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Abstract

This paper demonstrates how image features of
linear extent (lengths and spacings) generate nearly
image-independent ~ constraints on underlying surface
orientations. General constraints are derived from the
shape-from-texture paradigm; then, certain_ special cases
are shown to be especially useful. Under orthography, the
assumption that two extents are cqual is shown to be
identical to the assumption that an image angle is a right
angle (i.e. orthographic extent is a form of slope or
skewed symmetry?. nder I1:]>erspe(-t1ve, if image extents
are assumed equal and parallel, extent again degenerates
into slope. In the :general perspective case, the shape
constraints are usually complex fourth-order equations,
but they often simplify--even to graphic constructions in
the image space itself. If image extents are colinear and
assumed equal, the constraint equations reduce to second
order, Wit(il several graphic analogs. If extents are
adjacent as well, the equations are first order and the
derived construction (the “jack-knife method”) is
particularly straightforward and general. This method
works not only on measures of extent per texel, but also
on reciprocal’ measures: texels per extent.  Several
examples and discussion indicate that the methods are
robust, deriving surface information cheaply, without
search, where other methods must fail.*

1 Introduction

In this paper, we show how certain simple aggregate

image properties involving spatial extent along one
dimension can be used as cues for determining underlying
three-dimensional surface orientation. Image-measurable
properties such as lengths and s‘pacm s are shown to
enerate constraints on local surface slope in a nearly
image-independent way. The derivation of these
relationships is identical in analytic method (t“shape from
texture”) and representational structure (the gradient
space) to those derived for other mmgu}lghphenomena such
as skewed symmetry or image slope. us, they provide
additional surface information in a form (either equation
or raph} that is easily integrable with that of other
existing algorithms.

Lincar extents are measurements along a straight
image line of either objects (in which case they are
lengths) or virtual objects (in which case they are
spacings). The exact form of the input to these analyses
can vary. A prior edge-detection and linking step, or a
segmentation-like step is assumed. Lengths are then
linear measures of image tokens such as elongated blobs,
and spacings are linear measures of the virtual lines
between image tokens. Spacing behaves the same way as
length does; often it is more conveniently available.

*This research was sponsored in part by the Defense
Advanced Research Projects Agency under contract
N00039-82-C-0427.
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In  general, this paper follows the image
understanding conventions presented in, among other
places, [Kender 8&0a].  That is, the image coordinate
system considers the z axis to be positive in the direction
of view; the image itself to be planc z=1, which has been
rotated in front of the lens at the origin; and the unit of
length in the system to equal the focal length of the lens.
Slll%a,ces in the scene are locally represented by planar
patches, and the surface the
Z:qx—qu;l—c is* represented (p,q),
gradient, in the gradient space.

atch
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The problem of deriving surface information from
textural and regularity assumptions proceeds in two steps.
First, the textural element--in this case an image extent--
is backprojected onto all surface patches possib%e. A map
gthe “normalized texture property map”, or NTPM) of
he scenic measure of the component vs. the surface’s
parameters is recorded. The recovered scene extents are
usually a function of the image extent’s position and the
surface’s gradient. In the second step, two or more
nearby textural elements are assumed to be equal in
measure in the scene. Mathematically, this means that
the maps can be intersected to find those surface patch
arnme{ers that generate for each texel the same measure
that is, the same texture).

2 Extents under Orthography

For the cases of spatial extent under orthography,
consider an image with two extents in it. Suppose they
arise from parallel extents in in the scene; this parallelism
is carried over into the image. Under orthography, either
extent can be translated 1nto superimposition on the
other. Thus, if they are of equal extent, they (and their
N’FI)!\'1S)I exactly coincide and no further information
about the scene is obtained. If they are wunequal in
extent, they will superimpose with unequal overlap; there
can be no surface that makes them equal. ~ Thus
parallelism of equal extents under orthography provides
no information about surfaces, except in this weak,
negative fashion.

Now suppose the extents arise from non-parallel
equal extents in the scene.  This situation is more
interesting: the image extents can be translated so that a
pair of their ends will meet and form an angle. The
resulting constraint equation is a messy one in terms of
their lengths, their joint angle, and second powers of p
and q. However, it 'is not difficult to prove that the
constraint on surface orientation that it induces can be
raphed as a hyperbola in the gradient space. The
ollowing construction shows that the hyperbola is the
Kanade hyperbola [Kender &0b], which™ usually arises
under the assumption that a given image angle is caused
by a scene right angle.

Consider Figure 1, in which the two image extents
forming their angle have been closed off with the addition
of a line. It is well known that orthography preserves
midpoints of lines; thus the image figure, with vet another
line connecting the vertex to this midpoint, can be seen as
a scene isosceles triangle in perspective.



