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Collision free motions for a manipulator with revolut,e 
joints (e.g. a PUMA) are planned through an obstacle littered 
workspace by first describing free space in two ways: as freeways 
for the hand and payload ensemble and as freeways for the up- 
perarm. Freeways match volumes swept out by manipulator 
motions and can be “inverted” to find a class of topologically 
equivalent path segments. The two freeway spaces are searched 

Dl;lrlipUliItbrS. Schwarl 7. arltl S!l:lrIlir [198Z] h;r\‘r c!c,rrlon’;l rnt(sd 
the cxist,ence of a polyilornial algorithm for a gc>rlcral hinged 
device. Unfortunately the best known time bound for the algo- 
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I. Z_ntroduction 
A key component of automatic planning systems for 

robot assembly operations is a gross motion planner for the 
manipulator and its payload. Motions of the manipulator should 
avoid collisions with obstacles in the workspace. 

In this paper we present an new approach to collision free 
planning motions for a manipulator with revolute joints (e.g. 
a PUMA). It is based on a method presented at AAAI-82 
for planning motions for a polygon through a two dimensional 
workspace (Brooks (1983a)). 

Free space is described in two ways: as freeways for the 
hand and payload ensemble and as freeways for the upperarm. 
Freeways mat,ch volumes swept out by manipulator motions and 
can be “inverted” to find a class of topologically equivalent path 
segments. The two freeway spaces are searched concurrently 
under projection of constraints determined by motion of the 
forearm. The sequence in figure 1 illustrates a path found by 
the algorithm. 

A key characteristic of our solution is that it solves a 
richer class of problems than merely finding safe paths for a 
manipulator with payload. On failure it can provide informa- 
tion to a higher level planner on how to alter the workspace so 
that it can find a solution to the new problem. 

rithm for a six degree of frcctlorn mariipulalor is O(n6’) where 
n is polynomially dependent on the number of obstacles. The 
algorithm is of theoretical interest only. 

Practical algorithms have been few, and fall into two 
classes. 

1. Lozano-Perez [1981, 19831 restricted attention to car- 
tesian manipulators. The links of the manipulator can not 
rotate and so the joint space of the manipulator corresponds 
exactly to the configuration space for rnotion of the payload 
alone. 

2. Udupa [1977] and Widdoes [1974] presented methods for 
the Stanford arm. Both rely on approximations for the payload, 
limited wrist action, and tesselation of joint space to describe 
forbidden and free regions of real space. The problem with 
tesselation schemes is that to get adequate motion control a 
multi-dimensional space must be finely tesselated. 
B. The problem to be solved 

The algorithm presented below is not a complete solution 
to the find-path problem. It is restricted in the following ways. 

We find paths where the payload is moved in straight lines, 
either horizontal or vertical, and is only re-oriented by rotations 
about the vertical axis of the world coordinate system. Thus 
for a six degree of freedom PUMA, joint 4 is kept fixed (a 5 
dof PUMA has no joint a), and joint I, is coupled to the sum of 
the angles of joints 2 and 3 so that the axis of joint 6 is always 
kept vertical. Thus we consider only 4 degrees of freedom for 
the PUMA. 

The payload and the hand are merged geometrically, and 
the payload is considered to be a prism, with convex cross 
section. 
rotates. 

The payload can rotate about the vertical, as joint 6 

Obstacles in the work space are of two types: those sup- 
ported from below and those hanging from above. Both are 

detailed for finding 
edra through space 

The problem is much harder for general articulated 
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prisms with convex cross sec?,ions. Non-convex obstacles can be 
modelled by overlapping prisms. Prisms can be supported from 
below if they rest on the workspace table or on one another 
as long as they are fully supported. Thus no point in free 
space ever has a bottom supported obstacle above it. ,Work is 
currently under way to extract such obstacle descriptions from 
depth measureinents from a ‘stereo pair of overhead cameras. 
Similar prc--defined obstacltss may also hang from above intrud- 
ing into the workspace of the upper--arm and fore-arm. 

The class of motions allowed sul‘ficc for most assembly 
operations, and with appropriate algorithms for re-orienting the 
payload without major arm motion, the algorithm can provide 
gross motion planning for all but the most diflicult realistic 
problems. 

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved. 



Figure 1. A path found by the algorithm. Part (a) is the initial 
configuration. Part (b) is a plan view (rotated 5). Part (c) is a plan 
view of the payload path. The remaining images (top to bottom, left 
to right) show the path. 

