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ABSTRACT 
In computing a scene description from an image, a useful 

intermediate representation of a scene object is given by the 
orientation and area of the constituent surface facets, termed 
the Extended Gaussian Image (EGI) of the object. The EGI of 
a convex object uniquely represents that object. We are con- 
cerned with the computational task of reconstructing the 
shape of scene objects from their Extended Gaussian Images, 
where the objects are restricted to convex polyhedra. We 
present an iterative method for reconstructing convex polyhe- 
dra from their Extended Gaussian Images. 

I INTRODUCTION 

The representation of an object by the orientation of its 
surface arises in many computer vision problems. Specifically, 
needle maps[Horn,1982], the “23 sketch” [Marr,1976], and 

intrinsic images[Barrow and Tenenbaum,l978] all represent the 
orientation of an object at the points of the image. Orientation 
is specified as a vector pointing in the direction of the surface 
normal. Orientation maps can form the output of stereo pro- 
cessing from several images (Grimson,l981, Baker and Binford, 
19811, photometric stereo [Woodham,l980], or any of the so- 
called “shape from” methods, such as shape from shading 
(Horn,1975, Ikeuchi and Horn,1981], shape from contour 
[Marr,1977], h p f s a e rom texture [Kender,1979, Witkin,l981], 
and shape from edge interpretation [Mackworth,l973, 
Kanade,l981, Sugihara,l982]. By translating the surface nor- 
mals of an object to a common point of application, a 
representation of the distribution of surface orientation is 
formed, called the Extended Gaussian Image (EGI). 

Ikeuchi [Ikeuchi,l981] discussed the use of the EGI for 
recognizing objects an industrial environment. For each unk- 
nown object, the EGI of its visible hemisphere is formed by a 
propagation of constraints method [Ikeuchi and Horn,1981]. 
The EGI is then compared to the EGIs of objects stored in a 
library. The best-matched prototype identifies the object. 

Since it can be shown that the EGI does not uniquely 
identify a concave object, the EGI representation applies only 
to convex objects. In this discussion we will consider only con- 
vex polyhedra, which are formed by the intersection of a finite 
number of half-spaces. A bounded convex polyhedron will be 
termed a polytope. The EGI of a polytope P can be inter- 
preted as a set of vectors, one for each face in the polytope. 
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The length of each vector is the area of the corresponding face 
in the polytope. Minkowski [Minkowski,l897] showed that the 
EGI of a convex object uniquely specifies the object up to a 
translation. Further, he proved that any set of vectors whose 
sum is zero represents the EGI of a convex object. 

A natural question then arises: can one describe an algo- 
rithm for reconstructing a convex polytope from its EGI? 
Minkowski’s proof of existence and uniqueness is not strictly 
constructive; it only provides an indirect route to the solution. 
Ikeuchi proposed an algorithm for generating the polytope 
corresponding to a given EGI with n faces, as follows. The 
solution is found by determining L=(I,,l,..l,), the n-vector of 
distances of the faces of the polytope from the origin. The 
vector L, together with the orientations of the faces, defines 
the locations in three-space of the half-spaces forming the 
polytope P(L). The areas of the faces of P(L), its volume and 
its centre of gravity can be computed. In the following discus- 
sion, we will consider that any polytope will be translated so 
that its centre of gravity coincides with the origin. 

In Ikeuchi’s algorithm for solving the reconstruction prob- 
lem, the process is subdivided into n distinct cases; in the it* 
case, face i is the farthest from the origin. When face i is 
chosen as maximum, I, is set to 1.0; all other 1, vary between 
0.0 and 1.0. The n-l dimensional space of distances is quan- 
tized (at spacing d) . Each of the d’-” locations in this space 
specifies the locations of the n faces in three space. The 
polytope can be constructed, and the areas of its faces deter- 
mined. These areas are scaled and compared with the objec- 
tive. 

No analysis of the accuracy of the algorithm is supplied. 
Ikeuchi’s method minimizes the sum of the square differences 
between the calculated areas of the polytope and the given 
areas in the EGI. It is not clear that the polytope which 
results from this minimization (after normalizing) will have the 
same structure as the desired polytope. In addition, the 
method is very expensive. To double the resolution of the 
algorithm, one must increase the number of evaluation points 
exponentially. 

II CONSTRWCTIVE METHODS 
To find a constructive solution, first consider the two- 

dimensional case. The EGI of a polygon is a system of vectors 
emanating from the origin. If the system sums to zero, then it 
represents a convex polygon. Figure 1 shows a two- 

dimensional EGI; the reconstructed polygon is rotated by -;. 
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Figure 1 The EGI of a Convex Polygon and Its Reconstruction 

To construct the polygon, given the system of vectors, one 
proceeds as follows: 

Assume the vectors { v, } are given from 1 to n in anti- 

clockwise order. Take vl, rotate it by a and place its tail 

at some point in the plane. For the remaining vectors, in 

order, rotate v, by $ and place its tail at the head of v,-~. 

