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Abstract 

Evidence is prescnled showiug that bottom-up grouping of 
im&ge features is usually prerequisite to the recognition and 
in terprc tation of images. WC describe three functions of 
Ihcse groupings: 1) scgmcnlation, 2) three-dimcnsiomrl in- 
tcrpreta,tion, and 3) stable descriptions for accessjug object 
models. Scvernl principlcc J are hypothesized for dctermin- 
ing which image relations should be formed: relations are 
significant to the extent that they are unlikely to have arisen 
by accident from the surrounding distribution of features, 
relations can only be formed where there are few altcrna- 
tives within tilt same proximity, and relations must be based 
on properties which are invariant over a range of imaging 
conditions. Using these principles we develop an algorithm 
for curve segmentation which detects significant structure 
at multiple rcsofutions, including the linking of segments on 
the basis of curvilinearity. The algorithm is a.ble to detect 
structures \vhich no single-resolution algorithm could detect. 
Its j>crformance is demonstrated OR synthetic and natural 
image data. 

Introduction 

A major goal of computer vision research is to relate visual 
images to prior knowledge of their constituents, and thereby 
label and interpret them. However, current model- based 
vision systems have bceu demonstrated only in tightly- 
constrained cnvironmcnts with a few well-specified models 
to compare to the image [Z, 8, It]. The difficulty in ex- 
panding pcrTormnnce to more general domains is not one of 
ambiguity--it is very unlikely 1haL two different models will 
fully fit the same image data. Rather, the problem is one 
of searching for potential correspondences between models 
and the image, since increasing the number and gcncrality 
of the models results in an excessively large space of pos- 
sible mntchcs. Continued research into recovering three- 
dirncnsiorlal shnpc from imagesP-usiilg stcrco, motion, shnd- 
ing, md tcxlurc--promises to reduce lhc size of this search 
space considerably. However, the problem of matching is 
far from solved even when given full three-dimensional in- 
formation, and these methods fail to explain the cxccllent 
level of human performance in such simple domains as line 

drawings. 

In order to interpret images about which wc have little 
prior knowledge, it is necessary to use effect,ivcJ boltom-up 
techniques to structure and describe the image in a form 
that can be used to selectively index into n large body of 
world knowledge. In this paper we will describe methods 
for detecting and cva,luating the significance of relations be- 
tween image elements in a way that cm be applied uniformly 
to all images before we have any knowledge of their con- 
tents. Previous research on this and related topics has gone 
under such names as image segmentalion, perceptual or- 
ganization, figure/ground phenomena, texture description, 

and Gestalt perception. There have been many efforts to 
develop algorithms for specific scgmcntstion problcrns: such 
as the detection of collinearity or connectivity, but these 

have not been integrated and have often lackctl general ;~p- 
plicability. Marr’s inilial primal slcctch formulation [7] was 

intended to make some of these relations explicit, but this 
aspect of it was never fully developed. Recenlly, Wit,kin and 
Tenenbaum [12] h ave argued for the importance of detecting 
regularities and imposirlg structure on the irn;lgc for many of 
the same reasons given here. They describe a unified trcat- 
ment of inference b>:;cd on the assumption that regularities 
detected in the image are non-accidental. In this paper 
WC will describe Lhe role that this form of inference plays 
in model based recognition, develop some nnd~rlying prin- 
ciples for this level of interprct>.t,ioll, and prcscnt new seg- 
mentation methods b;v;ed up”n lhcsc principles. 

There are three valuable scurcps of irlformation which 
the bottom-up orgailixxtion of image features can provide, 
all of which simplify the problem of matching against world 
knowledge: 

1) A major reduction in the search space is achieved by 
segmentation -the division of the image inlo sets of 
related features. This hzs long been recognized as a 
crucial problem in image interpretation. we do IlGt 

want to match models against all possible cornhinations 
of features in an image, so good scgmrntat ion is crucial 
for reducing the combinatorics of this search. 

