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Abstract 

This pa.per demonstrates how image features of 
linear extent (lengths and spacings) 
image-independent constraints on un erlying surface cf 

encrate nearly 

orientations. General constraints are derived from the 
shape-from-texture paradigm; then. certain special cases 
are shown to be especially useful. Under orthography, the 
assumption that two extents are equal is shown to be 
identical to the assumption that an ima 
angle (i.e. orthogra hit 

e 
extent is a s 

e angle is a right 

skewed symmetry . 
are assumed equa 1 

nder 
and para Ii 

erspective, 
orm of slope or 
if image extents 

into slope. In the * eneral 
cl, extent again de enerates 

constraints are usua y fi 
perspective case, t i! e shape 

complex fourth-order equationas, 
but they often simplify--even to graphic constructions m 
the image space itself. 
assumed e 

If image est ents are colinear and 

order, wit 
ual, the constraint equations reduce to second 

‘fi several graphic analogs. If extents are 
adjacent as well, the e uations are first order and the 
derived construction 4 the “‘acli-knife 
particularly straightforward an d 

method”) is 
general. This method 

works not only on measures of extent per texel, but also 
on reciprocal measures: texels per extent. Several 
examples and discussion indicate that the methods are 
robust, derivin 
search, where ot B 

surface informat ion cheaply, without 
er methods must fail.* 

1 Introduction 

or 
exis & 1 

raph tha.t is easily integrable with‘ that of other 
ing a gorithms. 

Linear extents are measurements along a straight 
image line of either objects (in which case they are 
lengths) or virtual objects (in which case they are 
spacings). The exact form of the inpllt to these analyses 
can vary. A prior edge-detection and linking step, or a 
segmentation-like step is assumed. Lengths are then 
linear measures of image tokens such as elong:atcd blobs, 
and spacings are linear measures of the vlrfual lines 
betlvcen image tokens. Spacing bch:~vcs the same way as 
length does; often it is more conveniently available. 

In general, this paper follows the image 
understandmg conventions presented in, among other 
places, [Kender 8031. That is, the image coordinate 
system considers the z axis to be positive in the direction 
of view;.the image itself to be plan0 z=I, which has been 
rotated In front of the lens at the ori in; and the unit of 
len th 

t 
in the system to equal the foca length of the lens. 7 

E3;3c;~ i;,tdhe scene are locally rypresc$edthSy play;;; 

z= x-&y+c 
the surface gratllcnt 

s 
is* re resented 

ient, in the gra % 
by the point (p,q , its f 

gra lent space. 

The problem of derivin,. 0- surface informst ion from 
textural and regularity assumptions proceeds in two stc>ps. 
First. the textural element--in this case an im;ie;e cstcnt-- 
is backprojected onto all surface patches ,yossibl&. A map 

I 
the “normalized texture property map 
he scenic measure of the comnoncnt vk. 

or NTI’M) of 
the surface’s 

parameters is recorded. The r&overed scene extents arc 
usually a function of the image exfent’s position and the 
surfaee’s gradient. In the second step, two or more 
nearby textural elements are assumed to be equal in 
measure in the scene. Mathematical1 this means that 
the ma 

r 
s can be intersected to find t x bse surface patch 

f 
arame ers that generate for each tcxel the same measure 

that is, the same texture). 

2 Extents under Orthography 

For the cases of spatial extent under orthogra 
consider an image with two cxtcntq in it. 

hy, 
suppose hey f 

arise from parallel extents in in the scene* this parallelism 
is carried over into the image. 
extent can be translated 

Under ortilography, cithcr 
mto supcrimposltion on the 

other. Thus, if they are of equal tlxtent, they and their 
NTI’hls 

1 
exactly coincide and no further \ in ormation 

about t IC scene is obtained. If they are unequal in 
extent, they will superimpose with unequal overlap; there 
can be no surface that makes them equal. Thus 
parallelism of equal extents under orthography provides 
no information about surfaces, cxccpt in this weak, 
negative fashion. 

Now suppose the extents arise from non-parallel 
equal extents in the scene. This situation is more 
interestin : 

B 
the image extents can IX translated so that a 

pair of t lcir ends will meet. and form an angle. The 
resulting constraint equation is a messy one in terms of 
their lcn 
and q. I owever, it is not P 

ths, their joint an Ic, 
5 

and second powers of p 
ifficult to prove that, the 

constraint on surface orientation that it induces can be 

s 
raphed as a hyperbola in the gradient space. The 
allowing construction shows that the hyperbola is the 

&made hyperbola [Iicnder 8Ob], ivhich usually arises 
under the assumption that a given image angle is caused 
by a scene right angle. 

