
A Model of Learning by 

Incrernenfal Analogical Reasoning and 

Mark H. Burstein 
Department of Computer Science 

Yale University 
New Haven, Connecticut 08520 

Abstract 

This paper presents a mode! of analogical reasoning for 
learning. The mode! is based on two main ideas. First, that 
reasoning from an analogy presented by a teacher while 
explaining an unfamiliar concept is often determined by the 
causal abstractions known by the student to apply in the 
familiar domain referred to. Secondly, that such analogies, 
once introduced, are extended incrementally, in attempts to 
ncrount, fcr new situations by recalling additional situations 
from the same base domain. Protocols suggest that this latter 
process is quite useful but extremely error-prone. CARL, a 
computer program that learns semantic representations for 
assignment statements of the BASIC programming langurrge is 
dcricribcd as an illustration this kind of analogical reasoning. 
The motlr! maps and debugs inferences drawn from several 
commonly used analogies to assignment, in response to 
prcsentct! examples. 

It has often been said among AT researchers that learning 
one new concept requires knowing an enormous amount 
beforchanc!. In learning by ana!ogy this is particularly true. 
This pnper outlines an approach to learning by analogy 
showing one way that the organization of that knowledge can 
also be importnnt. In developing the model presented here, I 
concentrated particularly on how analogies presented by a 
teacher or text might be used by a student in forming an initial 
mode! of events in an unfamiliar domain. The model was 
motivated in part by observations derived from recorded 
protocols of the behavior of several students I tutored in 
introductory computer programming in the BASIC language. 

A number of models of analogical reasoning in -41 have 
been drvcloped around forms of partial pattern matching, 
under which objects in one domain are first associated with 
those in another, and ordered relations or frames with case slots 
of some kind are then placed in correspondence [Evans 
08, Hrown 77, M’inston 80, Winston 821. These algorithms were 
based on the assumption that a best partial match could be 
found by first accumulating evidence for al! possible object-to- 
object mappings between two situations and then choosing the 
one that placed the largest number of attributes and relations 
in correspondence. 

Tlris approach has several major drawbacks in a mode! of 
anaIn,cical Icarning. First, it presupposes that we!! defined, 
bounded representations exist for the situations in both the base 
or familiar domain and in the target domain. The partial 
mz:trhing mode! thus requires some prior representation of the 
objects and relations in the target domain when, in fact, there 
may not be any such reprcseutation when the analo,gy is first 
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prcscntcd. Equivalently, the st,udcnt’s knowledge of the 
tiomnin lnay be wrong or inconsistent with the analogy, making 
matching difficult or useless. The point of presrnting an 
ana!oay to a student is to aid him in coTzatrerc2ing a 
representation of a target situation, or to correct problems in a 
prior representation. Since a poor match does not indicate how 
such a representation might be constructed, it cannot form the 
basis of a general theory of how students learn by analogy. 

A related problem with theories of analogical reasoning 
based principly on description matching is that rich situation 
descriptions often contain many object,s and re!at.ions not 
taking part in analogies to those situations. As the amount of 
detail in the representation of a situation increases, the 
combinatorial complexity of a bottom-up analogical matching 
process also dramatically increases. Larger and larger numbers 
of extraneous object-object mappings must be tried and 
discarded. Winston [Wmston 80, Winston 821 suggested that 
att,ention to important relations, such as those connected by 
causal links, can reduce the computational complexity of the 
matching process to some degree. Yet, even in strictly causal 
models, sub-systems can quite often be expanded to greater 
!evc!s of detail [deK!eer and Brown 81, Collins and Gentner 821, 
thereby introducing objects which not playing direct roles in 
analogies based on those systems. 

What. is required to address these objections is an approach 
based on analogical mappkng that includes a set of strong 
heuristics for delimiting what is to be “imported” from the base 
to the target domain. One important way the analogical 
mapping process can be usefully constrained is by focusing 
attention on the abstractions embodying the inferences made 
when first interpreting a presented base domain situation. The 
hierarchical structure of these representations can help in 
determining a useful mapping without prior specification of all 
of the objects potentially involved in complete descriptions of 
two related situations. 

It has been argued [Schank and Abelson 77, Schank 821 
that abstract causal, plan and goal structures play an 
important role in the interpretation of natural language texts. 
If this is the case, then they must also be available when 
int,erprcting texts containing analogies. Winston’s system used 
causal links to guide its matching process, but this generally 
occurred only if those links were were present in the input 
representations. At no time did the system look at the rules 
supporting represented causal links to find features or relations 
that. might, have useful correspondences. I suggest that the 
causal abstractions underlying represented base domain 
situations provide important constraints on the analogical 
mapping process, particularly when little or nothing is known 
of the tarcot, domain. OG 
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Many aspects of this approach to analogical learning are 
illustrated the behavior of a computer program, CARL, that 
attempts to learn about various kinds of assignment statements 
by building conceptual models drawn from several different 
analogies. CARL makes a number of the errors I found my 
students made as they tried to use the same analogies [I3urstein 
811. The following is the English equivalent of one portion of a 
dialogue that CARL engages in (actual inputs are in 
Conceptual Dependency [Schank and Abelson 771) : 
:> The computer remembers a number by putting it 

in a variable. 
>> A variable is like a box. 
>> To put the number 5 in the variable named x type 'X=5'. 
>> liow do you get the computer to remember the number 9? 