2) Two-dimcusional rrlations lead to specific three-dimcn- 
sional inter_:\rrtations, as we have described in previous 
pnpcrs [I, 51. For c:;amp!c, collinear lines in tilt image 
mu::t he co!lirlear in 3-sp.7cc, barring an accident of 

viewpoint. A corollary of ibis is thal thesr image rcla- 
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tions are normally invariant with respect to viewpoint, 
which greatly simplilies the problem of malching to 
three-dimensional objects of unknown orientation. 

3) To the extent that these relations are stable under 
different imaging conditions and viewpoints, they can 

be used as reliable index terms to access a body of world 
knowledge. Not only can the names of the relations be 
used, but in addition each relation will have several 
parameters of variation whose relative values in the 
image can be used. For example, collinear line segments 
can be characterized by the relative sizes of the seg- 
ments and gaps, which provides a viewpoint-invariant 
description that can be used to select a model for at- 
tempted matching. 

Note that all three of these points assume that the relations 
found in the image are a result of regularities in the ob- 
jects being viewed. This means that any relations which 
happen to arise accidentally from independent features will 
only confuse the interpretations. This distinction between 
significant and accidental relations is a point to which we 
will return. 

The importance of perceptual organization for 
recognition: A demonstration 

The importance of these grouping operations as a stage in 
the processing of images by the human visual system can 
be demonstrated by a straightforward psychophysical ex- 
periment. In Figure l(a) we have constructed a partial line 
drawing of a bicycle in such a way that most opportunities 
for bottom-up segmentation are eliminated (e.g., we have 
eliminated most cases of signilicant collinearity, endpoint 
proximity, parallelism, and symmetry). In informal experi- 
ments with 10 subjects who were told nothing about the 
identity of the object, this drawing proved to be rcmark- 
ably difficult to recognize. Nine out of 10 subjects were un- 
able to recognize the object within a 60 second time limit, 
and the tenth subject took 45 seconds. Note that this is in 
spite of the fact that the object level segmentation has al- 
ready been performed---the task would be even harder if the 
bicycle were embedded in a normal scene containing ma,ny 
surrounding features. 

Figure I(b) is the same drawing as in l(a) with only 
a single segment added. The added segment was placed in 
a strategic location which would allow it to be combined 
with other segments in a curvilinear grouping. The center 
of this circular grouping would then be coincident with the 

termination of another segment, leading to further group- 
ings. As might be expected if we assume that bottom-up 
groupings play an important role in recognition, the recog- 
nition times for this second figure were dramatically lower 
than for the first, with 3 out of 10 subjects recognizing it 
within 5 seconds and with 7 out of 10 subjects recognizing it 
within the 60 second time limit. Presumably, if the added 
segment had been placed at some location which did not 
lend itself to perceptual groupings the change in recognition 
times would have been negligible. 

These figures can also be used to demonstrate the 
human capability to make use of top-down contextual in- 
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Figure 1: When opportunities for bottom-up grouping of’ image 
features have been removed, as was done for the line drawing of 
a bicycle in (a), the drawing is remarkably difficult to recognize. 
The average recognition time for (a) was over one minute when 
the subjects had no prior knowledge of the object’s identity. 
When a single line segment was added in (b), which provided 
local evidence l’or a curvilinear grouping, the recognition times 
were greatly reduced. 

formation to limit the search space for forming a match. 
As was demonstrated in expcrirnents performed as early as 
1935 [3], verbal clues naming even vague non-visual object 
classes can greatly reduce the recognition time. Subjects 
can usually interpret Figure l(a) immediately upon being 
told that it is a bicycle. Thus this figure is on an inter- 
esting borderline where either bottom-up or top-down in- 
formation can suddenly reduce the search space and lead 
to recognition. One can imagine a series of expcrirnents 
that would systematically explore this search space and the 
reduction in its size created by different botlorn-up or top- 
down clues. These figures can also be used to demonstrate 
the hunran eqlrivalcnt of a back-projection algorit,hrn [(I] fol- 
lowed by image-level matching, where ccr(.n.in hypothesized 
partial matches cm bc used to solve for the position, oricn- 
tation, and internal parameters of the model, which in turn 
lead to accurate predictions for further nlatxhrs at specific 

locations in the image. 