Figure 2A. The PUMA has six revolute joints. It can be decomposed 
into three components: the upperarm, the forearm, and the combined 
wrist, hand and payload. 

Figure 2B. A freeway is an elongated piece of free space which 
describes a path between obstacles. 
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Figure 2C. The definition of R(E), the radius function of an object, 
(a). Part (b) h s ows the geometric construction of R(E) = dz cos(S - 
qz), (locally). Part (c) shows function R in polar coordinates. 

Tgure 2D. The workspace of figu re 1 has three different horizontal 
cross sections. Here we see the spines of freeways for the payload in 
the lowest cross section in which they are valid. 



II. Payload Space _-.-- 
Figure 2R is a side vi& if. a PUMA robot grasping an ob- 

ject. During gross motion we treat the mrist, hand and payload 
as a single object. It can translate through space (joints 1, 2 and 
3 provide the motion wh11e joint 5 compensates for orientation 
changes to keep the wrist stem axis vertical) and rotate about 
the vertical axis (joint 6). 

The first step of the find-path algorithm is to find a prism 
(the payload prism) which contains the wrist, hand and payload, 
with axis of extension parallel to the wrist stem. This can be 
simply done by taking the convex hull of the projection of these 
parts into the horizontal plane then sweeping it up from the 
base of the payload object through the wrist. 

Since obstacles must be supported completely and motions 
will only be horizontal or vertical it follows that it suffices to 
find a path for the bottom cross section of the payload prism. 

A. The problem in two dimensions 

Brooks [1983a] demonstrated; new approach for the prob- 
lem of moving a two dimensional polygon through a plane lit- 
tered with obstacle polygons. It was based on two ideas. 

(1) Free space can be represented as overlapping “freeways”. A 
freeway is a channel through free space with a straight axis and 
with a left and right radius at each point. Figure 2B illustrates. 

(2) The moving object can be characterized by its radius func- 
tion, defined in figure 2C. The radius function characterizes the 
left (i.e. R(B + 3)) and right (i.e. R(6 - 5)) radii of the object 
as it is swept along in some direction 6. 

The key point is that radius functions and sums of radius 
functions can be easily inverted. Thus given a freeway and the 
radius function of a moving object it is simple to determine the 
legai range of orientations wllich lrad to no collisions when the 
object is swept down the freeway. 

In the implementation described in this paper freeways are 
currently restricted to having constant left and right radii along 
their length. The first part of figure 2D shows the “spines” of 
freeways found at table top level of the scene in figure 1. 

B. Adding vertical variations -------~ 
There are at most as many different horizontal cross sec- 

tions through the workspace as there are obstacles. We can 
apply the algorithms of Brooks [1983a] to each different cross 
section and derive a set of freeways valid over some horizontal 
slice of the workspace. 

Since obstacles must always be completely supported by 
others below it is true that any freeway valid at some height 
ho is also valid for all h > ho. Thus successively higher cross 
sections will inherit freeways from below. Figure 21> shows a 
series of cross sections through the example workspace of figure 
1. These are plan views, rotated 4 from the original scene. Each 
cross section includes the spines of all freeways which are valid 
for the first time at that height. Their validity extends vertically 
upwards through the remainder of the workspace. (Recall that 
we assume that the hanging obstacles do not protrude into the 
payload workspace.) 

III. IJpperarm Space -- 
The upper-arm (see figure 2A) is large and can easily collide 

with any significantly sized obstacles in the workspace. Its 
motion is both controlled and constrained by joints 1 and 2. 
Let the state of these joints be described by variables q5 and 
Q: respectively. If cr = 0 then the upper-arm is sticking out 

horizontally. 
The class of possible motions of the arm can not be easily 

characterized as translational constraints as was the case with 
the payload. It is better to describe freeways for it in the 
configuration space (Lozano-Perez [1981, 19831) of 4 and Q. 
Furthermore the upper-arm can not change orientation in &-cr 
space and its shape is fixed (in contrast to the payload which 
changes shape as things are picked up and put, down). over all 
time. Therefore we can compile in special knowledge of that 
shape (in contrast to the general R(O) function used for the 
payload). 

A. Constraints in a-space ______ 
Consider figure 3A: a cross section of the upper-arm and 

an obstacle for a particular fixed 4. All lengths in the diagram 
are labelled with positive values. The presence of the obstacle 
puts constraints on the valid range of angles of joint 2. Clearly 
the presence of the obstacle implies that 

Q > t + q = atan(z, m) + rl. 

