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ABSTRACT 

This paper describes a model-based approach to 
interpreting laser range imagery. It discusses the 
object modeling, model-driven prediction, and 
feature-to-model matching aspects of the problem. 
The model objects are represented by a viewpoint- 
independent volumetric model based on generalized 
cylinders. Predictions of 3-D image features and 
their relations are generated from object models on 
multiple levels. These predictions give guidance 
for goal-directed shape extraction from low level 
image features. Interpretation proceeds by compar- 
ing the extracted image features with object models 
in a coarse to fine hierarchy. Since the 3-D 
information is available from the range image, the 
actual measurements are used for feature-to-model 
ma tch ing . A limited prototype system has been 
developed, preliminary results on prediction and 
interpretation are shown, and future research 
directions are discussed. 

I INTRODUCTION 

Range images offer signif icant advantages over 
passive reflectance images because they preserve 
the 3-D information of the scene viewed from the 
sensor. While 3-D information can be obtained from 
2-D images only with extensive inference (due to 
the ambiguities introduced by the 2-D projection of 
the 3-D scene and the additional effects of illumi- 
nation, surface reflectivity, and geometric shape), 
they can be easily calculated from 3-D range 
images. Therefore, range data is becoming an 
increasingly important source of information for a 
variety of applications including automatic 3-D 
target classif ication, autonomous vehicles, robot 
vision, and automatic inspection. In this paper we 
discuss 3-D object recognition for vehicle objects 
in air-to-ground laser range imagery. 

Much of the past work on range data analysis 
has emphasized a data-driven approach [51, 171. 
The ACRONYM system [21 is a powerful model-based 
vision system capable of doing symbolic reasoning 

Research sponsored by the Air Force Office of 
Scientific Research (AFSC), under Contract F49620- 
82-C-0071. The United States Government is author- 
ized to reproduce and distribute reprints for 
governmental purposes notwithstanding any copyright 
notation herein. 

among 3-D models and 2-D images. In this research, 
we have attempted to extend the principles of the 
ACRONYM approach to the analysis of 3-D imagery. 

This paper describes a model-based approach to 
interpreting laser range imagery. The full system 
includes 3-D image feature extraction, geometric 
object modeling, model-driven prediction, and image 
feature-to-model matching. The overal 1 structure 
of the system is shown in Figure 1. Further dis- 
cussion of this system is provided in [4]. The ex- 
traction of low level 3-D image features from the 
range data was previously reported in [31. This 
paper emphasizes the object modeling, model-driven 
prediction, and image feature-to-model matching as- 
pects of the system. 

In the geometric modeling system (see Figure 
11, object models are represented by a single, 
viewpoint-independent representation based on gen- 
eralized cylinders. Model priority index informa- 
tion and attachment relations are explicitly speci- 
fied in the models to facilitate 3-D image feature 
prediction and extraction. The prediction process 
predicts physical edge types (occluding, convex, or 
concave edges), surface properties (planar or 
curved), cylinder contour, cylinder obscuration 
(visible, occluded), and invariant shape properties 
(parallel, collinear, connectivity). These 
knowledge-based predictions are on multiple levels 
and are very powerful for directing the feature ex- 
traction algorithms’ search for particular features 
in a limited region. The object classification 
task proceeds from coarse to fine by first compar- 
ing gross object features (e.g., object length, 
height, extreme points, etc.) and then finer com- 
ponent features (e.g., cylinder volume, position, 
orientation, etc. > extracted from laser imagery 
with a model using a set of rules that produces a 
likelihood value to indicate the goodness of match. 
Since the 3-D information are available from the 
range image, the actual measurements (e.g., length, 
width, volume) are used for matching. 

II MODEL REPRESENTATION 

The system uses a viewpoint-independent 
volumetric representation for 3-D object modeling. 
The volume primitives we use are generalized 
cylinders [l 1. A generalized cylinder is defined 
by a space curve, called the axis, and planar 
cross-section functions defined on the axis. A 
complex object is represented in terms of a set of 
individual cy linder s and their spatial relations. 
The 3-D object model has a hierarchical representa- 
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Figure 1 : Major Components of a 3-D 
Object Classification System 

with coarse to fine details that enables suc- 
cessful refinement of analysis and also provides a 
prediction generation mechanism at multiple levels. 
These levels might include the scene, object, com- 
ponent and sub-component levels. Figure 2 shows 
the models of a missile launcher and a missile 
launcher decoy at the component detail level. 

