solving analogically related problems. There is no 
notion of “global consistency” or global truth 
maintenence in this formulation. However, the role 
played by data dependencies in derivational analogy 
is somewhat different and more constrained than in 
maintaining global consistency in deductive data 
bases. 

o If the old decision cannot be justified by new problem 
situation, 

o evaluate the alternatives not chosen at that 
juncture and select an appropriate one in the 
usual problem solving manner, storing it along 
with its justifications, or 

o initiate the subgoal of establishing the right 
supports in order for the old decision to apply 
in the new problem3 (clearly, any problem 
solving method can be brought to bear in 
achieving the new subgoal), or 

o abandon this derivational analogy in favor of 
another more appropriate problem solving 
experience from which to draw the analogy, or 
in favor of other means of problem solving. 

8 If one or more failure paths are associated with the 

3 
This approach only works if the mlssinq or vrolated oremise relates to that oart 

of the global state under control of the problenl solver, such 3s acquiring a 
missrng tool or resource. rather than under the control of an uncooperative 
external agent or a recalcitrant enwonment The dlscusslon of strategy-based 

counterplannmg gives a more complete accotlnt of subgoaling to .rectify 

unfulfilled expectations [3,6]. 

67 



current decision, check the cause of failure and the 
reasons these alternatives appeared viable in the 
context of the original problem (by tracing 
dependency links when required). In the case that 
their reasons for failure no longer apply, but the 
initial reasons for selecting these alternatives are still 
present, consider reconstructing this alternate 
solution path in favor of continuing to apply and 
modify the present derivation (especially if quality of 
solution is more important than problem solving 
effort). 

o In the event that a different decision is taken at some 
point in the rederivation, do not abandon the old 
derivation, since future decisions may be 
independent of some past decisions, or may still be 
valid (via different justifications) in spite of the 
somewhat different circumstances. This requires that 
dependency links be kept between decisions at 
different stages in the derivation. The lack of an 
explicit path of links between the decisions indicates 
that the problem solver believes them to be 
independent of each other. 

o The derivational analogy should be abandoned in the 
event that a preponderance of the old decisions are 
invalidated in ttle new problem situation. Exactly 
what the perseverance threshold should be is a topic 
for empirical investigation, as it depends on whether 
there are other tractable means of solving this 
prob!em and on the overhead cost of reevaluating 
individual past decisions that may no longer be 
supported and may or may not have independent 
justification. 

5. After an entire derivation has been found to apply to the 
new problem, store its divergence from the parent 
derivation as another potentially useful source of 
analogies, and as an instance from which more general 
plans can be formulated if a large number of problems of 
share a common solution procedure [8]. 

3.3. Efficiency Concerns 
An important aspect of the dcrivational analogy approach is the 

ability to store and trace dependency links. It should be noted 
that some of the inherent inefficiencies that would be present if 
we were to enforce truth maintenence on very large dependency 
networks, such as would be ‘required to span an entire 
knowledge base in maintaining a large deductive data base do 
not apply to this situation. Since the dependency links are 
internal to each derivation with external pointers only to the 
problem description and to any volatile assumptions necessitated 
in constructing the resultant solution, the dependency networks 
are quite small. Hence, the size of each dependency network is 
quite small, compared to a dependency network spanning all of 
memory. Dependencies are also stored among decisions taken at 
different stages in the temporal sequence of the derivation, thus 
providing the derivational analogy process access to causal 
relations computed at the time the initial problem was solved. 

The analogical transformation process is not inherently space 
inefficient, although it may so appear at first glance. The 
sequence of decisions in the solution path of a problem are 
stored, together with necessary dependencies, the problem 
description, the resuftant solulion, and alternative reasoning 
paths not chosen, :-ailed paths are not stored, only the initial 
decision that was taken to embark upon that path, and the 
eventual reason for failure (with its causal dependencies), are 
remembered. Hence, the size of the memory fsr derivational 

traces is proportional to the depth of the search tree, rather than 
to the number of nodes vislted Problems that share large 
portions of their derivational structure can be so represented in 
memory, saving space and allowing similarity-based indexing. 
Moreover, when a generalized plan is formulated for recurring 
problems that share a common derivational structure, the 
individual derivations that are totally subsumed by the more 
general structure can be permanently masked or deleted. Those 
derivations that represent exceptions to the general rule, 
however, are precisely the instances that should be saved and 
indexed accordingly for future problem solving [14]. 