Given this, the angle formed l)‘y the altitude to the
base in the scene must be a right angle: this is the Kanade
assumption.  The surface constraint then is identically
derived.  Equal extents in the image under orthography
therefore Oil»]]l(‘l‘ give trivial results, or reduce to already
known cases of image slope and angle.

‘\H\.
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Figure 1: Equal extent is skewed symmetry.

3 Extents under Perspective

The analysis of extents under central perspective is
more complex, but it yields more powerful algorithms for
image understanding. = The image point gx,y,l) is taken
onto the surface z=px+qy-+c by {)—c/( -px-qy))(x,y,1).
This mapping has a non-linear Jacobian; therefore, the
mapping of 'image extents into the scene extents is
critically affected by translations in the image. It is not
hard to show that tflere are three free parameters. . The
two points ga,y,l) and (b,y,1), where L=b-a, are taken
into .(-0{( -pa-qy))(a,y,1) " and  (-c/(1-pb-qy))(b,y,1),
respectively.

The length of the induced surface extent is
calculated in the scene by the usual Euclidean metric,
yiclding a complex NTPM:

L/ (l-pa-qy)g(

1/(1-pb-qy))S(p,y), where S(p, is
independent of bot /! (S)b.qy)) (P.y) (p.y)

a an

Theoretically, this function as_usable in its raw
form. That is, given two extents in an image under
central perspective, it is possible to generate the
appropriate NTPMs for both (subr)e(_*t to their position
and orientation), ard to intersect their graphs, as if they
were lough accumulator arrays. The result would be a
small set of surface orientations which would
simultancously normalize the two induced surface extents
to equal measure. However, in nearly all cases, this
involves the solutions to constraint equations that are of
fourth order in p and q. Only a few image configurations
generate simpler surface constraints. he ones that do
simplify have the added benefit that they appear to be
relatively common.

3.1 Equal and Parallel

First assume that image extents arose from scene
components that were not only equal in measure;, but
were parallel on the scene surface. }\ simple construction
will sl]mw that once again the image configuration can be
handled solely by considerations of imaﬁe slope.  Two
equal and parallel scene lines form a parallelogram; in the
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image, their pairs of sides can be extended to derive two
vanishing points. Itach vanishing point implies a lincar
constraint in the gradient space: If an image point (x,y) is
a vanishing point of a surface, then the sur%ac(* must have
a gradient {p,q) which satisfies px+qy=1 ( [Shafer 83]).
Two such hnear constraints uniquely define a vanishing
line, which in turn uniquely ({eﬁn('s the surface
orientation.

3.2 Equal and Colinear

Assume now that the image extents did not arise
from parallel scene extents. There seems to be only one
other simplifying set of cases: those when the scene
components are colinear. Interestingly, these cases do not
reduce the problem to one of image slopes again, as
colinear extents have only one slope held in common.

The images of colinear scene components are also
colinear. The reverse is not true, though the heuristic
positing of that truth often is most useful. 1t would be
yet another preference heuristic, similar to those used in
other contexts in image understanding: for example,
nearby image pixels arise from actual scene patch
neighbors (shape from :-:hading{, nearly right angles arise
from scene right angles (skewed symmetry), near-parallels
arise from parallels %011(3 form of shape from texture), ete.

The image configuration in the most general case
reduces to the following. Four points lie on the horizontal
image line at hel%‘ht y; they are A=(a,y), with B, C, and
D defined similarly). " These four points define two image
extents, L==(b-a) " and R:(d-c}, respectively. Tﬁ;e
assumption of colinearily allows the NTIPMs of the extents
to be put into correspondence ecasily: they are already in
the proper orientation, due to the one shared image slope.
Since they also share identical terms in S(p,y), equating
the NTPM yields a surface constraint that reduces to
second order in p and q:

(1-pa-qy)(1-pb-qy)/L = (1-pc-qy)(1-pd-qy)/R

Although this equation can be exactly solved, it has
a simplifying graphic construction that can be drawn in
the image space itself, directly yielding the vanishing
point(s). Rewrite it in the following form:

(X-a)(X-b)/L = (X-¢)(X-d)/R, where X = (1-qy)/p

If X satisfies the constraint equation, then scene
extents are e(¥ual as desired. Further, this is a very
desirable X: it also satisfies the formal definition that
X+qy=1, that is, the point (X,y) is a_ vanishing point.
ote that (X yg lies on the line of colinearity; al]‘ that
must be czglcuia, ed is the value of X itself. Formally, the
equation is_of the form of the intersection of two
parabolae. The left parabola has value 0 at both a and b,
and a minimum value of /4 midway between them. The
right parabola is exactly of the same shape, except for
scaling (its midpoint minimum is R/al{. Thus, the value of
X can be graphically determined by drawing the
arabolae on the image, and finding their intersection.
fNot,ice that the mathematics, as well as the construction,
inds a vanishing point between b and ¢, where the image
lengths are on opposite sides of any vanishing line.)

