
Three Dimensions of Design Development

Neil M. Goldman

USC/information Sciences institute
4676 Admiralty Way

Marina del Rey, CA 90291

Abstract

Formal specifications are difficult to understand for a number of
reasons. When the developer of a large specification explains it to
another person, he typically includes mformatlon in his
explanation that is is not present, even Implicitly. in the
specification itself. One useful form of information presents the
specification In terms of an evolution from simpler specificattons.
TypIcally a specification was actually produced by a series of
evolutionary steps reflected in the explanation. This paper
suggests three dimensions of evolution that can be used to
structure specification developments: structural granularity,
temporal granularity. and coverage. Their use in a particular
example is demonstrated.

1. Int reduction
When we describe system behaviors to other people outside the

confines of a formal language. it is common to find an evolutronary
vein in the description. The final behavtor can be viewed as an
elaboration of some simpler behavior. itself the elaboration of a yet
simpler behavior. etc.. back to some behavior deemed sufficiently
simple to be comprehended from a non-evolutionary description.

Formal specifications can likewise be described in an
evolutionary vein. More importantly, the evolutionary steps can be
characterized in terms of the kind of change they make to the
specification. Three orthogonal dimensions of evolution have
been Identified.

l structural granularity -- deals with the amount of detail
the specification reveals about each individual state of
the process.

* temporal granularity -- deals with the amount of
change between successive states revealed by the
specification.

* coverage -- deals with the range
permitted by a specification.

of possible behaviors

Development steps along these dimensions can be composed to
produce desired changes to a specification. This gives some

This research was supported by Defense Advanced Research
Projects Agency contract MDA903-81 C-0335. Views and
conclusions contained in this document are those of the authors
and should not be interpreted as representing the official opinion
or policy of DARPA, the U.S. Government, or any other person or
agency connected with them.

hope that the steps themselves can be formalized -- i.e., that a
language of change can be developed that permits a formal
specification to be viewed and analyzed from its evolutionary
perspective.

2. Specifications and Processes
A “formal specification” is something which denotes, according

to well-defined rules, a set of behavrors. This set will be termed
the process denoted by the specification. A behavior IS a
sequence of states. Each state comprises a set of oblects and a
finite set of relations. A relation IS a set of n-tuples over the
objects. A state models an instantaneous snapshot of a situation
occurring during a particular execution of the process. A
behavior then models the temporally ordered sequence of
situations that constitutes a particular execution of the denoted
process.

2.1. Initial Decisions
In order to specify some desired or existing activity within this

framework, it is necessary to make certain (tentative) decisions
about what aspects of the activity are to be specified. These
decisions need not encompass all aspects of the activity. The
goal at this initial stage IS to specify enough of an abstraction of
the activity to distinguish some of the relevant objects and actions
involved. but not so much detail that the abstraction itself IS

difficult to write or comprehend.

Let us explore these considerations in the context of a
particular example. a specification of the game of baseball. To
structure our initial design. we consider three dimensions along
which initial decisions must be made.

One decision to be made concerns an tnittal structural
granularity for the specification. This amounts to deciding what
information about a particular situation is to be encoded in a state
-- i.e., what objects and relations are to be represented. The
jargon of any particular domain generally gives many possibilities.
In baseball, we talk about concrete objects like players, coaches,
managers, umpires, bases, balls, bats, as well as more abstract
concepts like teams, positions, and scores. Since baseball is a
game, a minimally interesting formalization will have to capture the
notion of the participants and scoring. So let us make our initial
goal be to encode in each state only the score of each of the two
teams in the game.

A second consideration concerns an initial temporal granularity
for the specification. In this case, the jargon of baseball suggests
several possibilities. One could take a snapshot after every pitch,
or batter, or out, or half-inning, or inning, or just at the start and
finish of the game. Our goal of keeping things simple suggests a

130

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

rule of thumb: start with the coarsest temporal granularity that
suggests itself. In this case, that corresponds to making our initial
goal be to let each state transition in a behavior cover a single
inning of the game.