Because the system sums to zero, the head of v, will close 
with the tail of vl. By definition, the length of each vector 
is the length of the corresponding edge in the polygon, and 
its orientation is normal to that of the edge. Hence each 
edge in the reconstructed polygon will be the correct length 
and at the proper orientation. 

The two-dimensional method does not directlv extend to 
higher dimensions. In two dimensions, the adjaceicies among 
the facial elements, the edges, is clear from the EGI. In three 
dimensions the adjacency relationships are not given by the 
EGI and must form part of the solution. In that case, how 
can the solution be formulated? 

A result of !Tutte.1962! states that the number of 
different adjacency ‘relations for polytopes with n triangular 
faces is asymptotically exponential in n. The number of gen- 
era! polytopes (with faces having any number of sides) is 
larger. Hence any method which examines al! possible adja- 
cency relations will take exponential time. 

III MINKOWSKI’S PROOF 
Minkowski’s proof provides clues for finding a reconstruc- 

tion method. The original proof considers polytopes in any 
dimension d; we will describe the proof in 3-space for clarity. 
For a polytope P in R’, the following set of vectors is formed: 
u(P) = { u, ] l<i< n } where each u, is a non-zero vector 

emanating from the origin parallel to the outward normal of 
face i of P. The length of each u, is the area of face i, A,. 
This set of vectors corresponds to the EGI given above. A set 
of vectors U is equilibriated if and only if they sum to zero and 
no two vectors are positively proportional, i.e., no two are 
linear multiples of a common unit vector. An equilibriated set 
of vectors U is fully equilibriated if and only if it spans RS. 
Minkowski’s poly-tope reconstruction theorem shows that 

1) if P is a polytope in RS not contained in any plane then 
the U(P) is fully equilibriated and 

2) if U is a fully equilibriated system of vectors, then there 
exists a polytope P unique within a translation such that U 
is the EGI of P. 

Let L be the n-vector of distances from the origin of the 
faces of the polytope P(L). In the proof of condition (2), Min- 
kowski shows that L minimizes 

f(L)= CA, I, (1) 

where A, is the area of face i given by the EGI and 1, is the 
distance of face i from the origin, subject to the constraint 
that the volume of P(L), V(L), is greater than or equal to one. 
By the Brunn-Minkowski theorem [Grunbaum,l967], the sub- 
set of R” given by {LI V(L)>l} is convex. Convexity of the 
constraint set implies that the minimum of the objective func- 
tion f(L), since it is linear, will lie on the boundary of the con- 
vex set, where V(L)=l, and that a local minimum of f(L) is 
the global minimum. Reconstructing a polytope from its EGI 
can be accomplished by solving a suitably formulated con- 
strained minimization problem. 

I-V THE ITERATIVE METHOD 

A. Constructing P(L) 
To construct a polytope P(L), we form the intersection of 

the n half-spaces specified by the vector L. Brown [1978] 
describes a method for transforming the problem of intersect- 
ing n half-spaces into a convex hull problem. Brown uses the 
dual transform, described in the vision literature by 
[Huffman,1971, Mackworth,l973, Draper,l981]. The dual 
transform takes a plane with equation 

AZ+ By+ Cz+ l=O (2) 
into the point (A,B,C) in RS ( see figure 2). The planes of P do 
not pass through the origin so equation (2) is defined for a!! 
faces. The n planes forming P correspond to n points in R3, 
for which the algorithm of Preparata and Hong [1978] deter- 
mines the convex hull in O(n!ogn) time. Any face of the con- 
vex hull of the dual points corresponds to a vertex of P. Any 
two points incident on an edge in dual (P) correspond to a pair 
of faces of P which share an edge. In sum, the adjacency 
information in the dual provides the adjacency information for 
P. Hence we can construct the vertices and edges of P. The 
centroid of P must coincide with the origin so its centre of 
gravity must be computed; each 1, is augmented by the scalar 
product of the centre of gravity, a point in R’, and the normal 
vector of face i. 
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This description is taken from [Grunbaum,196i’,p.332]. l=ACB 2 = AEDC 3 = DEF 4 = ABFE 5 = BCDF 

Figure 2 A polytope and its dual 
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B. Restoring Feasibility 
Once P(L) has been constructed, it is straightforward to 

determine a corresponding point L’ which is feasible. The 
volume V(L) of a 3-d polytope P(L) is a homogeneous polyno- 
mial in L of degree 3. The formula for the gradient of V(L) 
can be derived from this polynomial. The gradient is used in 
computing the minimizing step. From a given !(L) we can 

compute the volume V(L) and scale L by V(L)‘, yielding a 
polytope P(L’) with unit volume. 