The components (cylinders) in the same model 
detail level may vary in importance for recognizing 
the object. For example, the gun barrel of a tank 
is unique in vehicle models and provides sufficient 
evidence to distinguish a tank from a truck or oth- 
er vehicles. Therefore, to recognize a tank, we 
may first look for the gun barrel in the image. 
This kind of knowledge for goal-directed feature 
extraction is explicitly represented in our object 
models by using a model priority index. Another 
aspect of the model priority index is determined by 
the geometric properties of each cylinder. For ex- 
ample, elongated cylinders and large cylinders show 
distinct cylinder properties that are easy to dis- 
tinguish from other cylinders. These distinguished 
pieces can be used for fast model access and selec- 
tion. The model priority index is viewpoint- 
independent and provides a mechanism for efficient 
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Figure 2: 3-D Models of a Missile Launcher 
and a Decoy 

model access and selection. However, this index 
does not give us any information about the visibil- 
ity of the cylinder or the ease of cylinder extrac- 
tion. 

Shapes that are occluded are generally more 
difficult to extract from images. This knowledge 
can be used to direct the feature extraction a lgo- 
rithm to look for reliable and easy to obtain 
features first. This kind of planning information 
is encoded in an obscuration priority index that 
indicates the occlusion and visibility relations 
among cy linder s . The obscuration priority index is 
similar to the priority algorithm [6l used for hid- 
den surface elimination. The idea is to arrange 
all cylinders in the scene in priority order based 
on their depth and obscuration relations. 
Cylinders closer to the viewpoint and not obscured 
bY other cylinders will have higher priority in- 
dices. Cylinders that are totally obscured are ex- 
plicit ly indicated, and no effort will be spent 
trying to find them in the range image. This ob- 
scuration priority index is purely geometrical and 
determined from the object orientation and 
viewpoint. The combination of model priority index 
and obscuration priority index gives a new priority 
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order that not only indicates the importance of a 
particular cylinder for object recognition, but 
also compares the ease of cylinder extraction in 
the range image. Due to the performance limitation 
on occluded cylinder extraction, we currently use 
the obscuration priority index as the base index 
for cylinder extraction and matching. If two 
cylinders have the same obscuration priorities 
(they don’t obscure each other), then the model 
priority indices are compared to determine the ord- 
er of feature extraction sequence. In general, the 
priority index is valid for an interval of the 
viewing angle and thus can be used based on rough 
object orientation estimates. 

Physical edges such as occluding, convex and 
concave edges can be distinguished in the range im- 
age. The prediction of the physical edge types of 
a cylinder contour strongly constrain the possible 
interpretations of each edge segment. In order to 
use information, our models should have the capa- 
bility to predict the types of physical edges. To 
do this, the attachment relations between cylinders 
in the object are explicitly specified. The 
specification of these attachment relations facili- 
tates the prediction of physical edge type and will 
be discussed in more detail in the edge level pred- 
iction section below. 

III MODEL 

Prediction is the process of making estimates 
about the image appearance of objects using model 
knowledge and given some information about the ob- 
jects’ relative position, orientation, and shape in 
the image. Predictions first give guidance to im- 
age feature extraction processes for goal-directed 
shape extraction; then they provide mechanisms for 
feature-to-model matching and interpretation. The 
best features for prediction are those invariant 
features that will always be observable in the im- 
age independent of the object’s orientation and 
sensor position. Examples of these invariant 
features in range imagery are physical edge type 
(i.e., occluding, convex , concave), surf ace type 
(planar, curved), cylinder contour edge We (oc- 
cluding or concave), collinear and parallel rela- 
tions and connectivity. 

The prediction process proceeds hierarchically 
in a top-down fashion. Global object features and 
spatial relations among object components viewed 
from the sensor are first predicted. These include 
the object side-view characteristics, and the ob- 
scuration priority index. From the obscuration and 
model priority indices, the system chooses a 
cy linder with the highest priority. The occluding 
contour of this cylinder is identified and the phy- 
sical edge types of the cylinder contour boundaries 
are predicted. At the cylinder contour level, 
there are only two types of edges, occluding and 
concave. The convex edge only occurs as the inter- 
nal edge of a cylinder, hence it is irrelevant in 
the cylinder-level feature prediction and extrac- 
tion. Once a cy linder is extracted, its volume 
properties and relative position and orientation to 
the object coordinate system are used for interpre- 
tation. If this information is not sufficient for 
target classification, the cylinder contour of the 
next highest priority cylinder is predicted. The 

same procedure continues until the object recogni- 
tion task is achieved or all the object components 
have been examined. Details of these predictions 
developed for different levels are discussed in the 
following paragraphs. 