3.4. Concluding Remarks 
Derivational analogy bears closer resemblance to Schank’s 

reconstructive memory [27, 281 and Minsky’s K-lines [21] than to 
rather more traditional notions of analogy. Although derivationat 
analogy is less ambitious in scope than either of these theories, it 
is a more precisely defined inference process that can lead to an 
operational method of reasoning from particular experiential 
instances. The key notion is to reconstruct the relevant decision 
making processes of past problem solving situations and thereby 
transfer knowledge to the new scenario. The knowledge consists 
of decision sequences and their justifications, rather than 
individual declarative assertions. To summarize, let us describe 
the process of derivational analogy in terms of the criteria for 
anaiogical reasoning: 

1. Two problems share significant aspects if their initial 
analysis yields the same reasoning steps, i.e., if the initial 
segments of their respective derivations start by 
considering the same issues and making the same 
decisions. An operational test for similarity is identity of the 
initial decision sequence. 

2. Then the derivation of the retrieved solution may 
transferred to the new situation, in essence recreating the 
significant aspects of the reasoning process that solved 
the past problem. 

3. Knowledge transfer is accomplished by reconsidering old 
decisions in light of the new problem situation, preserving 
those that apply, and replacing or modifying those whose 
justifications are no longer valid in the new situation. 

4. Problems and their derivations are stored in a large 
episodic memory organized in a manner similar to 
Schank’s MOPS [28], and retrieval occurs by replication of 
initial segments pf decision sequences recalling the past 
reasoning process. 

4. References 

1. 

2. 

3. 

4. 

5. 

66 

Balzer, R., “Imprecise Program Specification,” Tech. 
report RR-75-36, USC/Information Sciences Institute, 
1975. 

Barstow, D. R., Automatic Construction of Algorithms and 

Data Structures Using a Knowledge Base of Programming 
Rules, PhD dissertation, Stanford University, Nov. 1977. 

Carbonell, J. G., “Counterplanning: A Strategy-Based 
Model of Adversary Planning in Reai-World Situations,” 
Artificial Intelligence, Vol. 16, 1981, pp. 295-329. 

Carbonell, J. G., “A Computational Model of Problem 
Solving by Analogy,” Proceedings of the Seventh 
International Joint Conference on Artificial Intelligence, 

August 1981, pp. 147-152. 

CarbonelI, J. G., Larkin, J. H. and Reif, F., “Towards a 
General Scientific Reasoning Engine,” Tech. report, 



6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

13. 

20. 

21. 

22. 

23. 

Carnegie-Mellon University, 
Department, 1983, CIP # 445. 

Computer Science 

Carbonell, J. G., Subjective Understanding: Computer 

Mode/s of Belief Systems, Ann Arbor, Ml: UMI research 
press, 1981. 

Carbonell, J. G., “Experiential Learning in Analogical 
Problem Solving,” Proceedings of the Second Meeting of 
the American Association for Artificial Infelligence, 

Pittsburgh, PA, 1982. 

Carbonell, J. G., “Learning by Analogy: Formulating and 
Generalizing Plans from Past Experience,” in Machine 
Learning, An Artificial Intelligence Approach, R. 
S. Michalski, J. G. Carbonell and T. M. Mitchell, eds., 
Tioga Press, Palo Alto, CA, 1983. 

Clements, J., “Analogical Reasoning Patterns in Expert 
Problem Solving,” Proceedings of the Fourth Annual 

Conference of the Cognitive Science Society, 1982. 

Doyle, J., “A Truth Maintenance System,” Artificial 

Intelligence, Vol. 12, 1979, pp. 231-272. 

