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l’tlt: probIc:rn of dztc~ctin~ iri:,c:il::ity c!~arlges in images is canonical 
in \ isIon. lXi;e del,ectlou opc.1 :ltc,rs arc typ]Lally designed to optimally 
estimate first or second derival.ivr over some (usually small) support. 
Other criteria such as output signal to noise ratio or bandwidth have 
also been argued for. This paper describes an attempt to formulate 
a set of edge detection criteria that capture as directly as possible 
the desirable properties of the detector. Variational techniques are 
used to find 2 solution over the space of all possible functions. The 
first criterion is that the detector have low probability of error i.e. 
failing to mark edges or falsely marking non-edges. The second is 
that the marked points should be as close as possible to the centre 
of the true edge. The third criterion is that there should be low 
probability of more than one response to a single edge. The third 
criterion is claimed to be new, and it became necessary when an 
operator designed using the first two criteria was found to have 
excessive multiple responses. The edge model that will be considered 
here is 2 one-dlmensional step edge in white Gaussian noise although 
the same technique has been applied to an extended impulse or ridge 
profile. The result is a one dimensional operator that approximates 
the first derivative of a Gaussian. Its extension to two dimensions is 
also discussed. 

1. Introduction 

Edge detection forms the first stage in a very large number of 
vision modules, and any edge detector should be formulated in the 
appropriate context. However, the requirements of many modules are 
similar and it seems as though it should be possible to design one 
edge detector that performs well in several contexts. The crucial first 
step in the design of such a detector should be the specification of 
a set of performance criteria that capture these requirements. Some 
previous formulations have chosen the first or second derivative as 
the appropriate quantity to characterize step edges, and have formed 
optimal estimates of this derivative over some support. Examples of 
first derivative operators are the operators of Roberts (1965) and 
Prewitt (1970), while Modestino and Fries (I 977) formed an optimal 
estimate of the two-dimensional Laplacian over a large support. Marr 
and Ilildreth (1980) suggested t.he Laplacian of a broad Gaussian 
since it optimizes the trade-off in localization and bandwidth. There 
is a second major class of formulations in which the image surface 
is approximated by a set of basis functions and the edge parameters 
are estimated from the modelied image surface. Examples of this 
technique include the work of Hue&e1 (1971) and Haralick (1982). 
These methods a.llow more direct estimates of edge properties such 
as position and orientation, but since the basis functions are not 
complete, the properties apply oniy to a projection of the actual image 
surface on to the subspace spanned by the basis functions. IIowever, 
the basis functjons are a major factor in operatcr performance, 
especially its ability to localize edges. Finally, none of the above 
methods considers the problem of nearby operators responding to 
the same edge. 

In this paper we begin with a frwditional model of a stop edge 
in white (;itUSSldIl nol:,c al~tl tiq' to fr!rlilul;ltc~ FIXTlsely 1.I:C ( ri?c,lls for 
effective fdgf: fhtff-t.wll. We ZSSllIIJP 1 hat dctfTtlfJn is I)t’rfC)rllled by 
rorlvolvlng the noisy edge with a spatial funr!,ion f(z) (which we are 
trying to find) and by marl,ing edgfas at the maxima in the output 
of this convolution. We then specify three performance criteria on 
the output of this detector. 

(i) Low p ro a lhty of error at each point. There should be 2 low b b’ 
probablity of failing to mark real edgo points, and low probability 
of falcely marking an edge point. Since both these probabilities 
are monotonically decreasing functions of the output signal to 
noise ratio, this criterion corresponds to maximizing signal to 
noise ratio. 

(ii) Good 1 oca lzation. The points marked as edges by the operat,or 1’ 
should be as close as possible to the centre of the true edge. 

(iii) Only one response to a single edge. This is implicitly captured 
in (i) since when two nearby operators respond to the same 
edge, one of them must be considered a false edge. However 
(i) ccnsiders a single output point and does not deal with the 
interaction between operators. 