A. Object-Level Prediction 

The object level predictions provide global 
object features and spatial relations among object 
components viewed from the sensor. Examples are 
the dimensions and side-view characteristics of the 
object in the image, the spatial relationships 
between object components and the occluding rela- 
tions among object components. The structural re- 
lationships (object-level prediction) can be used 
for global structure matching after we extract and 
analyze the individual cylinders of an object or it 
can be used similar to a junction dictionary [Sl to 
guide the search of cylinder features. For objects 
with self-occlusion, the second approach may be 
more appropriate because structural knowledge is 
actively used for both occluded cylinder feature 
extraction and interpretation. 

B. Cylinder-Level Prediction 

Cylinder- level predictions provide goal- 
directed guidance for cylinder extraction from low 
level image features. This is the most important 
prediction level in the system because cylinders 
are the basic symbolic primitives used to perform 
image feature-to-model matching. 

A generalized cylinder is hierarchically 
characterized by first defining its axis and then 
the cross-sections along the axis. For totally 
visible cylinders (cylinders with a high obscura- 
tion priority index), cylinder level prediction is 
accomplished by using the hierarchy in defining 
generalized cylinders. The properties of the two 
major cylinder boundaries along the cylinder axis 
are first predicted. These predictions include 
parallel relations (relative angles in general), 
physical edge types (concave, occluding), length, 
distance between two segments, and the extent of 
overlap. These predictions are sufficient to guide 
the coarse extraction of cylinders. After extract- 
ing the two major cylinder boundaries along the 
axis, other boundaries on the cylinder contour can 
be predicted in limited regions relative to the two 
major boundaries. Heuristic rules utilizing con- 
vexity, neighboring relations, the goal distance, 
and relative position information are used to find 
the complete cylinder contour from incomplete edge 
segments. A complete example will be given in the 
processing example section. 

Due to the internal structure of the vehicle 
objects, most cylinders are partially obscured. 
The prediction of occluded cylinder contours in the 
image can be generated by polygon clipping algo- 
rithms [91 according to the obscuration priority 
index. Again, the same hierarchical cylinder ex- 
traction process can be used. Additional relations 
on the two major boundaries such as missing seg- 
ments due to occlusion and co1 linear relations 
between disjoint segments can also be identified. 
In addition, the relative structural relations of 
the extracted cylinders (with higher obscuration 
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index than the current cylinder) constrain the 
search region. The common boundaries between the 
current cylinder and the previously extracted 
cylinders can be used as landmarks for registra- 
tion. We have not implemented this partially oc- 
cluded cylinder extraction a lgor i thm and it re- 
quires further research efforts. 

C. Surface-Level Prediction 

Surface-level predictions describe the 
cylinder surface appearances and their spatial re- 
lations in the image. The convex edges are useful 
at this level for grouping edges into the boun- 
daries of a surface patch. These surface primi- 
tives can be grouped together to form a cylinder 
according to surface-level predictions from the 
model. Due to the low resolution nature of air- 
to-ground laser imagery, surface properties are not 
easy to extract and to use (sometimes a single sur- 
face patch only has a few points). However, for 
industrial applications where high resolution range 
images are available, surface-level predictions im- 
pose strong constraints on cylinder extraction. 

D. Edge Level Prediction 

Edge-level predictions assign physical edge 
types to each edge segment and thus strongly con- 
strain the possible interpretation of each edge 
segment for cylinder contour extraction. 

Prediction of the physical edge type of a 
cylinder contour is made possible by explicitly 
specifying the attachment relations between 
cylinders in the model. For examp le, if cylinder A 
is supported by cylinder B, the two touching faces 
of the cylinders are explicitly labeled in the ob- 
ject model. The occluding edge type is predicted 
for those cylinder contour segments that do not be- 
long to a labeled face. The concave edge type is 
predicted for those segments that belong to a la- 
beled face, and are inside the other surfaces with 
the same label. The convex edges correspond to the 
internal edges of cylinders, and thus are not use- 
ful for cylinder extraction. The physical edge 
type limits the search space for cylinder grouping, 
but more importantly, it can be used to verify the 
correctness of the extracted cylinder. 