The third consideration concerns the behavioral coverage of
the specification. One might aim for all possible complete games
of baseball, or might choose to include possible cancelled or
suspended games as well. The simplicity goal suggests another
rule of thumb: start with coverage of normal cases only. In this
case, that corresponds to making our initial goal be to include in
the denoted process only complete, ninesinning games.

2.2. Development Decisions
One’s initial version of a specification (or program) is an

approximation, often a very crude one. to what is desired or
achievable [3]. Traditionally. one refines the denoted process by
altering the specification -- inserting. deleting, and replacing
textual units of specification. In recent years, researchers have
argued that viewing the development of a specification as a flat
sequence of textual changes hides structure that directs those
changes. Waters [4] and Barstow [2] show that many seemingly
complex alterations are implementation idioms of a given
language. Wile [5] allows the alterations to be grouped within a
hierarchical goal structure reflecting meaningful concerns of the
implementer. Structured developments are easier to comprehend
and, it is argued, raise the level of expression available to the
designer in a way that leads to gains in productivity.

This paper demonstrates that the same three dimensions of
decision used to obtain an initial specification can be used to
structure the development of that specification. A decision to
specify greater detail about each state of a process is a refinement
in the structural granularity dimension. Such a refinement leads to
a new process and a many-to-l mapping from the behaviors of the
new process to those of the old. A new behavior has states in 1 - 1
correspondence with the states of the corresponding old
behavior, but containing more objects and/or relationships.
Conversely, a decision to specify less (“hide”) detail about each
state is an abstraction in the structural granularity.

A decision to reveal more of the individual state transitions of a
process is a refinement in the temporal granularity dimension.
Such a refinement leads to a new process and a many-to-l
mapping from the behaviors of the new process to those of the
old. A new behavior contains its corresponding old behavior as a
subsequence. Conversely, a decision to specify less (“hide”)
detail about state transitions is an abstraction in the temporal
granularity.

A decision to add additional possible behaviors to a
specification IS an expansion in the coverage dimension Such a
refinement leads to a new process whose behaviors are a superset
of those specified previously. Conversely. a decision to remove
possible behaviors is a contraction in the coverage.

It will become apparent that, even in the simple example used in
this paper, meaningful (in domain terms) changes to a
specification do not constitute changes along a single one of
these dimensions. However, it is demonstrated that meaningful
changes can be represented as sequences of changes each along
a single dimension, and that these representations could be useful
both as explanations of specification development and as the
means of specification development.

3. Baseball: an example
The initial specification of baseball appears in figure 3-1.

Paraphrased. this speciftcation says:

There are two teams, called home and vwtor. Each
team has exactly one Score. which is 0 or more. Each
team starts with a score of 0. A game consists of nine
sequential innings. An inning is the net effect of each
team batting once. The effect of a team batting is to
leave the score unchanged or to increment the team’s
Score by some (integral) amount.

In this specification. the particular
above have been made explicit.

granularity decisions discussed

The notation used here to represent formal specifications is
called Gist [I]. Understanding this notation in detail is not
important. The point of the development that follows is that the
textual changes to this notation effect. but do not clearly convey to
a person, the nature of the change being made to the denoted
process -- in this case, baseball. The changes to the process are
described informally in terms of the three dimensions discussed
above. This provides an alternative, and, it is claimed, preferable
view of the development.

There are several directions in which one might choose to
elaborate this definition of baseball. In particular, we might
choose either to provide a more detailed definition of those
baseball games which are included in the collection just defined,
or we might try to define a more accurate set at the same level of
detail. Let us start in the latter direction.

Behaviors from
STATE ==> visitor:Score = home:Score = 0
ACTIVITY ==> Pl ayBall()

agent TEAM(Score j non-negative-integer)
definition {home, visitor}
where
action Bat() definition

self :Score :+= a non-negativeinteger ;

action PlayBall ()
definition 9 times do PlayInning ;

action PlayInning ()
definition begin atomic

Bat0 by visitor;
Bat() by home

end atomic

Figure 3- 1: Initial Specification -- g-inning game

3.1. Rule Out Tie Games
One thing we want to convey is that baseball games do not end

in a tie. In development terms, this is a contraction in coverage
_. we wish to restrict our specification to a subset of the currently
specified behaviors. In Gist, contraction is often accomplished by
adding a constraint. In this case. a postcondition on the overall
activity will suffice (see figure 3-2). This might be paraphrased by:

The game must end with the two teams having
different scores.