It remains to determine 7. Let 

r = d/m2 + x2. 

Then x = r cos 7 and so 

rsinq = bl -alrcosrl, 

whence 

Figure 3A. A cross section of the upperarm and its interaction with 
a prism obstacle. Equation (3) is the constraint derived from this 
figure. 

Figure 313. A plan view of the interaction of the ui)perarrn and the 
top edge of an obstacle prism. 
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and so 

7 = arcsin rh>Ti - atanh 11, 

whence 

tv > atan(z, m) - atan(al, 1) + arcsin 
J&q&c (a12 + 1)’ 

(3) 
Due to the restrictions we have placed on our models of 

objects in the world we can conclude that vertices such as v 
in figure 3A must be points on the top edges of prisms. The 
problem to be solved is to determine how m and z vary with 
changing 4. 

The inequality, with appropriate sign changes, is valid for 
obstacles intruding into the workspace from above the arm also. 

We can ignore collisions with the end of the upper arm as 
such a collision would also result in a collision for the fore-arm. 
We find it more convenient to catch such collisions under our 
fore-arm analysis. 

B. Constraints in &space 
Refer again to figure 3A and consider a varying 4 and 

the interaction of the upper-arm with a prism edge. Clearly 
z remains constant, but m can vary. 

Refer to figure 3B. Suppose the edge has a normal with 
orientation vg and further that the edge has distance D from 
the origin. Let d be the displacement of the upper-arm from 
the axis of joint 1 of the arm. Then 

m= 
D - d sin($ - vg) 

cos(q5 - v()) - 

Direct analysis of the effects on Q of this formulation for m is 
difficult. However we can observe geometrically that m depends 
rather directly on the distance from 0 to I’. The minimum 
possible OP is n (so long as the upper -arm intersects the edge 
for $J = va) or the value at one of the end points for the edge. 
Similarly the maximum can only occur at the end of an edge. 
When OP has length D then 

m=diFTF. 

Thus by examining at most three values for 4 we can determine 
maximum and minimum values for m. 

Now consider the three terms on the right of inequality 
(3). The second term is constant with respect to 4. The third 
term increases as m decreases, and thus has its maximum over 
an edge for the minimum m. The behavior of the first term 
depends on the sign of z. For positive z (i.e. for obstacles higher 
then the axis of joint 2) the second term has maximum value 
for minimum m, whilst .for negative z the maximum occurs at 
maximum m. Thus for a given z we can quickly produce a 
conservative bound on Q over the range of 4 where the upper- 
arm might intersect the edge. Detailed analysis shows that for 
most obstacles this conservative bound is very good. 

For a prismatic obstacle in the workspace we take each 
top edge and determine conservative a bounds over a 4 range 
for each edge which “faces” the base of the manipulator. The 
resulting @-CY boxes are then merged and bounded by single 
&-cr box. For large obstacles with many edges it is better to 
approximate by a series of adjacent +-a boxes. The Fig 3C 
series shows the &-a boxes generated by the scene in Figure 1. 
Notice that only the overhead obstacle and the larger obstacle 

on the table are represented. The small obstacle can not be 
reached by the upper-arm and so does not place any constraints 
on &-cr space. 

The analysis a.bove has been done for an upper-arm that 
is paper thin. An upper-arm with real thickness has infinitely 
many such cross sections, all of which can contribute con- 
straints on cr. Observe however that as the upper-arm is rotated 
downwards towards a horizontal edge then the arm will hit with 
one of its edges first (except when 4 = ~0, when the lower sur- 
face strikes simultaneously across a line segment). Thus we need 
consider the constraints a.rising only from the two extreme cross 
sections (note that they have different d’s so the 4’s which must 
be considered are different). 

C. Freeways in 4-a space 

We have successfully reduced the collision avoidance prob- 
lem for the upper-arm in real space to one of an path finding 
problem for a point in a space populated with rectangular 
obstacles aligned with the axes of the space. Furthermore, since 
we allow only prismatic obstacles stacked on each other on the 
table, or hanging from above, there can be no “free-floating” 
obstacles in #-a, space. 

We can easily compute “freeways” in this space and their 
spines are illustrated in the second part of figure 3C. Searching 
these freeways for a path is also trivial and the third part of 3C 
illustrates the connected chain of +-(r freeways which must be 
negotiated to solve the problem shown in figure 1. 