C. Determining a Minimizing Step 
Constrained optimization is a well-studied problem, so 

many methods are available for determining the step direction 
and magnitude [Gil! et a!., 19811. The reduced gradient 
method is a simple method which was chosen for implementa- 
tion. By taking a step in R” in the hyperplane perpendicular 
to G(L), we will remain close to the constraint surface 
V(L)=l. The step is in the direction which minimizes j(L), 
that is, in the direction of the projection of the vector A, the 
n-vector of areas of the faces given by the EGI, onto the 
hyperplane perpendicular to G(L). This step is a multiple of: 

<A,G(L)>G(L) - A , where <x,y> is the inner product (3) 

D. The Method 
The iterative method for reconstructing a convex 

polyhedron from its EGI combines the procedures described 
above. The procedure is formulated as follows: 

1) Set L to (l,l,...l). 
2) Construct P(L): 

1) Transform the n planes given by L into M, a 
set of n points in R3, using the dual transform. 
2) Compute the convex hull of M, call it CH(M). 
3) Determine the adjacency relations of P(L) 
from CH(M). Calculate the locations of the ver- 
tices of P(L). 

3) Compute the centroid of P(L). Translate the cen- 
troid of P(L) to the origin. Compute y(L) and the 

gradient of V, G(L). Scale L by V(L )” to make its 
volume unity. 
4) Evaluate f(L); if the decrease in f is less than a 
pre-specified value, terminate. Otherwise, compute a 
step using equation (3), update L, and repeat, start- 
ing at step 2. 

V PERFORMANCE 

An example polytope has been reconstructed from its 
EGI (figure 3). The polytope to which the EGI corresponds is 
shown in figure 4. 

Figure 3 Stereo View of the EGI of a Distorted Octahedron 

Figure 4 Stereo View of the Original Polytope 

The faces of the polytope are parallel to those of a regular 
octahedron, while the distances of the faces from the origin 
have been altered. The polytope constructed initially is shown 
(in stereo) in figure 5. 

Figure 5 Stereo View of Initial Polytope 

The initial polytope is an octahedron, in which each face is 
adjacent to three others. In the course of the minimization, 
intermediate polytopes exhibit changing adjacency structures. 
The adjacency structure at an early stage becomes identical to 
that of the target polytope. The final reconstructed polytope 
is shown in figure 6; the value of L for this polytope is : 

(0.336,0.699,0.519,1.137,1.222,0.517,0.460,0.443) 

and its adjacency structure is: 

FACE : ADJACENT TO FACES 

1 :234856 
2 : 163 
3 : 126784 
4 :138 
5 : 1 8 6 
6 :158732 
7 : 368 
8 : 143765 

Figure 6 Stereo View of the Reconstructed Polytope 
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The reconstructed polytope has the same adjacency 
structure as the original polytope. An advantage of this 
minimization formulation is its indifference to the adjacency 
relations in the polytope. A correct adjacency structure is 
guaranteed by Minkowski’s original argument. 

The iterative reconstruction method terminated on the four- 
teenth step, when the value of the objective function f(L) had 
decreased by less than 0.002% on successive steps. The dis- 
tances of the planes vary on average less than 0.9% from the 
original; the maximum difference is 4.2%. 

The requirements of the reconstruction procedure can be 
factored into two components: the number of iterations 
required to find an acceptable solution and the number of 
operations per iteration. Each iteration requires O(n Ign) 
operations to compute the convex hull of the n dual points. In 
addition, O(n) operations are necessary to evaluate the 
volume. Each iteration thus requires O(n lgn) computations. 
The number of iterations depends on the constrained minimi- 
zation method used. The convergence rate of an iterative 
method is said to be linear if the error at step i, E, , satisfies 
the following formula: 

(4) 
‘--cc 16, I’ 

\ I 

where 7<1 and r=l. A reduced gradient method [Gill et al., 
19811 was implemented; its convergence rate is linear. When 
the exponent r in equation (4) is 2, the convergence rate is said 
to be quadratic. To achieve quadratic convergence, the Hes- 
sian matrix of V(L) or an approximation to the Hessian must 
be used, which requires O(n’) operations. Thus reducing the 
number of steps by improving the convergence rate requires 
expending more resources per step. 
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