The parabola method can be refined in the followin
way. The parabolae are only constrained to pass throug%
the point pairs; their exact shape is not critical, as long as
the parabolae are similar (i.e. they can be mutually
scaled). Further, since the value of X is a purely formal
one, the parabolac can be imagined to be ([l)rnwn out of
the image plane: that is, either parabola can be though of
as extending into the -z axis direction.



More appropriately, the value of X on_either
parabola can be considered as an image feature in its own
right. The calculation is really a type of local feature
assignment, with with each position on the line of
colinearity being assigned two simultaneous features.
That position where is the
vanishing point.

he features are identical

Parabolae grow very quickly, however. This can be
compensated for formally by taking the square root of this
image feature. ~The assignment of values is now via
hyperbolae of similar shape, which grow approximately
linearly. They also have the aesthetic’ advantage of being
undefined within the image extents themselves, the
interior of which being one place where a vanishing point
ought not be. In a pinch, the hyperbolae can also be
approximated by their asymptotes, which, being strictl
linear, are easier to compute. For example, the left
hyperbola is sqrt((X-a)(X-b)/L); its asymptotes originate
al the left texel’s midpoint, and have slopes of sqrt(L) and
-sqrt(L) (see Figure 2). Still other modifications and
approximations of this formal equation are possible; they

would need to be analyzed for accuracy and
computational efficiency.
»
A B C D vanishing point

Figure 2: The hyperbola and asymptote methods.

3.3 Equal, Colinear, and Adjacent

The last special case is the simiplest, but perhaps the
most powerful. Suppose that two colinear and adjacent
image extents are derived {rom two colinear, adjacent,
and equal scene components. That is, as in Figure 3, the

oints B and C have merged. Then the constraint given
or the general four-point colinear case simplies even
further since B=C, to that of a linear constraint in p and

q:
(1-pa-qy)/L = (1-pd-qy}/R

"By the same formal method as above, it can be
rewritten as:

(X-a)/L = (X-d)/R, where X = (1-qy)/p

Liither side is the equation of a line. With exactly
the same flexibilities of the parabola scheme above, these
lines can be plotted in the image space (sec Figure 3).
That is, they can extend out of t‘llle image in the -z
direction; they can be mutually scaled; X can again be
considered an’image feature, labeling each position on the
line of colinearity with a two-tuple of features. As before,
the vanishing point occurs when the features are equal;

this occurs at X=(Ld-Ra}/(L-R).
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vanishing point

Figure 3: ‘‘Jack-knife” method for vanishing points.

Yet another graphic construction is possible. It too
has a feature space interpretation, this time very useful.
Construct at A a feature of value I; conceptually, this is
constructed by a line of length L perpendicular to the line
of colinearity. (Alternatively, the line can point in the -z
direction.) Similarly construct at D a feature of value
R. The resulting figure may resemble a jack-knife, with
its two blades opened in parallel, outwards. (As with a
jack-knife, the blades do not need to be perpendicular to
their base; however, for the method to work, the blades
must be parallel. The proof is by similar triangles.) Then
under this interpretation, the feature values of all other
points on the line of colinearity are determined by linear
extrapolation from the two given ones. That is, values
are generated from this new X by (R(X-a)-1{X-d))/(L+R).
In particular, the vanishing point 1s where this image
feature value is 0, as can be verified by direct
substitution. It is not hard to show that this construction
really does implement an image feature: it is scaled
inverse depth.

These methods are formal; as with the parabola
method, other modifications of the constraint equation are
possible as well. It should be noted that the jack-knife
equation can also be derived from the application of
methods of projective geometry: either tln‘ouglh the cross-
ratio, or through the appropriate nine-point geometric
construction, he parabola method apparently cannot,
however, as it deals with five points at a time.

3.4 A Reciprocal Method

The jack-knife method has an interesting extension.
The primary heuristic assumption required %'or its use
requires only that image extents arise from equal surface
extents; however, what is meant by extent can be defined
in many ways. In particular, a series of N extents laid
colincarly end to end on a surface can be considered
either as a one extent of length N, or N of length one (or
many other coml)inations{. Often, runs ol multiple
extents can be obtained by looking  for repeated
distinguishing events along an arbitrary line through the
image. (Strong edges of the same polarity, say.)

The jack-knife method, as given, would try to
normalize the extent of the entire run. But under the
assumption that the events form a texture, the method
can be extended to normalize each event as well. It does
this by simply dividing normalized run extent by event
count to get the “average” extent of a unit event, Thus,
given a run of events, the extended method divides the
run into two sections, each with an image extent and an
event count, and solves the modified equation relating
their average unit extents.