Behaviors from
STATE ==> visitor:Score = home:Score = 0
ACTIVITY ==> Pl ayBall()

postcondition visitor:Score f
home:Score

Figure 3-2: Rule Out Tie Games

3.2. Extra Inning Games
We now have a more accurate, though not yet “correct”,

specification of nine-inning games. As a next step we could
further refine this set, or, what seems more natural, introduce the
concept of extra-inning games. This is a coverage expansion
step, which might be paraphrased by:

Actually, a game consists of at least nine innings, but
will continue after that until an inning terminates with
the score not tied.

One way to achieve this in Gist is with the change depicted in
figure 3-3.

action PlayBall ()
definition until NormalTermination()

do PlayInning():

relation NormalTermination()
definition Inning(*) 2 9

and visitor:Score f home:Score;

relation Inning(Ilnon-negative-integer)
definition I = count start PlayInning()

Here, then, is a case of subgoaling in the development. The
primary goal is to contract the specification to a subset of
behaviors. The means for achieving this requires refining the
temporal granularity of the description. As a first step, we make

an inning a sequential event (see figure 3-4), paraphrased as:

Actually, an inning consists of fmt having the visiting
team bat, and then having the home team bat.

action PlayInning ()
definition begin sequential

Bat0 by visitor;
Bat0 by home

end sequential

Figure 3-4: Half Inning Granularity

Following this refinement, each behavior has two state transitions
per inning rather than one. The key effect of this refinement IS to
provide half-inning updates of the score, making it simple to state
the condition under which the home team does not bat, the key to
achieving the needed contraction of the behavior. This can be
accomplished in the specification text by conditionalizing the
event (see figure 3-5), paraphrased as:

The home team’s turn at bat is skipped in the ninth
inning if it is ahead.

action PlayInning ()
definition begin sequential

Bat0 by visitor:
if Inning(S) and

home: Score > visitor:Score
then null
else Bat() by home

end sequential

Figure 3-3: Extra Inning Games
Figure 3-5: Skip Home Ninth

3.3. One Team Bats at a Time
The behaviors defined now include all “normal” (barring war,

riot, and natural disasters) complete baseball games but still
constitute too large a set. Among games that must be excluded
are those in which the home team scores in the ninth inning when
it had enough runs to win after eight innings. For example, a
home team cannot lead 2-l after the eighth inning and end up
winning the game by a 5-l score. The desired coverage
contraction on the currently defined process could be
accomplished by strengthening the termination condition. An
English paraphrase of the condition would be:

. . . and, if the home team wins, then either (a) it
scored no runs in the ninth inning. or (b) its score at the
start of the ninth inning was no greater than the visiting
team’s score at the end of the ninth inning.

It seems absurd that anyone would choose to refine the
description this way. The reason is that this is not a rule (axiom) of
baseball as most people understand the game; rather it is a
property (theorem) that follows from rules that are far more simply
stated. To state these rules, however, requires a major refinement
in the description; it will no longer suffice to think of an inning as
an atomic event.

3.4. One Player Bats at a Time
Alas, the revised description still contains too many games. The

problem is that, when the home team bats in the ninth inning or
thereafter, it is not allowed to score an arbitrary number of runs,
as it is in a normal inning. But now we are up against a problem
we have just faced. The desired subset of behaviors is difficult to
describe at the half-inning granularity; we would have to say
something akin to:

In the ninth inning and following innings, the home
team may not score more runs than required to give it a
margin of victory of four.

