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Michael Lebowitz
Department of Computer Science

Computer Science Building, Columbia University
New York, NY 10027

Abstract

Described in this paper is a computer system,
RESEARCHER, being developed at Columbia that reads
natural language text in the form of patent abstracts and
creates a permanent long-term memory based on concepts
eneralized from these texts, forming an intelligent
information system. This paper is intended to give an
overview of RESEARCHER. We will describe briefly the
four main areas dealt with in the design of
RESEARCHER: 1) knowledge representation, where a
canonical scheme for representing physical objegts has
been developed, 2) memory-based ~text processing, 3)
generalization an generalization-based memory
organization that treats conce&)h formation as an integral
part of understanding, and 4) generalization-based
question answering.

1 Introduction

Natural language processing and memory organization are
logical components of intelligent information systems. At
Columbia, “ we are developing a computer system,
RESEARCHER, that reads natural lan uage text in the
form of patent abstracts (disc drive patents provide the
initial domain) and creates a permanent long-term
memor% based on generalizations that it makes from these
texts. In terms of task, RESEARCHER is similar to IPP
[Lebowitz 80; Lebowitz 8%3 a program that read and
remembered news stories. e need fo deal with complex
object representations and descriptions has introduced a
whole new range of problems not considered for that
program.

2 Representation

The first problem to be worked on in any new domain in
Al is the design of a scheme to represent relevant
concepts. Al researchers have not extensively investigated
representing comglex physical objects (although [Lehnert
78; Kosslyn and Shwartz 77] and others have addressed
some of the issues we are concerned with). We have
developed a frame-based system with the flavor of
Schank’s Conceptual Dependency [Schank 72], that deals
with obchts instead of actions. This scheme 1s described
in detail in [Wasserman and Lebowitz 82].

The basic frame-like structure used to represent objects is
known as a memette. Memettes are used as part of a
hierarchical set of prototypes (generalized, idiosyncratic
descriptions derived from specific instances), described in
Section 4. A given memette may be describing a fairly
general object %e g., aJ)rotot.ggical disc drive) or a more
specific object (a model 19023 floppy disc ‘drive). In
somewhat simplified form, the basic structure of a
memette is shown in Figure 1.

The TYPE slot of a memette indicates whether this is a
single indivisible structure (unifary) or a conglomeration
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{(NAME: <name-of-object>
TYPE: unitary or composite
STRUCTURE: <shape—descri£tor> if unitary

< a list of relation records>
if composite)

Figure 1: Representation Schema
of two or more pieces (composite). The STRUCTURE

field contains either a description of the shape of an
object, if it is umtarﬁ, or a set_of relation records, if it is
a

composite. Shape-descriptors are graphical
representations of objects based mostly on visual
properties. Relation records generally describe binary

physical relations between parts of a complex object.

To date we have not explored shape descriptors in great
detail. We expect to have a system that uses prototypical
shapes (in much the same way we use prototypical o {_ect
descriptions), combining declarative and image-like
representations in much the same way as Kosslyn and
Shwartz’s model [Kosslyn and Shwartz 77].

We have studied object relations in much greater detail,
and have developed a canonical scheme for describing the
various ways that two objects can relate to each other.
This scheme is used to represent, among other things, the
meanings of words or phrases such as “‘above”, ‘“on top
of”’ and ‘“‘surrounding” that are used to describe physical
relations. et

Figure 2 shows the major elements used in relation
re[iresentatlon: Various combinations of values for the
fields shown in Figure 2 provide wide coverage of the
kinds of relations that objects can have with each other.

Property Description Word with
property

distance  distance between objects near

contact strength of contact touching

location  relative direction between above

objects
orientation relative object orientation parallel
enclosure description of full or encircled

partial enclosure

Figure 2: Canonical Relation Fields

Certain combinations of relation fields occur together
often enough that relations, like objects and shapes, can
frequently _ be described, both "in text and our
representations, in terms _of prototypes. The normal way
to represent an oll)Ject is in terms o rototsypical relations
such as ON-TOP-OF and SURROUNDS), that are in
urn represented canonically with the fields in Figure 2.
As an exan}lgle of how our representation scheme is used,
consider EX1, taken from an abstract of a US patent
about a computer disc drive.