The first result of this analysis for step edges is that (i) and (ii) 
are conflicting and that there is a trade-off or uncertainty principle 
between them. Broad operators have good signal to noise ratio but 
poor loca!ization and vice-versa. A simple choice of mathematical 
form for the locahzation criterion gives a product of a localization 
term and signal to noise ratio that is constant. Spatial scaling of 
the function j(x) will change the individual values of signal to noise 
ratio and localization but not their product,. Given the analytic form 
of a detection function, we can theoretically obtain arbitrarily good 
signal to noise ratio or localization from it by scaling, but not 
simultaneously. It can be shown that there is a single best shape for 
the function f which maximizes the product and that if we scale it 
to achieve some value of one of the criteria, it will simultaneously 
provide the maximum value for the other. To handle 2 wide variety 
of images, an edge detector needs to use several different widths of 
operator, and to combine them in a coherent way. l3y forming the 
criteria for edge detection as a set of functionals of the unknown 
operator f, we can use variational techniques to find the function 
that maximizes the criteria. 

The second result is that the criteria (i) and (ii) by themselves 
are inadequate to produce 2 useful edge detector. It seems that 
we can obtain maximal signal to noise ratio and arbztrarzhy good 
localization by using a diflerence of bo:ies operator. The difference of 
boxes was suggested by Itosenfeld and ‘I’hurston (1971) and was used 
by Herskovitz and Binford (1970), who first suggested a criterion 
similar to (i). If we look closely at the response of such an operator 
to 2 step edge we find that there is an output maximum close to 
the centre of the edge, but that there may be many others nearby. 
We have not achieved good localization because there is no way of 
telling which of the maxima is closest to the true edge. The addition 
of criterion (iii) gives an operator that has very low probability of 
giving more than one maximum in response to a single edge, and it 
~Iso leads to a finite hmll, for the proglurt of localization md sipal 

to noise ratio. 
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The third result is an analytic form for the operator. It is 
the sum of four complex exponentials and can be approximated by 
the first derivative of a Gaussian. A numerical finite dimensional 
approximat,ion to this function was first found using a stochastic 
hill-climbing technique. This was done because it was much easier 
to write the multiple response criterion in deterministic form for a 
numerical optimization than as a functional of f. Specifically, the 
numerical optimizer provides candidate outputs for evaluation, and 
it is a simple matter to count the number of maxima in one of the 
outputs. To express this constraint analytically we need to fmd the 
expectation value of the number of maxima in the response to an 
edge, and to express this as a functional on f, which is much more 
difficult. The first derivative of a Gaussian has been suggested before 
(Macleod 1970). It. is also worth noting that in one dimension the 
maxima in the output of this first derivative operator correspond to 
zero-crossings in the output of a second derivative operator. 

,411 further results are related to the extension of the operator 
to two (or more) dimensions. They can be summarized roughly by 
saying that the detector should be directional, and if the image 
permits, the more directional the better. The issue of non-directional 
(Laplacian) versus directional edge operators has been the topic of 
debate for some time, compare for example Marr (1976) with Marr 
and Hildreth (1980). T o summarize the argument presented here, a 
directional operator can be shown to have better localization than 
the Laplacian, signal to noise ratio is better, the computational 
effort required to compute the directional components is slight if 
sensible algorithms are used, and finally the problem of combining 
operators of several orientations is difficult but not intractable. It is 
for example much more diffcult to combine the outputs of operators 
of different sizes, since their supports will differ markedly. For a 
given operator width, both signal to noise ratio and localization 
improve as the !ength of the operator (parallel to the edge) increases, 
proAided of course that the edge does not deviate from a straight line. 
When the lma.ge does contain long approximately straight contours, 
highly directional operators are the best choice. This means several 
operators will be necessary to cover all possible edge orientations, 
and also that less directional operators will also be needed to deal 
with edges that are locally not straight. 

Following the analysis the author will outline some simple 
experiments which scrm to indicate that the human visual system 
is performing similar selections (at some computational level), or at 
least that the computation that it does perform has a similar set 
of goals. We find that adding noise to an image has the effect of 
producing a hlurring of the image detail, which is consistent with 
there being several operator sizes. Marc interestingly, the addition 
of noise may enable perception of changes at a large scale which, 
even though they were present in the original image, were difficult 
to perceive because of the presence of sharp edges. Our ability to 
perceive small fluctuations in edges that are approximately straight 
IS also reduced by the addition of noise, but the impression of a 
straight edge is not. 