(:onsidcr Fi 
B 

urc 1, in which the two image extents 
forming their ang c have been closc~l off with the addition 
of a line. It is well known that orthogra hv 

*tY u If 
reserves 

midpoints of lines; thus the image fi,<-ure, WI 11 ye another 
line connecting the vertex to this IHI( point, can be seen as $1 
a scene isosccles triangle in pcrspcct i\r+. 

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved. 



Given this, the angle formed b the altitude to the 
base in the scene must be a right ang c: this is the Kanadc P 
nssumpt ion. The surface constraint then is identicallv 
d(~rivctl 
thcref~,rc~ 

Ecual cxttlnts in the image under ortho 
eit lcr \ 

raphjr 
give trivial results, or reduce to a ready 5 

known cases of image slope and angle. 

Figure 1: Equal extent is skewed symmetry. 

3 Extents under Perspective 

imngc>, their pairs of sides ~311 be t~xtcndcd to derive tlvo 
vanishing points. Each vanishing point implic3 a linear 
constraint in the gradient space: if an ima 
a vanishing 

r 
oint of a surface, then the sur act must s 

e point (x y) is 
i ~nvc 

a gradient p,q) which sntisfles. px+qy=l ( [Shafer. 831). 
z;T suct;ci;ne?r constraint: uniquc~l 

.Y . in turn uniquely B 
define a vanishing 

efmes the surface 
orient ation. 
3.2 Equal and Colinear 

Assume now that the image extents did not arise 
from par:ill<~l scene extents. 
other sim lifying 

There seems to be only one 

r 
set of cases: those when the scene 

componcn s are colincar. Interestingly, these cases do not 
reduce the problem to one of image slopes again, as 
colincar extents have only one slope held in common. 

The imaEes of colinear scene components are also 
colincar. The”rcverse is not true, thou’gh the heuristic 
positing of that truth often is most useful. It would be 
yet another preference heuristic, similar to those used in 
other contexts in image understanding: 
nearb image pixels arise 

for example, 

neigh l ors (sha 
from actual scene patch 

f 
e from shading , nearly ri 

from scene rig it an 1 
ht angles arise 

s 
arise from parallels $ 

lcs (skcwec 
one form of s iI 

mmctry , ‘i near-parallels 
ape from texture), etc. 

The ima 
reduces to the B 

e configuration in the most general case 
ollowing. 

image line at hei -lit y’ 
Four points lie on the horizontal 

D defined similar y). (i 
they are A=(a,y) pith I3, (2, and 

extents, . I,=( b-a) 
?‘hese four points defme two lrn+fe 

and R=(d-c , rcsrectivcl . 
7 

ie 
assumption of collnearily allows the NTI his of t le extents 
to be put intp corr-espondrnce easily: they are already in 
the pro er orlentstlon, due to the one shared image slope. 
Since tie 7 P 
the NT& 

also share identical terms in S(p,y), equatmg 
vields a surface constraint that reduces to 

second order-in p and q: 

(I-pa-qy)(l-pb-su)/L = (l-pc-(lu)(l-pd-~ly)/R 

The lencth of the induced surface extent is 
calculated in t?lc scene by the usual Euclidean metric, 
yielding a complex NTPM: 

Although this equation can bc exactly solved, it has 
a simplifying graphic construction that can be drawn in 
the image space itself dircctlv yielding the vanishing 
point(s). Rewrite it in the folloGng form: 

(X-a)(X-b)/L = (X-c)(X-d)/R, where X = (I-qy)/p 

Theoretically,. this function as usable in its raw 
form. That is, given two extents in an imaae under 
ccnf ml pers 3&tiVe, en&ate the 
appropriate 64 

it is possible to 
TPMs for both (sub’ect to t leir 

r’ 
5 position 

and orientation), alIt to intersect t leir graphs, as if they 
wert’ 1Iough accumulator arrays. The result, would be a 
small sf.4 of surface 0Cientat ions which would 
simult :~ncol~sly normalize the two induced surface extents 
to ccj~ial measure. However, in nearly all cases, this 
invol\,rs the solutions to constraint equations that are of 
fourth order in p and q. Only a few ima e configurations 
gcncratc simpler surface constraints. +h e ones that do 
simplify have the added benefit that they appear to be 
relatively common. 
3.1 Equal and Parallel 

First assume that image estents arose from scene 
components that were not only ccual in measure, but 
were 

1 
,nrallcl on the scene surface. A 

will s low 
simple construction 

that once again the image conflguration can be 
hnntllct1 solely bv collsitlerations of ims e slope. Two 
equal and pnrnllcl scene lines form a para Ii elogram; in the 