Principles of segmentation 

There are virtually an infinite number of rclalions that could 
be forrncd bctwccn Lhc elements of any image. What general 
principles can we dcrivc for selecting those relations which 
arc worth forming and for measuring their significnnce? As 
was rrlcntioncd earlier, scgnlcntations are useful only to the 
CXI cnt that they rcprcspn t actual struct,urc of the scene 
rather than accidental align rncn ts. Therefore, a central 
funcLioll of the segmentation process must be Lo distinguish, 

as accurately as possible, significant structures from those 
which have arisen by accident. All of the relations we have 

considered call arise from accidents of viewpoint or random 
positioning as well as from structure in the image. However, 

by rxarnining the accuracy of each relation and the sur- 
rounding disLribution of featrtrcs in the image, it is possible 
to give probabili~;l,ic measures of the likelihood that any 

given relation is accidental. These nonrandomness meaSsures 

can then bc used as the basic test for significance during the 
segmentation process. 

If there were a significant level of prior knowledge 
regarding the expected distributions of features and rela- 
tions, this could be used for judging the significance of seg- 
mcntations. However, the range of common images seems 
to be so wide that any prior knowledge at this levcll must be 
very weak. We have chosen to carry out our computation 
of signi6cancc with respect to the null hypothesis that fca- 
tures are independent with respect to orientation, location, 
and scale. Significance is then inversely proportional to the 
probability that the relation would have arisen from such 
a set of independent features. It is a matter for psychologi- 
cal experimentation to see whether the human visual sys- 
tem is biased in any direction from this independence as- 
sumption. But since a scene typically contains many inde- 
pendently positioned objects (leading to independence with 
respect to orientation, location, and scale in the image), the 
discrimination of relations with respect to this background 
seems like a reasonable criterion for judging significance. 

A second major principle of scgmcntation is that each 
operation must have limited computational complexity. It 
is obviously impossible to test all combinations of features 
in an image, so the rclat,ions can only be formed over dis- 
tances that do not include too many false candidates of the 
particular type being examined. Figure 2 shows an example 
in which a highly significant grouping of five equally-spaced 
collinear dots is not apparent to human vision when there 
are enough surrounding false targets. It would presumably 
be USC~III for the purposes of intcrprctlation and rccogni- 
tion to detect such a statistically significant grouping, so 
this failure must be aI,1 ributablc to a lack of computational 
resources. This does not mean that groupings are diameter- 
limited in any absolute sense, since groupings can be at- 
tempted at many different scales; however, if there are more 
than 2. few false candidates at some scale, then no groupings 
can be formed at that scale of description. 

The principles above describe which groupings will bc 
formed and how they will be evaluated for a given class of 
relations, but they do not specify which classes of relations 
will bc attempted. There arc several factors which influence 
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Figure 2: The pattern of five equally-spaced collinear dots in (a) 
is not detected spontaneously by human vision if it is surrounded 
by enough competing candidates for grouping within the same 
proximity, as in (b). Th is occurs even though the relation remains 
highly significant in the et L) atistical sense and would thcrcfore 
likely be of use for recognition. 

this choice. One important factor is the same imaging- 
invariance condition that was mrnt ioned earlier--- it is only 
wort,h looking for irn:lge relations which do not depend on 
a specific viewpoint, light-source position, or other irnage- 

formation paramct,cr. For example, collinearity is useful 

because it is present in the image over all viewpoints of 

collinearity in the scene. But it would be pointless to detect 
lines at right-angles in the image, since even if right-angles 

are common in the scene the angle in the image would 
change with almost any change in viewpoint. Witkin and 
Tenenbaum [12] argue that prior probabilities play a role 
in selecting which relations are the easiest to distinguish 

from accidentals, and should therefore be attempted. If 
some relation arises only very rarely from the structure of 

typical scenes, then it is more likely that some instance of 
the relation in an image is accidental (although it would still 
be possible to distinguish the relation from accidentals given 
accurate-enough image measurements). Of course, it is also 
less productive to devote resources searching for properties 
which seldom arise than for those which are common. 