Enclosed Dise
Filter Assembly

Drive having

EX1 -
Combination

A combination filter s%'stem for an enclosed disc
drive in which a breather filter is provided in a
central position in the disc drive cover and a
recirculatin air  filter is  concentrically
positioned about the breather filter.

A possible memette structure for this patent in shown in
Figure 3.

(NAME: enclosed-disc-drive- z'th-ﬁljcr TYPE: composite
STRUCTURE: ((SURROUNDS enciosure aisc-arive)))

(NAME: enclosure TYPE: composite
STRUCTURE: ((OE-TOP-OF cover case)))

(NAME: case TYPE: unitary
STRUCTURE: (box open-on-top))

(NAME: disc-drive TYPE: composite
STRUCTURE: unknown)

(NAME: cover TYPE: comgosibe
STRUCTURE: (ESURROUND [centrally}

cover breather- filte
SURROUNDS [centrally, f / [2@1’

ecirculaling-air-fi
reather-jlzllther)))f
(HAME: breather-filter TYPE: unknown)

(HAME: recirculating-air-filter TYPE: unknown)

Figure 3: Representation for EX1

Theé basic idea here is that we have a set of objects
related to each other by prototypical relations (which can
be broken down into their canonical comdponen s in order
to make low-level inferences, when needed). Note that
some of the information shown in Figure 3 is not stated
explicitly in EX1. For example, the case is specified as a
unitary memette; since virtually nothing was said about
the enclosure, this information was assumed by the reader
(from knowledge of prototypical cases).

Four prototypical relations, with their correspondin% role
fillers are used in this small memette structure: ON- OP-
OF, SURROUNDS and SURROUNDS|centrally] (twice).
These define the relations among the case, cover, and
various filters that are described in EX1.

Unitary memettes do not contain any relation records
under their STRUCTURE property; instead, they have a
single shape-descriptor. ‘“‘Box open—on-to’}f‘”_wa_s given as
the shape-descriptor of the case.  This is not a

articularly functional piece of information. As yet there
Eas been no strong need to codify shape-descriptors.

3 Text Processing

RESEARCHER begins its processing of a patent by
determining from the text a conceptual representation of
the kind described in Section 2. In the ultimate version of
the program, this process will be strongly integrated with
memory search and generalization.  The “conceptual
analysis performed b ESEARCHER is based on_the
memory-based understanding techniques designed for IPP.
This processing involves a top-down goal of recognizing
structures in memory integrated with simple, bottom-up
syntactic techniques.

Naturally, since patents are quite different from news
stories, both because they describe complex thsxc_al
objects and because they make considerable use of special
urpose language, the precise techniques wused in
EE EARCHER are distinet from those used in IPP.

233

RESEARCHER is still fpredictive in nature. However,
since patents are not focused on events, as are news
stories, the action-based predictions of IPP (or other
conceptual analyzers, e..%. fBlrnbaum and Selfridge 81])
ifie

must be extensively modified.

S}Eaciﬁcallg the predictions used for understanding in
RESEAR( HER are based on the }]x;vsical descriptions
built up, in much the same way as IPP made predictions
from events. The goal of RESEARCHER’s understanding
grocess is to record in memory how a new object being
escribed differs from generalized objects already known
(keeping in mind that these are idiosyncratic), and
ultimately to generalize new prototypes.

Processing in RESEARCHER concentrates on words that
refer to physical objects in memory and words that
describe physical relations between such objects. Such
words are known as Memory Pointers (MPs) and Relation
Words (RWs). These words guide RESEARCHER'’s
grocessmg in” making use of any information gathered
ottom-up. Conceptual analysis in this domain Involves
careful processing of MP phrases (usually noun phrases) to
identify memetfes, modifications to memettes, and
repeated mentions of memettes. RWs are used to create
the relations between memettes described in section 2.

Particular care in this domain has to be given to phrases
of the sort “X relationl Y relation2 Z”. "It is frequently
hard to tell if relation2 relates Z to Y or X. So, in the
phrase ‘‘read/write head above a disc connected to a
cable” it is ‘not apparent from the surface structure
whether the disc or the read/write head is connected to
the cable. Prepositional phrase attachment is a well-
known problem, and is especially crucial in the patent
domain. We have discovered that a set of heuristics that
maintains a single memette in focus based on the
meinettes and relations involved will solve most of these
problems (although in the lon%r.un we exgect to use, in
addition, a model of the device being described).