((1-pa-qy)/L)/1=((1-pd-qy)/R)/r; 1 and r are event
counts

Note that the run can be split in many places, and
that the modified equation can be solved by any of the
graphic techniques given in thefjack-knife method” (with L
and R appropriately modified to L/l and R/r
respectively.) The optimal ways to split the run would
have to be analyzed.

The jack-knife method is based on a measure of
extent-per-texel; this reciprocal method uses texels-per-
extent. The reciprocal method has many advantages.
Detecting the events can be done by detectors of fixed
image size and location. ~Within each detector, event
counts can be recovered by simple pattern recognition
techniques. The final computation is simple. In effect,
the shape constraints under this method come from simple
feature detectors.

3.5 Discussion and Implementation Example

The true beauty of the jack-knife methods comes
from the fact that they are one-step and robust.

At least two other methods for determining surface
orientation rely on an implicit searching for image
“regularity’’; having found it they postulate the vanishin
line to be parallel to it. The remaining surface constrain
is determined by algorithmic means fkliajcsy 76; Stevens
79]. Here, the two steps are integrated; “‘tilt” need not be
(fiound before ‘“‘slant”, since any two vanishing points will

o.

The jack-knife methods succeed even with difficult
textures or orientations. As in the wave texture of figure
4, sometimes the vanishing line direction has no
measurable regularity; regularity-based tilt-searches must
fail.  The jack-knife methods will return a proper
vanishing point, however, as long as they are not aligned
with the vamsim}g dine. The jack-knife methods even
work without search on frontal {{p,q)=(0,0)) textures, in
which every direction exhibits ima.ige textural regularity.
In this case, the jack-knife methods properly return
infinite vanisfung points.

Consider the synthetic texture in Figure 4, of
“waves” and “sand’”’ under a “sunrise”. The two surfaces
defined in the image both have surface orientations of
ﬂ;,qt)z(q,ﬂnflmty). The jack-knife method, in a variant

at splits runs Into two subruns of equal event count,
was run on the ‘‘wave” quarter of the image. Sample
detected runs of events and their calculated vanishin
points are shown. (Detection was in the horizontal,
vertical, and principal diagonal directions only, and was
done sparsely for purposes of illustration). The calculated
vanishing points somewhat undershoot the desired
vanishing line, but do lie on the same row of pixels.
Further analysis, of course, is necessary to determinc how
accurate the method can be expected to be (for suitable
definitions of “accurate” in this non-linear space).

The jack-knife methods are not difficult to
implement; = the extraction features and the
computations are comparatively easy. What is more
difficult is the issue of applicability: to which regions of
an image should they be applied? "Implicitly, this'is both
a segmentation problem and a control vproblem.
Segmentation would necessarily involve a textural
segmentation of the type well-documented in the
literature.  Since segmentations customarily return a
compressed feature-space description of each segmented
region, this description would be helpful in deciding
whether the heuristic assumptions behind the methods are

of
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Figure 4: Jack-knife methods on a synthetic texture.

justified there. Control is far more difficult. Except in
scenes  of  isolated, well-defined  surfaces, much
sophistication is necessary in apportioning belief amongst
the results of several “such methods’ simultancously
calculated results. Integrating the algorithms’ computed
vanishing points--errorful and often contradictory--into a
single surface synthesis appears to be a major challenge.

Acknowledgements

I thank Kerny Calaway for her graphic skills. Mark
Moerdler implemented the algorithm shown in Figure 4.

References

E?)ajc_sy 76] Bajesy, R., and Lieberman, L. ‘‘Texture
iradient as’a Depth Cue.” Computer draphics and
Image Processing 5, 5 (March 1976), 52-67.

[jKender 80a] Kender, JR. Shape from Texture.
h.D. Thesis, C:Lrnegie—Mellon University Computer
Science Department, Nov. 1980.

][Kender 80b] Kender, J.R., and Kanade, T. Mapping
mage Properties into Simpe Constraints: Skewed
S?'mmetry, Affine-Transformable Patterns, and the
Shape-from-Texture Paradigm. Proceedings of the First
Annual National Conference on Artificial Intelligence,
American Association for Artificial Intelligence,

Aug., 1980, pp. 4-6.

Shafer 83] Shafer, S.A., Kanade, T., and Kender, J.R.
‘Gradient Space under Orthography and Perspective.”
Computer Graphics and Ima]qe rocessing (To appear
1983). Also available as CMU Technical Report CMU-
CS-82-123, May, 1983

Stevens 79] Stevens, K.A. Surface Perception {'rom
ocal Analysis Otf Texture and Contour. Ph.D. Thesis,
XIUI“I/{“"HQMM Infelligence Lab., Feb. 1979. Available as