An algorithm for curve segmentation 

A significant bottleneck in creating a computer program 
which can perform these bottom-up perceptual processes on 
natural images is the problem of creating appropriately seg- 
mented edge descriptions. The best current edge operators 
detect “edge points” which are then linked using ncarest- 
neighbor algorithms into lists of points. Although there 
has been considerable research into the problem of fitting 
smooth curves to these lists of points [9, 10, 111, almost 
without exception these efforts have concentrated on a single 
pre-selected resolution of segmentation and have attempted 
merely to smooth out noise induced by the imaging process. 
(We use “resolution” in the context of curve segmenta- 
tion to refer to the allowable transverse deviation from 
the smoothed curve description.) Although these smoothed 
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results may appear reasonable to the naive human eye, 
that is because the human visual system can still perform 
the lower resolution groupings even though they have not 
been detected and described by the program. Figure 3 il- 
lustrates the problem, where the segmentation in Figure 
3(b) is adequate to recognize one instance of collinearity, 
but other groupings are only apparent when lower resolu- 
tion structures arc recognized as in Figure 3(c). We have 
developed a new algorithm, based on the principles of seg- 

mentation outlined earlier, which measures the degree of 
nonrandom structure in edge-point lists over a wide range 

of resolutions and selects the most significant structures for 
the curve description. In our implementation, we examine 
all groupings which are either linear or of constant curva- 

ture. These can be splincd to represent arbitrary smooth 
curves, although it is possible that human vision includes the 

detection of more general primitive curve groupings, such as 

spirals. 

Measuring the significance of a curve segmentation 

The first task in developing a segmentation algorithm 

is to determine how we will measure the significance of 
each grouping. In this case, since the points were originally 
linked on the basis of proximity, we must be careful not to 
confuse nonrandomness in proximity with the measurement 
of nonrandomness in linearity. For example, if we start by 
looking at a set of only three points, we might measure the 
significance of their linearity by measuring the distance of 
one point from the line joining the other two. However, 
this would confuse the effects of proximity with those of 
linearity, since by being close to one of the other points the 
third point would automatically be close to the line on which 
they lie, as is shown in Figures 4(a) and 4(b). Therefore, we 
have chosen to define nonrandomness in linearity to be how 
unlikely a point is to be as close as it is to a curve given its 
distance from the closest defining point of the curve. This 
is equal to 20/n, where 8 is the angle between the curve 
and the vector from the closest endpoint, as shown in 4(c). 
This can be extended to 4 or more points by recursively 
looking for the point which is farthest away from any of 
the points considered thus far and calculating the likelihood 
for that point in terms of its minimum proximity to these 
previously considered points. Since these likelihood values 
are independent, they can be multiplied together to produce 
an overall value for the curve. 

Testing all possible groupings 

Given this significance test for sets of points, we want to 
divide the initial linked list of points into segments which 
have the highest significance values. Previous methods of 
curve segmentation have usually attempted to search for 
corners (tangent discontinuities) on a curve, where the curve 
can bo divided into different segments. Our approach is 
the dual---WC look for segments of the cwve which exhibit 
significant nonrandomness, and tangent and curvature dis- 
continuities are assigned to the junctions between neighbor- 
ing segments. In contrast to the earlier approaches, our 
method will fail to assign any segmentation where the curve 
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Figure 3: The data in (a) can be segmented at at least two 
different resolutions of description, as shown in (b) and (c). One 
instance of collinearity can only be detected in segmentation (b) 
while the other instance of collinearity and the parallelism can 
only be detected straightforwardly in (c). 

F’igure 4: The middle dots in (a) and (b) are both the same 
distance from the dashed line joining t,he other two dots. Yet 
the three dots in (b) are much more significant in terms of their 
collinearity than those in (a), since the middle dot in (a) could 
be close to the line merely as a result of its proximity to the first 
endpoint. Therefore, we measure the probability of a l)oint being 
within a given distance from a line in terms of its proximity to 
the clo.;est endpoint defining the line, as shown in (c). 
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Figure 5: The small 30 by 45 pixel region of an aerial photograph 
shown in (a) was run through the Marimont edge detector to 
produce the linked edge points shown in (b). lcigure (c) shows all 
the segments at different scales and locations v;hich were tested 
for significance. After selecting only t’hose sc;mrnts which were 
loca!ly rnaximurn with respect to size of grouping, and threshold- 
ing out those which arc not statistically significant, we are left 
with the segments shov~n in (d). It is t.hen fairly simple ho form 
collinearity and curvilincarity relations between t!rese scgrnents 
as shown by dotted lines in (e). 