Figure 4 shows the output from RESEARCHER's
processing of the initial part of EX1.

*(process~patent EX1)

Running RESEARCHER at 6:22:03 PM
Patent: EX1

(A COMBINATIOE FILTER SYSTEM FOR AN ENCLOSED DISC DRIVE IH
WHICH A BREATHER FILTER IS PROVIDED IE A CENTRAL POSITION
IN THE DISC DRIVE COVER AED A RECIRCULATING AIR FILTER IS
CONCENTRICALLY POSITIONED ABOUT THE BREATHER FILTER #STOPs)

Processing:

A : Hew instance word -- skip
COMBINATIOE : Token refimer - save and skip
FILTER : Token refiner - save and skig
SYSTEM : MP word ~- memette UNKNOWN-A

SEMBLY#
Hew UNKHOWN-ASSEMBLY#0 instance (BMEMO) [&MEMO]
Assuming FILTER# is part of BMEMO (UNKNMOWH-ASSEMBLY#0)
Nev FILTER# instance (&MEM1)

Augmenting @MEMO (UNKHOWH-ASSEMBLY#0) with feature:
COKFIGURATION = COMPLEX

FOR (FOR3) : Assuming &MEMO (UNKNOWH-ASSEMBLY#0)
is part of what follows
AN : New instance word -- ski
ENCLOSED : Relation word -- save and skip
DISC DRIVE : Phrase
~> DISC-DRIVE : MP word -- memette DISC-DRIVE#
Assuming SMEMO (UFKNOWN-ASSEMBLY#0) is part of DISC-DRIVE#

New DISC-DRIVE# instance (&MEM2) :

New ENCLOSURE# instance (BMEM3)

Relatin% memettes &MEM3 (ENCLOSURE#) (SUBJECT)
#MEM2 (DISC-DRIVE#) (OBJECT) [R-SURROUNDS]

<rest of processing>

Figure 4: RESEARCHER Processing EX1

In the output trace in Figure 4, we can see how



RESEARCHER identifies the various objects mentioned
in the text as instances oféeneral structures described in
memory  (such as DISC-DRIVE# and FILTER#).
RESEARCHER creates new memettes to represent the
specific instances of these structures, &MEMO for the
“filter system'’, for example, and records how these
instances differ from the abstract prototypes.

We can also see in this example how RESEARCHER
processing concentrates on object description and
relations among objects. In its processing of “filter
system’’, RESEARCHER uses a heuristic that in MP-MP
constructs, where either describes a non-specific
complex object (e.g., ‘‘system’), the other object is
probably part of that complex object. Also note that the
word ‘‘enclosed”, though technically an adjective here, is
still treated as a Relation Word (most of which are
pre osMonsL,. describing a relation between an implicit
enclosure which surrounds the object to follow (the disc
drive, in this case). Finally, we note that the word “for”
in this context, serves as a.ﬂag indicating that the parts o
the preceding object, the filter system, are to follow.

The full processing of EX1 leads to the representation
shown in Figure 5.

Text Representation:

A list of relations:

Subject: Relation: Object:

‘SYSTEM® R-PART FILTER®#

DISC-DRIVE#® R-PART ‘SYSTEM®

‘SYSTEM® R-PART BREATHER-FILTER#

DISC-DRIVE# R-PART COVER#

‘SYSTEM® R-PART RECIRCULATING-FILTER#

ENCLOSURE# R-SURROUNDS DISC-DRIVE#

COVER# R-SURROUNDS BREATHER-FILTER#
LOCATION:CENTER

RECIRCULATIEG-FILTER# R-SURROUNDS BREATHER-FILTER#

LOCATION:CENTER

Figure 5: RESEARCHER Representation of EX1

The output in Figure 5 indicates that RESEARCHER has
identified the important physical relations mentioned in
EX1. (Actually, the relations are among instances of the
abstract memettes.) It basically includes all the relations
shown earlier in Figure 3, our target representation for
EX1, plus part relatfonships. Naturally, the complete text
of EX1 describes many more relations.

4 Generalization

In order to store for later é]éleXRinformation about the
patents that are read, RESEARCHER makes use of
Generalization-Based Memory. This method, which was
developed for IPP [Lebowitz 83] and is related to
Schank’s MOPs [Schank 82], involves storing information
about given items in memory in terms of generalized
prototypes. The idea is to locate the prototype in
memory that best describes an example, and then store
only how the example varies from the prototype. This
allows redundant information to be stored only once and
allows queries to be answered in terms of descriptive
prototypes.