INTERPRETATION 

Interpretation proceeds by comparing the image 
features on multiple levels to the object models 
according to a set of if-then rules. Each rule for 
comparison produces a “goodness” measure of the 
system’s confidence in how well the two features 
match. If a single object model has a much larger 
likelihood than others, the target in the range im- 
age is classified as an instance of that object. 
Besides the classif ication of the object, object 
position and orientation information are also 
available and can be used for higher level scene 
interpretation. 

The set of rules for interpreting image 
features in terms of models can be divided into two 
classes according to the level of detail they com- 
pare. The first class of rules looks for general 
features and global characteristics; i.e., the 

object-level features such as the object length, 
width, and height. Since the 3-D surface data can 
be obtained from the range image through a coordi- 
nate transformation, the actual length measurements 
are available and can be compared directly with the 
true model parameters. A typical rule for object 
length matching is shown in the first rule of Fig- 
ure 3. The rule assigns a negative likelihood to 
models that exceed the tolerance interval and 
prunes these objects from further consideration. 
For those object models within the tolerance inter- 
val, the rule returns a likelihood value as the 
goodness measure. Another set of general features 
is the extreme positions of the image object. For 
example, the lowest components of a truck are its 
wheels. The second rule in Figure 3 is one exam- 
ple. Other extreme positions such as the heights 
of the front and rear points of the side-view pro- 
jection image can also be used for comparison. 
‘Note that these rules are domain-independent and 
can be derived from the object models. 

1. Object Length 

if - ILENGTH( 

then -.5 

else 

EATURE) - LENGTH(MODEL)I > DELTA 

LENGTH(FEATURE) - LENGTH(MODEL)I 
LENGTH(MODEL) 

2. Minimum Height Point Location 

if #POINTS(MIN.REAR.HEIGHT(MODEL)) > 0 

- #POINTS(MIN.REAR.HEIGHT(FEATURE)) > 0 and 

then -5 

else .-5 

3. Relative Cylinder Orientation 

if - IRELATIVE ORIENTATION(FEATURE) - 

RELATIVE-;RIENTATION(MODEL)I > THETA 

then -0.5 

else 0.3 

Figure 3: Example Interpretation Rules 

The second class of rules compares finer ob- 
ject details at the cylinder level. The system 
first tries to extract a single cylinder from the 
range image by some heuristic rules and predictions 
of invariants (e.g., antiparallels, angles). Once 
a cylinder is extracted, 
(length, width, length, and 

its 3-D properties 
volume) and relative 

position and orientation in the object coordinate 
system are compared with the model. These 
cylinder-level features not only provide finer de- 
tail for feature-to-model matching, but also put 
strong constraints on the internal structure of the 
object. These constraints are often sufficient to 
make a unique interpretation of the image object. 



V PROCESSING EXAMPLE 

To assess the feasibility and capability of 
rule-based interpretation for classifying vehicle 
targets from extracted 3-D features, a sample set 
of rules was developed and tested on extracted 3-D 
image feature information obtained by using the 
techniques described in [31. A synthetic laser 
range image of a missile launcher decoy is shown in 
Figure 4. This image has size 64x64 and is provid- 
ed by The Analytic Science Corporation. The sensor 
viewing angle is known, but nothing is assumed 
about the decoy’s orientation. The approach used 
for 3-D feature extraction is to first transform 
the range image (in a sensor-centered coordinate 
system) to the surface data (in a world coordinate 
system) from knowledge of the sensor position. The 
object is then separated from the background by an 
object-ground segmentation algorithm. Once the ob- 
ject segment is extracted from the image, the 
ground projection and side-view projection images 
of the object segment are generated. These projec- 
tion images are useful for extracting gross object 
features and major object structures. The object 
orientation can be estimated from the orientation 
of the ground projection image, since vehicle tar- 
gets are usually elongated. The side-view projec- 
tion image can be used to locate major object 
structure positions such as wheel and missile posi- 
tions of a missile launcher. After extracting 
those global features, a 3-D edge detection algo- 
rithm is used to extract physical edge segments for 
fine feature-to-model matching. Our 3-D edge 
feature extraction algorithm directly calculates 
the physical angle of the object surface from sur- 
face data. Convex and concave edges can be dis- 
tinguished according to the value of the physical 
edge angle. This physical edge angle image is not 
only useful for physical edge detection, but also 
provides relative surface orientation information 
for extracting planar and curved surfaces. The ex- 
tracted occluding edge segments (in solid line) and 
concave edge segments (in dashed line) are shown in 
Figure 5. 