Figure 6: The hand-input curves in (a) have been created to cx- 
hibit significant structure at multiple resolutions. When these are 
given as data to the curve segmentation algorithm, it produces 
the results shown in (b), which makes these multiple levels of 
structure explicit. 
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appears to wander randomly at all resolutions, and will as- 
sign multiple segmc;ltxtions whcro it exhibits diCfercr;t struc- 
turc at diffcrcnt resolir Lions. 

It would clearly bc too costly to test every possible 
scgmcnt of the curve for nonrandomncss. Ilowcvcr, if we 
allow a rcasonal~le margin of error, it is possible to cover 
all scales and locations with a relatively small number of 

groupings. We examine groupings at all scales differing by 
factors of two, from groupings of only three adjacent points 

up to groupings the size of the full length of the curve 
(amounting to 6 scales for a curve of 100 points). At each 
scale, we examine groupings at all locations along the curve, 
with adjacent groupings overlapping by 50%. This means 

that any given segment of the curve will have at least one 
grouping attempted which covers 50% of its length but does 
not extend outside its borders. 

After measuring the significance of each grouping, a 
thinning procedure is executed which steps through the 
different resolutions at each location along the curve and 
selects only those segmentations which arc locally maximum 
in their signilicancc values. It is possible that there will be 
more than one local maximum if the curve exhibits different 
structures at different resolutions of grouping. There is also 
a t,hreshold at the 0.05 significance level, below which group- 
ings are not considered significant. 

The algoriLhm in action 

This algorithm have been implemented in MA~I,ISF’ on a KL- 
10 computer and tested on synthetic data as well as edges 
derived from natural images. Figure 6(a) shows some hand- 
drawn curves which exhibit different structures at different 
resolutions, much as was shown in Figure 3. Figure G(b) 
gives the output of the curve segmentation algorithm when 
given this data, a,nd demonstrates the algorithm’s ability to 
dctcct significant structure at multiple resolutions--results 
which no single-resolution algorithm could have produced. 

Figure 5 shows the results of running the algorithm on 
a small 30 by 45 pixel region of an aerial photograph of an 
oil tank facility. The original digit,ized image is shown in 
5(n). Figure 5(b) h s ows some linked edge data generated 
from this image by an edge detection program written by 
David Marimont (61, which dotccts edge points to subpixcl 
accuracy and links them into lists. Figure 5(c) shows all the 
groupings at all resolulions, although the widely differing 
significance values are not apparent. Figure 5(d) shows the 
results after the thinning process which sclccts local ma.xima 
with respect to resolution. Given these :;cgmcnts, it is rela- 
tively easy to form collinearity and curvilinearity relations 
between them as shown by the dotted lines in Figure 5(c). 
It would also he fairly straightforward to detect endpoint 
proximity, parallelism, constant intervals, and other perccp- 

tusl groupings. 

Summary 

We began this pa.per by demonstrating the importance of 
bottom-up perceptual organization for human vision. These 
image relations play a major role in limiting the size of the 
search space that must be considered when matching against 

world knowledge. The unifying principles of detecting non- 

random structure, avoiding combinatorial complexity, and 
looking for viewpoint-invariant relations were suggested. An 
algorithm for curve segmentation, based upon these prin- 
ciples, was dcvclopcd and demonstrated. There arc many 
other problems besides recognit,ion in which these groupings 
would be useful. An example is the stereo correspondence 
problem, since to the extent that these image relations rep- 
resent structure in the scene and arc invariant with respect 
to viewpoint, they will be detected in images taken from 
different viewpoints. 

The specific algorithms developed arc preliminary im- 
plementations of the general methodology of segmenting 
pcrccptual data by looking at groupings over a wide range of 
scales and locations and retaining those which are the most 
unlikely to have arisen by accident from the background 

distribution. This same methodology could be applied to 
a wide range of other pcrccptual segmentation problems or 

signal analysis. 
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