CARL: Type X = 9 
>> Suppose I then type 'X=6'. 
>> P:ow what's in the variable X? 
CARL: 6 is in X and 9 is in X 
>> No, the 9 replaces the 6 in X. 

CARL: OK 
>> Suppose I type 'Y=5' and then 'X=Y'. 
>> Now what's in the variable X? 

CARL: Y is in X 
>> No, it means put the number in Y into X. 
CARL: OK 
>> Now what's in the variable Y? 

CARL: Nothing. 
>> Guess again. 
CARL: 5 is in Y (by analogy to algebraic equality) 
>> Correct. 

CARL: OK 

In this example, CARL is first introduced to assignment 
primarily in terms of an often used analogy between variables 
and boxes. The initial statement of the analogy includes both a 
statement of the principle object class correspondence (i.e. 
box::variable), and an example of an assignment, described in 
terms of a parallel “box domain” situation. 

These statements taken together provides CARL with 
enough information to form an initial description of the relation 
between variables and numbers formed by assignment, principly 
that this new relation is “like” physical containment in some 
specific ways. CARL concludes that the relation between the 
variable X and the number 5 results from the assignment 
act,ion requested by typing “X=5”, in the way “the object is in 
the box” results from the action “put an object in a box”. 
Most attributes of boxes, physical objects, and many possible 
relations between the two are completely ignored in this 
process. 

Other consequences of this analogy, including many 
erroneous ones, are discovered during further exercises in the 
new domain. As new examples are presented, other, related 
situations are retrieved from CARL’s memory of the “box” 
domain, the mapping process is repeated, using the object and 
predicate correspondences formed initially. Errors are 
discovered and corrected either by explicit statements of the 
tutor, or, when possible, by the use of internally generated 
alternative hypotheses. CARL uses several other analogies in 
this process, including the similarity between assignment and 
equality, and the common belief that computer actions mimic 
human actions. As in the above example, secondary analogies 
are used to discover alternate hypotheses about the effects of 
statements when errors are detected. 

When a class of assignment statements is successfully 
modeled by a structure formed in the mapping process, parsing 
and generation rules are also associated with the new structure. 
In this way, CARL learns to manipulate most common forms of 
assignment statements. 

2 An Initial Structure Mapping Theory 
The mapping algorithm developed for CARL was 

influenced by a model of analogical reasoning called structtsre 
mnpping, developed for a series of psychological studies 
Gcntner [Gentner 82, Gentner and Gentner 821. This model 
was used to describe the effects of human reasoning when given 
scientific or “explanatory” analogies, such as those below. 

[Gentner 821 

The hydrogen atom is like the solar system. 

Electricity flows through a wire like water through a pipe. 

The mapping algorithm Gentner proposed for reasoning from 
analogies of this type circumvented some of the problems with 
match-driven models in that it did not require a prior 
representation of the target domain. However, it was 
underspecified as a cognitive process model. By her model, 
first-order relations, or predicates involving several objects or 
concepts, are mapped identically from one domain to the other 
under a prespecified objectcobject correspondence. After 
identical first-order relations have been used to relate 
corresponding objects in a ta.rget situation, second-order 
predicates, such as causal links between first-order relations, 
were also mapped. While this does suggest a way to map new 
structures into an unfamiliar domain, it does not give a good 
account of how corresponding objects are first identified, nor 
does it constrain which relations are mapped. It also does not 
allow for mappings between non-identical relations, which I will 
argue is often necessary. 

The need to constrain the set of relations mapped can be 
seen from Gentner’s representation of the solar system model, 
and the mapping that her system suggests to a model for the 
atom. In that representation, the sun is related to a planet by 
the predicate HOTTER-THAN, as well as the predicates 
ATTRACTS, REVOLVES-AROUND and MORE-MASSIVE 
TIIAN, three relations which are causally linked in the 
description of the orbiting system. Gentner claimed that the 
IIOTTER-THAN relation was not mapped to the atomic 
model, in accord with most people’s intuitions. However, her 
formal mapping algorithm could not predict this. Many other 
attribute comparisons, such as RRIGIITER-TIIAN, could also 
have been present in a description of the solar system. 
Presumably, these rela,tions would not be mapped either. 