Figure 4: Synthet ic Range Imagery 
Missile Launcher Decoy 

Figure 5: Line Segments of Occluding and 
Concave Edges of Figure 4 

The rules are then applied to compare this ex- 
tracted feature information with two vehicle 
models. These were a missile launcher and a decay. 
They are chosen because their similarities in size 
and structure make the selection and correct clas- 
sif ication a non-trivial task. The results are 
shown in Figure 6. The first three rules check the 
object’s length measurements and the system prefers 
the decoy slightly. No classification can be made 
at this stage. The second set of rules checks the 
general features of each model and tries to resolve 
the object’s front and rear ambiguity since we are 
not sure which end of the image feature is the 
vehicle front. Reasonable classification is 
achieved at this level. These seemingly simple 
rules are able to classify similar objects as a 
result of rich 3-D information provided by the 
range data. 

RULE MISSILE LAUNCHER DECOY 

OBJECT LENGTH .443 ,489 

OBJECT WIDTH .418 ,499 

OBJECT HEIGHT .400 .489 

SUBTOTAL 1.261 1.477 

MINIMUM HEIGHT 
LOCATION 

OBJECT FRONT 
EXTREME HEIGHT 

OBJECT REAR 
EXTREME HEIGHT 

TOTAL 

FRONT REAR FRONT REAR 

.5 -. 5 

-. 5 -. 5 

-. 5 -. 5 

.711 -.239 

.5 -.5 

.48 .48 

.46 .46 

2.917 1.917 

Figure 6 : Likelihood Weights Associating 
Rules and Object Models 
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If the gross object features and major struc- 
tures do not provide sufficient evidence for clas- 
sification, the system tries to extract finer de- 
tails at the cylinder level based on model predic- 
tions. The cylinder extraction algorithm finds the 
major cylinder boundaries along the cylinder axis 
by using the prediction that these two segments 
will appear parallel in the image and that one of 
them is a concave edge. This prediction constrains 
the possible edge segments for the major cylinder 
boundaries. The cylinder extraction algorithm suc- 
cessfully finds that two edge segments (with labels 
A and B in Figure 5) satisfy the cylinder predic- 
tion and that they have a significant amount of 
overlap between them. Using these two edge seg- 
ments as two sides, the cylinder extraction algo- 
rithm tries to find the complete cylinder contour. 
It first determines the direction of edge segment B 
(a concave edge can have two edge directions) from 
the direction of edge segment A (occluding edge) 
and decides that B should be used as an occluded 
edge for the cylinder we consider. Then it labels 
one end point of segment A as the starting point 
and one corresponding end point of segment B as the 
goal point (in the correct case, the goal point is 
closer to the end point of segment B). The algo- 
rithm starts from the starting point and searches 
for nearby edge segments with the correct direc- 
tion. If one nearby edge segment has the correct 
direction and is of sufficient length, heuristic 
rules are used to decide whether to include the 
segment in the cylinder contour. Examples of these 
heuristics are: 1) the convexity rule for checking 
the convexity of the cylinder contour angle and 2) 
the goal distance rule for avoiding the new start- 
ing point being too far away from the goal point 
( compared to the distance between the previous 
starting and goal points. The algorithm proceeds 
until the new starting point is the goal point. 
Then the algorithm defines the other end point of 
segment A as the starting point and the other end 
point of segment B as the goal point and starts 
over again. This cylinder extraction algorithm 
successfully finds a complete cylinder contour from 
the edge segments. The length, width, and height 
of this cylinder are then extracted by the same 
techniques used for gross object feature extraction 
on the object level. These features strongly res- 
trict the possible object models for matching. Fu- 
tur e research efforts are required to extend this 
hierarchical cylinder extraction algorithm to deal 
with partially occluded cylinders as discussed in 
the cylinder-level prediction section. 

VI CONCLUSIONS 

A limited prototype system for range image in- 
terpretation has been developed. Important issues 
on 3-D image feature extraction, model representa- 
tion, prediction, and interpretation are discussed. 
Directions for future research on occluded cylinder 
extraction and prediction are proposed. Because 
the approach is domain-independent and somewhat in- 
dependent of the types of range sensor used, it can 
be applied directly to other applications such as 
robot vision and autonomous vehicles. 
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