2. In One Dimension 

We consider first the one dimensional edge detection problem. 
The goal is to detect and mark step changes in a signal that contains 
additive white Gaussian noise. We assume that the signal is flat on 
both sides of the discontinuity, and that there are no other edges 
close enough to affect the output of the operator. The detection 
criterion is simple to express in terms of the signal to noise ratio 
in the operator output, i.e. the ratio of the output in response to 
the step input to the output in response to the noise only. The 
localization criterion is more difflcult, but a reasonable choice is 
the inverse of the distance between the true edge and the edge 
marked by the detector. For the distance measure we will use the 
standard deviation in the position of the maximum of the operator 
output. By using local maxima we are making what seems to be 
an a.rbitrary choice in the mapping from linear operator output to 
detector output. The choice is motivated by the need for a local 
predicate which allows the third criterion to be met. Under these 
assumptions, the signal to noise ratio C can be shown to be (Canny 
1983) 

The problem of combining the different operator widths and 
orientations is approached in an analogous manner to the operator 
derivation. Vve begin with the same set of criteria and try to choose 
the operator that. gives good signai to noise ratio and best localization. 
We set a minimum acceptable error rate and then choose the smallest 
operator with greater signal to noise than the threshold determined 
by the error rate. In this way the global error rate is fixed while 
the localization of a particular edge will depend on the local image 

signal to noise rat,io. The problem of choosing the best operator 

from a set of directional operators is simpler, since only one or two 
will respond to an edge of a particular orientation. The problem of 
choosing between 2 long directional operator and a less directional 
one i!: tllc,.)rcticallq simple but difficult in practice. Ilighly directional 
optarator5 arc clearly preferable, but. they cannot be used for locally 
curved edges. It is necessary to associate a goodness of fit measure 
with each operator that indicates how well the image fits the model 
of a linearly extended step. When the edge ir: good enough the 
dlrectional operator output is used and the oul,put of less directional 
neighbours is supressed. 

Where A is the amplitude of the input step, and Q is the root 
mean squared noise amplitude. 

The 
deviation 

localization A, 
of the position 

defined as 
of the true 

the reciprocal 
edge, is given 

standard of the 

by 

A=A 
“0 

f ‘(0) -- 

The derivation of the localization criterion assumes that the 
function f is antisymrnetric. This ensures that the expectation value 
for the output maximum is at the centre of the input edge. 

Ana!ysis of these equations shows that their product is 
independent of the amplitude of f and that the product is also 
independent of spatial scaling of f. llowever the individual terms do 
change, and if the width of f is increased by 20, signal to noise ratio 
L’ increases by fi while localization A is reduced by the factor fi. 
This is the uncertainty principle relating the two criteria. Another 
way to view this relationship is that we are simultaneously trying 
to estimate the amplitude and position of the input step, and that 
because of image noise we can accurately estimate one only at the 
expense of the other. Note also that both criteria improve as the 
signal to noise ratio of the image $; improves. 
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We then employ the Galculus of Variations Lo find the function 
.f which maximizes the product of these criteria. For simplicity, 
we cousitler a fixed width function, and assume that it is non-zero 
only iu the range j-2,2]. Also since the function is known to be 
aliti-syrnrnctric we consider only the range [0,2]. The function f over 
this range can bc shown to be 

Where a and CY are undetermined constants from the optimiza- 
tion. It turns out that both C and h increase with CY, and that 
the localization improves without bound. The function f tends to a 
difference of boxes as CY tends to infinity. The third frame of Figure 1 
shows this operator and the fourth fra.me is its response to the noisy 
edge. The analysis of signal to noise ratio so far has been concerned 
only with the probability of marking edges when near the centre of 
an input edge. and has not attempted to reduce the probability of 
marking edges given that a neighbouring operator has marked an 
edge. We can reduce the probability of marking multiple edges by 
constraining the distance between a.djacent maxima in the response 
of the operator to noise. This distance is given by 