The explanation given for this phenomenon was in terms 
of a general condition on the mapping process she termed 
systemnticity. This condition is essentially that “predicates are 
more likely to be imported into the target if they belong to a 
system of rohercnt, mutually constraining relationships, the 
others of which are mapped.” [Gentner and Centner 821 

In CARI,, this condition appears as the top-down heuristic 
delimiting the relations considered for mapping. When a 
causally connected structure is in memory to describe a base 
domain situation, only relations taking part in that structure 
are considcrcd for mapping. Within that set of relations, 
simple attribute comparisons like IIOTTER-THAN, LARGER- 
TIIAN are not mapped if no corresponding attributes can be 
found in the target domain. The result of mapping a causally- 
connected structure under these conditions is a new, parallel 
causal structure cbaracterilin g the target example. Objects in 
the target example are made to fill roles in that structure using 
stated object correspondences between the domains when 
available, and otherwise by their appearance in roles of actions 
and other relations with objects that do have known 
correspondences. Thus, in the analogy between variables and 
boxes, an indirect correspondence is formed between the 
situational role of a physical object that is INSIDE a box, and a 
number assigned to a variable. 



This causally directed mapping process thus forms new 4 Overview of CARL’s analogical reasoning 
structures in domains where none existed before, while allowing process 
relations to be mapped with some consideration of what is CARL develops simple causal or infcrenti31 structures in 
known of the objects and relations in the target domain. The the target domain by retrieving structures in memory for the 
process is also top-down in that classes of objects are only familiar domain, and adapting them to the new domain, using 
placed in correspondence across domains explicitly by statement a top-down mappiog process that preserves the causal/temporal 
of the teacher, or, indirectly, during mapping by the links explicitly specified in those structures. In the retrieval 
appearance of an object in a role of the target structure where process, base domain objects arc substituted for target domain 
a different object was described in same role in the base objects whcu those correspondences can bc determined from the 
domain structure. prcscntcd description of the analogy. The mapped predicates 

are subject to transformation within an abstraction hierarchy, 
as described above. Subsequent use of the same ana]o,gy may 

3 Mappings between non-identical relations either be for the purpose of mapping a related structure - a 

Another problem with both Winston’s and Gentner’s related type of action situation, or a more context-specific 

models of analogical reasoning can be found in the claim that version of the originally mapped structure - using t,he mapping 

all relations are mapped “identically” from one situation developed initially, or an extension of that mapping to inciude 

description to another. Winston’s matcher embodied this claim new predicates. 

since it only found correspondences between identical predicates The structure first mapped when CARL is given the box 
in two representation. This condition may apply in analogies analogy is a simple conceptual description of the action of 
where the domains overlap or are closely related, as in the putting an unspecified object in a box, together with the 
standard geometric analogies dealt with by Evans, and many standard rcsnlt of that action, that the object is then INSIDE 
scientific analogies. However, it is much too strong a claim in that Lox. The result relation INSIDE is transformed in the 
general. When analogies are formed between physically mapping process to a new relation which I will refer to here as 
realizable situations and purely abstract ones, like those of INSIDE-VRFKABLE. The action PTRANS representing a 
mathematics or computer programming, it is impossible to change of physical location is replaced with the more general 
maintain the “identical predicate” mapping position. predicate TRANS, indicating any state change, and causally 

connected to the result, that the OBJECT of the TRANS is 
Probably the most important thing implied by the analogy INSIDE-VARIABLE after the action is completed. The 

between boxes and variables is that variables can “contain” standard precondition on putting an object in a box, that the 
things. That is, the relationship that exists between a box and object fit in the box, is ignored since neither variables nor 
an object inside the box is, in some ways, similar to the numbers are known to have a physical SIZE. 
relationship between a variable and the number associated with 
that variable. The important inference that must be preserved 
in the mapping is that since one can put things in boxes, then 5 Incremental analogical reasoning for Beaming 
t,here must be a way to “puut” numbers ‘%?I” variables as well. Even when analogies are based on simple actions, the 

The problem from the standpoint of Gentner’s model, is specific inferences to be made may vary considerably depending 
that the relationship which gets mapped from the “box world” on the context in which th- action occurs. For example, 
to the “computer world” is precisely that of physical throwing a rock at a brick wall and throwing one at a glass 

rontainment. That is, the interprela.tion that results from window are known to have very different. consequences. 

copying this relation into the programming domain is that a Tbough an analogy to a thrown rock might imply indirectly 

number is physically INSIDE a variable. Unfortunately, not all that the specific inferences valid in such alternate contexts will 

of the inferences which the relation INSIDE takes part in apply apply in some target domain situation, in practice each such 

to numbers “in” variables. For example, there is no primitive situation must be explored to determine the true extent to 

action in BASIC that corresponds precisely to the action “take which the analogy is valid. Extending analogies in this fashion 
out of”. CARL determines that target relation may have some is an error-prone process as ofttcn as it is useful. CARL 
differences from the physical relation INSIDE by noting that attempts to extend an analogy to such alternate-context 
numbers violate a typical constraint on the object slot of the inferences only as they arc required to interpret new situations 