If X satisfies the constraint ec uation then scene 
extents are e ual 

1 
a.s desired. Furt er fi 

desirable X: i 
th’iq is a very 

a&o satisfies the forma! definition that 
Ei\;+qy= 1, that is, the point (X,y) is a vanishing oint. 

ote that (X y) 1 les on the line of colinearity; 
must be calculated is t,he value of S itself. 

al I” that 
the 

equation 
Formal1 r, 

is of the form of the intersection o 8 two 
parabolae. The left parabola has value 0 at both a and b, 
and a minimum value of L/4 midway between them. The 
right parabola is exactly of the s;lmc shape, except for 
sealing (its midpoint minimum is R/4 

1 
. Thus, the value of 

X can be EraDhicallv determinct by drawing the 

P 
arabolae 

Notice 
on “th6 imaie, and finding their intersection. 

that the mathematics, as ~~~11 as the construction, 
inds a vanishing point between b and c, where the image 

lengths are on opposite sides of any vanishing line.) 

The parabola metshod can be refined in the followin 
way. The parabolae are on1 

f 
constrained to pass throug 1 $ 

the point pairs; their exact s lape is not critical, as long as 
the parabolae are similar (i.e. 
scaled . 

i 

they can be mutually 
Further, since the value of x is a purely formal 

one, t ie pnrabolac can 1)~ imaginc>tl to be tlrn\vn off of 
the image plant: that is, either par:ll)ola can be though of 
as cstcnding into the -z axis direction. 



R’lore a propriately, 
f 

the value of X on either 
parabola can )e considered as an image feature in its own 
right. The calculation is really a type of local feature 
assignment, with with each position on the line of 
colinearity being assi ned two simultaneous features. 
That position where f he features are identical is the 
vanishing point. 

Parabolae 
compensated for 

row very quickly, however. This can be 
9 uare root of this 

image feature. 
ormally by taking the s 
The assignment of va ues ? is now via 

hyperbolae of similar sha 
linearly. They also have t i! 

e, which. grow a proximat.ely 
e aesthetlc advan age of being F 

undefined within the ima e 
interior of which being one p ace where a vanishing point 5 

extents themselves, the 

ought not be. In a pinch, the hyperbolae can also be 
approximated by their asymptotes, which, being strlctl 
linear are easier to compute. For example, the 
hyperbola is scrt((X-a)(X-b)/L ; its asymptotes 

le t r 

at the left texe Is s midpoint, an d 
ori ina?; 

-sqrt(L) (see Figure .a). 
have slopes of sqrt( 6 

Still oth$r modificat:ions and 
approsim;i;Ts of this formal equatlT;r are posslblc; they 
would to be analyzed accuracy and 
computational efficiency. 

Figure 2: The hyperbola and asymptote methods. 

3.3 Equal, Colinear, and Adjacent 

The last special 
most powerful. 

case is the simplest, but perhaps the 
Suppose that two colinear and a~~ncent 

image extents are derived from two colinear, adjacent, 
and equal scene components. That is, as in Figure 3, the 

F oints B and C have merged. Then t,he constraint given 
or the general four-point colinear case simplics evrn 

further since B=C, to that of a linear constraint in p and 
'4: 

(l-pa-qy)/L = (I-pd-qy)/R 

L3y the same formal 
rewritten as: 

method as above, it can be 

(X-a)/L = (X-d)/R, where X = (I-qy)/p 

l:it hclr side is the equation of a line. With exactly 
the MIHC flexibilities of the parabola scheme above, these 
lines can bc plotted in the image s jace (see Figure 3). 
‘l’h:~t is, they can extend out of t ie f 
direct ioll; 

image in the -z 
they can be mutually scaled; X can again be 

consitlc~r~~tl an image feature, labeling each position on the 
lill(l of colillcb:lrity. \villl ;I two-tuplC> of features. fZs l)cforC, 
ttlr v:ini\hirlg polnf occurs when t Ire fctiturcs arc equal; 
this occi~rs al X=(1,(1-rra)/(I,-r~). 

vanishing point 

Figure 3: “Jack-knife” method for vanishing points. 

really does implement an image feature: it is sealen 
inverse depth. 