IV. Projecting Constraints 

Our find-path algorithm is based on propagating con- 
straints on motion of the upper-arm, fore-arm and payload 
through the searches for paths for these three physical com- 
ponents. 

In this section we examine the propagation of constraints on 
the upper-arm to become constraints on the payload. Consider 
the plan view of figure 4A, and the problem of moving the 
payload along a horizontal path segment. 

The maximal value for CY must occur when m is minimal 
(note that this m and the d from the diagram are different (but 
similar in concept) from those of section III). That will occur 
when 

m=diFTP 

i.e. at 
40 = vo + atan(d, m). 

Thus the maximal value for a occurs at $0 if that is in the 
range of the motion segment or at one of the extremes of the 
segment. Similar reasoning shows that the minimal value for 
(x must occur at one of the segment extremes. Notice that the 
points of maxima and minima do not depend on the height of 
the segment of motion. The values of those maxima and minima 
will however. 

Consider a fixed point (z, y) in the table plane and how the 
value of a! varies as the payload is lifted vertically above that 
point. Refer to the plan and side views of figure 4B. The side 
view is a cross section through the arm parallel to the upper 
and fore arms. Notice first that 

r = dx2 + y2 - d2. 

Clearly the maximum achievable CY is 

7-- 12 Q m = arccos - 
11 



Thus for an interval [or, ~21 the minimum and maximum 
heights which can be achieved by the end of the fore-arm are 
given by 

w + l1 sin Q - d Ez2 - (r - 11 cosc~)~ 

for CY = (~1 and CY = min(crz,cr,). From this we can readily 
compute the bounds on payload height for a particular $ whilst 
moving along a path segment subject to the constraints of a &CY 
freeway. 

The argument above however implies that by considering 
the two end points of the motion segment and the point 40 
(when it is interior) and intersecting all the height constraints 
we are guaranteed a safe set of heights which we can use for the 
motion along the segment. 

V. Search 
Paper length constraints preclude a detailed description of 

the final search process. In essence path planning proceeds as 
follows. 

A path through &a space is found for the upper-arm. It is 
a list of $--a~ freeways. Now a depth first search is done through 
payload space under the guidance of this list of constraints on 
LY (as detailed in the previous section). 

Notice that the upper-arm puts constraints on the height of 
travel for the payload within a particular freeway. If a freeway 
section is chosen in depth first search, and these constraints 
provide a non-empty range of heights then the path segment is 
certainly valid for the payload and upper-arm. The problem of 
fore- arm collisions remains. 

Such collisions are checked for each path segment during 
depth first search. Observe (figure 5) that over a given vertical 
line segment for the payload in the workspace, the fore-arm is 
closest to horizontal for the top of the segment, and more acute 
at the bottom. Furthermore for a particular height as we travel 
along a horizontal segment the arguments of section IV apply 
also to the fore-arm. Thus we can easily compute a bounding 
volume for the swept volume for the fore-arm travelling along 
the maximal height allowed on a segment. We project that swept 
volume down onto the table plane and determine which prisms 
it “shadows’, from above. The prisms are intersected with this 
volume and then each prism upper vertex has a distance below 
the fore-arm swept volume. If any distance is negative then the 
motion along the horizontal segment is completely forbidden. 
Otherwise the minimal distance gives a safe bound on how far we 
can lower the payload during traversal of the horizontal segment 
without producing a collision for the fore-arm. 

Figure 3C. The obstacles in c&-CY space (4 is the horizontal axis and 
cr the vertical) derived from the workspace of figure 1. The small 
obstacle in figure 1 is out of the reach of the upperarm so does not 
appear here. The freeways in this space and a planned path instance 
for the upperarm are also shown. 

VI. Conclusion 
By restricting the class of solutions we look for in the 

general find-path problem for a robot with revolute joints we 
have developed a practical path planner. 

The complex example path of figure 1 is found in less than 
1 minute on an original MIT lisp machine - such machines have 
no floating point hardware and in general are much slower than, 
say, a VAX 11/780. Notice that besides lowering the upper-arm 
to get under the obstacle protruding into the workspace from 
above the planner had to rotate the payload so that it could 
squeeze around the outside of the obstacle on the table top! 
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in moving the Figure 4A. k plan view of the manipulator kinematics 
payload along a horizontal straight line segment. 

Figure 4B. A side view of the manipulator kinematics. 

Figure 5. During vertical motion of 
forearm is closest to horizontal at the 
and more acute at the lower bound. 
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