xmaz,ma = 27T 
s:z f”(x) dx 3 

I_‘,” f”“(x) dx > 

When this constraint is added to the original two criteria, the 
solution of the variational problem becomes (in the range [O,l]) 

f(x) I= al exp((Yx)cos(wZ + Or) + o2ex;3(---crx)cos(wx + 02) - 2 

When the values of the constants al, uz, 01 and 9s are solved 
for, we find that the above function can be approximated by the 
first derivative of a Gaussian, shown in the fifth frame of figure 
1. It closely resembles Macleod’s (1970) operator, and at least in 
one dimension it is equivalent to the second derivative zero-crossing 
operator of Marr and Hildreth (1980). However in two dimensions, 
the similarity to the zero-crossing operator ends. 

Figure 1. Responses 
operators to a noisy step 

Of difference Of, boxes and first derivative Of 

3. Two or More Dimensions 

The step edge is the one dimensional projection of the boundary 
between two image regions of dlfl’ering intensity. In two dimensions it 
is a directional entity, and the direction of the edge contour will be 
normal to the direction of principal slope at the edge. The direction 
of principal slope gives us a coordinate to project the two dimensional 
edge in to a one dimensional stel). In principal the projection can 
be done from any number of dimensions. The projection should 
use a smooth projection function, since this minimizes the rate 
at which the detected edge “zigzags” about its mean value. The 
simplest implc~mentation of till> cl-tcrtor uses a projection function 
that is a Caussiarl o! tllcb s;Ltric‘ ~~jldtll a~ tile d[:crctiorl fllllf til)rl. ‘l’lris 
grc~atly sirnp1lfic.s the cor~ipiit~l~on for 1 hc q~wator, nud erlables iL 
to be C?X~Jressed as the composition of convolution with a symmetric 
two-dimensional Gaussian followed by the application of the following 

non-linear differential predicate 

-$G*l= 0 L 

where n = ‘?(:*I ,vq, G is a symmetric two-dimensional Gaussian, and 

I is the ima.ge 

This operator actually locates either maxima or minima, by 
locating the zero-crossings in the second derivative in the edge 
direction. This is the derivative of the output of the operator in 
the projected coordinate. In practice only maxima in magnitude 
are used, since only these correspond to step edges. This form is 
readily extensible to higher dimensions, and the convolution with 
an n-dimensional Gaussian is highly efficient because the Gaussian 
ic decomposable into n linear filters. Second directional derivative Y 
zero-crossings have been proposed by Haralick (1982). 

It is worthwhile here to compare the performance of this kind 
of directional second derivative operator with the Laplacian. First 
we note that the two-dimensional Laplacian can be decomposed 
into components of second derivative in two arbitrary orthogonal 
directions. If we choose to take one of the derivatives in the direction 
of principal gradient, we find that the operator output will contain 
one contribution that is essentially the same as the operator described 
above, and also one from a detect,or that is aligned along the direction 
of the edge contour. This second component contributes nothing to 
localization or detection, but increases the output noise by 60%. At 
best we can expect the Laplacian of Gaussian to be worse by 60% 
in localization and detection than the simplest form of the detector. 
This has been verified in experiments. 

We can gain considerable improvements in C and A by extending 
the projection function. However, a simple decomposition into a 
convolution and a differential operator is no longer possible. Instead 
several operators of fixed orientations are needed. The more the 
operator is extended along the contour direction, the more directional 
it becomes and the more operators are needed at each point to cover 
all possible edge orientations. The detector has been implemented 
using masks with 6 and 8 discrete orientations. The results are very 
promising. The implementation still uses a decomposition strategy to 
obtain computational eficiency. The image is first convolved with a 
symmetric Gaussian, and x and y components of gradient are found. 
Then the various orient.ed masks are obtained by convolving the 
slope components with sparse linear masks in the mask direction. 
Typically there are only 7 multiplications per mask per point. 

A complete implementation of the detector using masks of 
differing widths and lengt,hs exista, and the heuristics for combining 
operator outputs are being refined. One of the most interesting 
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questions involves the combination of the outputs of operators of 
different widths, since these will respond to intensity changes at 
different scales. While in most cases it is desirable to choose one 
operator Lo represent the intensity change at a particular point in 
an image, there are cases where changes are superimposed, and two 
or more edges need to be marked at the point. In particular, this is 
necessary whenever shading edges occur over surface detail. 