These methods are formal; :ts with the parabola 
method, other modifications of the constraint equation arc 
possible as well. 
equation can 

It should be notr>d fhat the jack-knife 
also be derived from the ap hcntion of 

methods of projective geometry: tit her t hroljg 1 t hc cross- Y 
ratio, or t,hrou h 
construction, + 

the appropriate nine-point geometric 
he parabola method appnrcntly cannot, 

however, as it deals with five points at a time. 
3.4 A Reciprocal Method 

The jack-knife method has 311 interestin clxt(bnsion. 
The primary heuristic assumption rc>cluired 5 or its use 
rc~quircs only that image oxtcrits :iris;c from oqu:>l surface 
extents; however, what is meant by oxtent can be tlofint~d 
in rriany ways. In particular, a series of N cxtcnts laid 
colincarly end to end on a surface can bc con~itlcrcd 
either as a one extent of length N or N of 1~11 

Ott (‘I1 T 
,th one’ (or 

many other combinations . 
1 

runs o 
extents can be obtainct bv lookin 

niult iple 

distinguishing events along nri ftrbit rary 7 
for rtlpc9t otl 

inc through tlira 
imngc. (Strong cdgcs of the s;lmc polarity, say.) 

The jack-knife method, as given, would try to 
normalize the extent of the cntirc run. Ijut under the 
assumption that the events form ;I tc5ture, 1h(b iric~thod 
can be extcndcd to normolizc* etrcll ewut as \vclI. It tlocs 
this by simpl 

i 
dividing norm:llizctl run clxtclnt hy c>vcnt 

count to get t e “av(~rage” tkstcnt of a unit rY(‘nf: Thus, 
given a run of eveills, thtl estcndc~tl mct hod tiivlclc5 t Ircb 
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(( I-pa-qy)/L)/l==(( I-pd-qy)/R)/r; 1 and r are event 
COllI~tS 

Note that the run can be s 
that the modified equation can. E: 

lit in many places, and 

grn )hic 
e solved by any of the 

an d 
techniques given 

II appropriately 
inrnkyi a;k-knife method (with I, 

fl to L/l and R/r 
respectively.) ? he optimal ways to split the run would 
have to be analyzed. 

The ‘ack-knife method is based on a measure of 
cx t en t-per- i cxel; this reciprocal method uses texels-per- 
extent.* The reciprocal method has many advantages. 
Dctectmg the events can be done by detectors of fixed 
image size and location. Within each detector, event 
counts cm be recovered by simple pattern recognition 
techniques. The final computation is simple. In effect, 
the shape constraints under this method come from simple 
feature detectors. 
3.5 Discussion and Implementation Example 

from 
The true beauty of 
the fact that they 

the jack-knife methods 
are one-step and robust. 

comes 

The jack-knife methods succeed even with difficult 
textures or orientations. As in the wave texture of figure 
4, sometimes the vanishing line direction has no 
measurable regularity* regularit r-based tilt-searches must 
fail The jack-k&e metho s x will return a proper 
vanishing point however, as long as they are not aligned 
with the vanishing dine. The jack-knife methods even 
work without search on frontal ((p,q)=(O,O)) textures,. in 
which eatery direction exhibits ima 
In this case the jack-knife met rods properly return 
infinite vanishing points. 

f: 
e textural regularity. 

Consider the synthetic texture in Figure 4 of 
“waves” and “sand” under a “sunrise”. The two sur aces f’ 
defined in the image both have surface orientations of 

kl’t , )=(q,+infinity).” The jack-knife method, in a variant 
a snhts runs mto two subruns of equal event count, 

was run on the “wave” quarter of the’ image. Sample 
detected runs of events and their calculated vanishm 
points are shown. 
vertical, and 

(Detection was in the horizonta , B 

done sparsely F 
rincipal diagona.1 directions only, and was 
or purposes of illustration). The calculated 

vanishing points somewhat undershoot the desired 
vanishing Ime,. but do lie on the sa.me row of pixels. 
Further analysis, of course is necessary to determine how 
accurate the method can be expected to be (for suitable 
definitions of “accurate” in this non-linear space). 

The jack;knife 
implement; 

methodsofa,re 
extraction 

not diffi$t $; 
features 

computations are comparative1 
T 

easy. What is more 
difficult is the issue of applicabi ity: to which regions of 
an image should they be applied? Implicitly this is both 
a segmentation 
Segmentation 

problem and a control vproblem. 
would necessarily involve a textural 

segmentation 
literature. 

of the type well-documented in the 
Since segmentations customarily return a 

compressed feature-space description of each se mented 
region, this description would be he1 lful 

3 
in % eciding 

whether the heuristic assumptions behin the methods are 

Figure 4: Jack-knife rnethods on a synthetic texture. 

Control is far more difficult. justified !$ere.isollted 
scenes L well-defined 

necessary 

Exce~-$C;: 
surfaces 

sophistication is in apportioning belief’ amongst 
the results of several such methods’ simultaneously 
calculated results. Inte rating the algorithms’ computed 
vanishing points--crrorfu and often 7 contradictor --into a 
single surface synthesis appears to be a major cha lenge. i; 
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