Duda. R. O., Hart, P. E., Konolige, K. and Reboh, R., “A 
Computer-Based Consultant for Mineral Exploration,” 
Tech. report 6415, SRI, 1979. 

Fikes, R. E. and Nilsson, N. J., “STRIPS: A New Approach 
to the Application of Theorem Proving to Problem 
Solving,” Artificial Intelligence, Vol. 2, 1971, pp. 189-208. 

Gentner, D., “The Structure of Analogical Models in 
Science,” Tech. report 4451, Bolt Beranek and Newman, 
1980. 

Hayes-Roth, F., “Using Proofs and Refutations to Learn 
from Experience,” in Machine Learning, An Artificial 

intelligence Approach, R. S. Michalski, J. G. Carbonell 
and T. M. Mitchell, eds., Tioga Press, Palo Alto, CA, 1983. 

Kant, E., Efficiency in Program Synthesis, UMI Research 
press, Ann Arbor, Ml, 1981. 

Kling, R. E.. “A Paradigm for Reasoning by Analogy,” 
Artificial Intelligence, Vol. 2, 1971, pp. 147-178. 

Laird, J. E. and Newell, A., “A Universal Weak Method,” 
Proceedings of the Eight Joint Conference on Artificial 
Inteligence, 1983, (submitted). 

McDermott, D. V. and Doyie J., “Non-Monotonic Logic I,” 
Artificial Intelligence, Vol. i3, 1980, pp. 41-72. 

McDermott, D. V., “Planning and Acting,” Cognitive 
Science, Vol. 2, No. 2, 1967, pp. 71-109. 

McDermott, J., “XSEL: A Computer Salesperson’s 
Assistant,” in Machine Intelligence 70, Hayes, J., Michie, 
D. and Pao, Y-H., eds., Chichester UK: Ellis Horwood Ltd., 
1982”, pp. 325-337. 

Minsky, M., “K-Lines: A Theory of Memory,” Cognitive 
Science, Vol. 4, No. 2, 1980, pp. 117-133. 

Newell, A. and Simon, H. A., Human Problem Solving, 
New Jersey: Prentice-Hall, 1972. 

Nilsson, N. J., Principles of Artificial Intelligence, Tioga 
Press, Palo Alto, CA, 1980. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

Polya, G., How to Solve It, Princeton NJ: Princeton 
U. Press, 1945. 

Reif, J. H. and Scherlis, W. L., “Deriving Efficient Graph 
Aigorithms,” Tech. report, Carnegie-Mellon University, 
Computer Science Department, 1982. 

Sacerdoti, E. D., “Planning in a Hierarchy of Abstraction 
Spaces,” Artificial Intelligence, Vol. 5, No. 2, 1974, pp. 
115-135. 

Schank, R. C., “Language and Memory,” Cognitive 

Science, Vol. 4, No. 3, 1980, pp. 243-284. 

Schank, R. C., Dynamic Memory, Cambridge University 
Press, 1982. 

Schank, R. C., “The Current State of Al: One Man’s 
Opinion,” Al Magazine, Vol. IV, No. 1, 1983, pp. 1-8. 

Shortliffe, E., Computer Eased Medical Consultations: 
MYCIN, New York: Elsevier, 1976. 

Swartout. W. and Balzer, R., “An Inevitable Intertwining of 
Specification and Implementation,” Comm. ACM, Vol. 25, 
No. 7, 1982. 

Wilensky, R., Understanding Goal-Based Stories, PhD 
dissertation, Yale University, Sept. 1978. 

Wilensky, R., Planning and Understanding, Addison 
Wesley, Reading, MA, 1983. 

Winston, P., “Learning by Creating and Justifying 
Transfer Frames,” Tech. report AIM-520, Al Laboratory, 
M.I.T., January 1978. 

Winston, P. H., “Learning and Reasonin; by Analogy,” 
Comm. ACM, Vol. 23, No. 12, 1979, pp. 689-703. 

69 