INSIDE relation. Since a number is not a physical object, it is in the target domain, making a number of errors in the process. 
tiot in the class of objects normally “contained” in other 
objects. Thus, the relation suggested between variables and In the protocols I examined, these errors appeared only 
numbers cannot be the standard notion of containment, but when the context in the target domain made them potentially 
instead must be some (as yet undetermined) analogical useful inferences. For example, when a statement like “X=Y” 
extension of that relationship. was first introduced, it was necessary to explain that this meant 

X was given the value that Y had previously. One student 
When an attempt to map a relation directly results in such then inferred that Y was must contain “nothing”, since that 

a constraint violation, a virtual relation is formed in the target was what happened with boxes. Finding and correcting these 
domain tbat is a “sibling” of the corresponding base domain special-case errors in the inference rules mapped is treated here 
relation, or an ancestor at some higher level in is-a the as an incremental process that requires observation and 
hierarchy of known relational predicates. The constraints consideration of a number of examples in t,be new domain. 
placed on the roles in new virtual relations are determined 
primarily from the classes of the objects related in the target This behavior is modeled in CARL by retrieval and 

domain example. Thus, from the analogy to boxes, a new mapping of related causal structures from a base domain (the 

prctlicate INSIDE-VARIABLE is formed to relate variables and box domain in this case). One interpretation found for “X=Y” 

their “contents”, initially constrained to be numbers. in terms of the box analogy is that it is like moving an object 

Inferences are associated with this new relation as they are from one box to another. Information saved about the 

successfully mapped from the base domain, learned mapping of the prototype “put an object in a box’ is used both 

indcpcntlcntly in the new domain, or inherited from other in finding the structure representing this more specific action 
and subsequently to map it back to the programming domain. ,analogics. 



CARI,‘S memory organization for knowledge of simple 
action-based domains involving familiar objects is in part an 
extension of an object-based indexing system developed by 
Lchnrrt [I,thncrt 78, Lehnert and Burstcin 791 for natural 
language processing tasks. So that CARL can retrieve a variety 
of special case situations, the retrieval process was augmented 
using a discrimination system as in the specification hierarchy 
model of episodic memory used by Lebowitz and Kolodner 

[Lcbowitz 80, Kolodner 80). Precondition/result-based 
indexing was also added so that actions and simple plans could 
be retrieved in response to requests to achieve specific goals. 
Any of these forms of indexing may be used in finding a 
suitable structure to map. For familiar domains, the system 
assumes a large set of fairly specific generalized situations 
exists, detailing the causal inferences expected in each case. As 
an example, CARL contains the following structures describing 
the effects of some simple actions involving containers. 

Sltuatlons using BOX as a CONTAINER: 

(PUT-IN-BOX OEJ-IN-BOX TAKE-FROI~-BOX) 

I 
1 

L c 
TRANSFER-OBJ-BETWEEN-BOXES 

PUT-BOX-IN-BOX b 
PUT-MORE-IN-BOX SWAP-OBJ-IN-BOXES 

Part of the 
specialization netuork for things “INSIDE” 

Once an initial mapping is formed from the causal 
structure PUT-IN-BOX, specializations of t,hat structure are 
available when new examples presented to CARL. Also, once 
the containment relation is formed for variables, expectations 
are established for bhe other “primitive” situations involving 
containers. Thus, from the fact that variables can “contain” 
numbers, it is espected that they can be “put in” and 
“removed”. 

The result of mapping these additional structures is the 
formation of a corresponding set of structures for assignment 
statements. Many of these new structures contain erroneous 
inferences, which are “debugged” locally, by observation of the 
actual results entailed, or simply thrown out. Information for 
recognizing each structure, in this case parsing and generation 
information for program statements, is attached to each new 
structure during the analysis of the examples that caused them 
to be mapped. Corrections propagate downward from the 
initial prototype formed, to the variants mapped subsequently. 
Thus, for example, the fact that ‘X=5’ removes old values of X 
also automatically applies to ‘X=Y’. 

In developing CARL, I have been concerned with a number 
of related issues in the learning of basic concepts in a new 
domain by a combination of incremental analogical reasoning 
from multiple models. I have tried here to motivate the need 
for top-down use of known abstractions in this process. This 
was found to be necessary both to limit the analogical 
reasoning required to form some initial concepts in the new 
domain, and to allow for incremental debugging of the many 
errors that, can result from the use of analogies. The process 
described here is heavily teacher-directed, but allows for fairly 
rapid development of a working understanding of basic 
concepts in a new domain. 
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