4. A Simple Demonstration 

The similarity of the detect& scheme described above with 
the human visual system was never a motivating factor in the design 
of the algorithm. But once the algorithm has been formulated, it 
is interesting to inquire whether there are similarities. One of the 
results of the analysis is that small operators are always to be 
prefered when their signal tc noise ratio is high enough, and that 
larger operators are progressively chosen as the signal to noise ratio 
in the image decreases. We might ask if a similar switching occurs in 
the human visual system. A well-known perceptual anomaly involves 
a coarse!y quantized picture of a human face. Since the image is 
sampled very coarsely, the relevant perceptual information is at the 
low spatial frequencies. However the quantization adds sharp edges at 
high spat,ial frequencies which tend to overide the coarse information. 
The high frequency detail can be reduced by low-pass filtering, i.e. 
blurring of the image. In the present scheme the transition from 
narrow to broad filters can also be accomplished by reducing the 
image signal to noise ratio. 

Figure 2 shows a series of coarsely quantized images of a human 
face. The only difference between the images is that they contain 
increasing amounts of Gaussian noise. Remarkably, the addition of 
noise makes the later images easier to identify as a human face. 
Fig 3 shows a series of liner with sinusoidally varying direction. The 
latter image (which is the same set of lines with noise added) is 
perceived by many as containing straight lines. 

The second effect is a less convincing test of the hypothesis that 
the human visual system gives prefence to highly directional operators. 
The lines are closely spaced so that there will be improvement in 
signal to noise ratio with operator width only while the operator 
widlh is smaller than the projected distance between the lines on 
the retina. So in this context, improvements in signal to noise ratio 
ca,n only be had by using more directional operators. The lines are 
approximately straight so that the directional operators will have 
sufficient “quality”. Thus we would expect the highly directional 
masks (which are less sensitive to rapid changes in edge orientation) 
to be prefered, giving the impression of straight lines. 

An example of the output from two operators of different size 
on a textured irnage is shown in figure 4. The image contains both 
sharp intensity changes due to material boundaries and slow changes 
due to reflectance variation. The two operators differ by a factor of 
four in width, and each one has equal width and length. 

5. Conclusions 

This paper has outlined the design of an edge detector from 
an initial set of goals related to its performance. The goals were 
carefully chosen with minimal assumptions about the form of an 
optimal edge cperator. The constraints imposed were that WC would 
mark edges at the maxima in the output of a linear shift-invariant 
operator. By expressing the criteria as functionals on the impulse 
response of the edge detection operator, we were able to optimize 
over a large solution space, without imposing constraint on the form 
of the solution. 

Using this technique with an initial model of a step edge in 
white Caussian noise, we found that there wa.s a fundamental limit 
to the simultaneous detection and localization of step edges. This 
led to a natural uncertainty relationship between the localizing and 
detecting abilities of the edge detector. This relationship in turn led 
to a powerful constraint on the solution, i e. that there is a class of 
optimal operator6 all of which can be obtained from a single operator 
by spatial scaling. By varying the width of this operator it is possible 
to vary the trade-off in signal to noise ratio versus localization, at 
the same time ensuring that for any value of one of the quantities, 
the other will be maximized. 

The technique has also been applied to the derivation of 
optimal detectors for other types of feature, specifically for “roof” 
and “ridge” edges (Iierskovits and Biuford 1970). A ridge detector 
has been implement,ed is being tested on images of printed text. It 
is also possible to apply the technique to non-white Gaussian noise 
models (Canny 1983). This ran be done by deriving a “whitening” 
filter for the noise and designing an optimal detector for the feature 
which results from the application of the whitening filter to the 
actual feature. 
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Figure 2. Coarsely sampled image of a human face with varying 
amounts of additive Gaussian noise 

Figure 4. Outputs from t.wo operators on a textured image 

Figure 3. Parallel lines with sinusiodal variation in direction 
and additive Gaussian noise 
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