As before, this property sounds absurd as stated. It is more
naturally thought of as a theorem following from rules stated more
simply at a finer temporal granularity. Half-innings are not atomic
events to someone who understands baseball. but are composed
of an iteration of smaller events. In each of these smaller events,
the batting team’s score is incremented by at most four. Within
this finer temporal granularity, the desired behavior subset is
achieved by adding a simple mandatory termination exception.
depicted in figure 3-6, to the home team’s Bat event:

132

If the inning is 9 or greater, and the home team is
ahead, the half-inning (and thus the game) terminates.

action PlayInning ()
definition

begin sequentjal
Bat0 by visitor:
if Inning(S) and

home : Score > visitor:Score
then null
else Bat() by home

exceptions
(Inning(*) 2 9 and
home:Score > visitor:Score)
==> null

end sequential

action Bat()
definition repeatedly Play()

action Play()
definition self :Score :+= choose{0,1,2.3.4}

Figure 3-6: Terminate Game When Home Team Has Won

The “smaller events” used to achieve a sufficiently fine
temporal granularity within a half-inning do not correspond to any
unit of activity suggested by the jargon of baseball. They are an
unnatural abstraction that serve the purpose of having the score
incremented in suitable units. In fact, the next finer unit of activity
suggested by baseball is the “player’sturn-at+bat”. To suitably
model this event, it is necessary to introduce a structural
refinement to the specification. That is, to avoid introducing odd-
sounding theorems as axioms, we need more detail about a state
than just the score. We need to introduce the concept of “men
on-base” . There are a number of ways one might state the effect
of an at-bat. For example:

At the start of a half-inning, there are zero men on-
base and zero outs. There may never be more than
three men on-base at once. The effect of a single
player’s at-bat is: Let M be the number of men on-base.
The team’s score and the number of outs are each
increased by between 0 and 1 + M. The number of
men-on-base is incremented by between + 1 and -M.
The number of outs may not exceed three. When the
number of outs reaches three. the half-inning
terminates. At the end of each player’s at-bat, the
following invariant must hold:

The number of players having batted in the half-
inning equals the sum of the net increment to the
batting team’s score, the current number of men on-
base, and the current number of outs.

It can now be seen that the seemingly arbitrary four runs maximum
per scoring play follows from the (equally arbitrary) three men on-
base maximum and 1 + M score increment limit. These in turn
follow from factors that could, but won’t, be defined by going to
finer levels of structural and temporal granularity.

4. Conclusions
We have identified three dimensions along which process

specifications change as they are elaborated. The dimension of
structural granularity determines the level of detail the
specification reveals about each state of the process. The
dimension of temporal granularity determines the time slices at
which the specification models the process. If both temporal and
structural granularity are fixed, a specification may be changed SO
as to expand or contract the coverage of behaviors. It appears
that the best way to achieve a change along one dimension may
involve making a change along one of the other dimensions.

A view of a specification in terms of its structured development
differs significantly from a view of a specification that expresses
only the net result of that development. In the example presented
in section 3, each development step was formally expressed in
terms of a change to the textual representation of the
specification. But, as is almost always the case, there are
numerous textual changes that would have the same semantic
effect. The intent of the development step, however, is not to
describe a change to the specification per se, but to change the
process denoted by the specification. Although we have not yet
done so, it seems plausible that the development steps stated in
English in this paper could be formalized directly in terms of
functions mapping processes to processes rather than as
mappings from specifications to specifications. In that case, the
initial specification and sequence of structured modifications
would present a complete definition of the final process and would
arguably be both easier to produce and easier (for a person) to
comprehend.

Acknowledgements

I wish to thank Robert Balzer. Don Cohen. Martin Feather. Jack
Mostow, Bill Swartout and Dave Wile for many discussions on the
understandability (or lack thereof) of software and specifications
and for comments on this paper.

Ref e rences

1. Balzer. R., Goldman, N. & Wile. D. Operational specification as
the basis for rapid prototyping. Proceedings of the Second
Software Engineering Symposium: Workshop on Rapid
Prototyping, ACM SIGSOFT, April, 1982.

2. Barstow, D.R.. “Knowledge-Based Program Construction”.
Elsevier North-Holland. 1979.

3. Swartout, W. and Balzer, R. “On the inevitable Intertwining of
Specification and Implementation.” Communications of the ACM
25, 7 (July 1982), 438:440.

4. Waters, R. C. “The Programmer’s Apprentice: Knowledge
Based Program Editing.” IEEE Transactions on Software
Engineering SE-B, 1 (1982), l-12.

5. Wile. D. S. Program Developments: Formal Explanations
Implementations. Tech. Rept. RR-82-99, ISI, August, 1982.

of

133