For Generalization-Based Memory to be effective, it is not
adequate to simply make use of pre-specified prototypes.
It is necessary for the system to create new protofypes
through a generalization process. This process involves
identifying similar objects and creating new concepts from
them (using a comparison technique of the sort used by
IPP [Lebowitz 83], and related to traditional ‘learning
from examples” programs, e.g., [Winston 72]).

In the disc drive domain, typical sconcepts the
generalization process might identify as being useful
would be floppy dise drives or double sided discs.
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Crucially, RESEARCHER must do this without being
specificalfy provided with examples of these concepts.
Instead, when storing instances from a stream of input, it
would store floppy disc drives together in its
Generalization-Based Memory, and notice similarities.

The representations for two similar, slightly simplified

disc drive patents, used to test the initial version of
RESEARCI-E)ER’S generalization module are shown in
Figure 6.

enclosed-disc-drivel
/ ]

-~ disk-drivel- enclosurel--------
[ | /  on-top-of
motor# | disk# | cover# ----------

spindle# r/v-head#

\

enclosed-disc-drive2

-~ disk-drive2- enclosure2---=--===-=~==--

[ [ / on-top-of \ /N
motor# | disk# | cover# -------- > base# / \

spindle# r/w-head# / surr \

b-filter# ---> r-filter#

Figure 6: Similar Disc Drives

Clearly the two disc drives in Figure 6 have much in
common that can be the source of a new concept derived
through generalization -- an enclosed disc drive. Figure
7 shows the concept created by RESEARCHER's
generalization module.

enclosed-disc-drive#
|
enclosure#-------
on-top-of

-- disk-drive#-
| | | /
motor# | disk# | cover#
spindle# r/w-head#

(enclosed~disc-drivel and enclosed-disc-drive2
stored as variants of enclosed-disc-drive#)

Figure 7: Generalized Enclosed Disc Drive

The idea illustrated in Figure 7 is that RESEARCHER
finds the ﬁ)arts of two objects that are similar, and
abstracts them out into a generalized concept. In this
example, the two devices contained similar disc drives and
enclosures. Each had a cover on top of some other obll.ect.
So these similarities form the basis of a generalized
enclosed disc drive. Only the additional parts and
relations of each instance need be recorded in memory
along with the generalization.

Adapting Generalization-Based Memory for use on
structural descriptions of the sort described in Section
2 has_proved to be a complex and difficult problem,
revolving around the assorted relations among the objects
in the descriptions. Here we will only present one of the
mzlljor problems and suggest the nature of the possible
solution.

The  central = problem in generalizing structural
descriptions  is _ the rocess’ of matching two
representations (either of two objects or of an object and
a prototype), determining what parts and relations
correspond gas was pointed out for simpler examples in

Winston 72]). Clearly, if we wish to determine that the

isk mounts’ in two drives are similar, they must be
compared with each other. Since, as mentioned in Section



2, the central part of the description of complex objects is
a sct of relations, we must associate the relations in one
object with those in the other.

The matching process here is quite a difficult one. The
main problem is that we are dealing with structured
objects, and the parts of very similar objects may be
aggregated differently in various descriptions. o, for
example, a read/write head might be described as a direct
part of a disc drive in one Eatent, but part of a
‘read/write assembly” in another. This makes the
inherent similarity hard to identify.

At the moment, we deal with this “level problem” with
simple heuristics that allow only a limited amount of
“level hopping” during the comparison process (to avoid
the need to consider every possible correspondence amon

levels), and a bit of combinatoric force. However, we fee
that the ultimate solution lies in more extensive use of
Generalization-Based Memory. If a new object can be
identified as an instance of a iqnerall_zed concept, with
only a few minor differences &lw ich will be done with a
discrimination-net-based search of the sort described in
[Lebowitz 83]), then the levels of aggregation will be set.
In effect, the existing concepts_ create a canonical, but
dynamic, framework for deseribing new objects. In
addition, by using Generalization-Based Memory, we need
compare only a small number of differences between
objects, rather than complex descriptions.

5 Question Answering

The presentation of information from a complex set of
data in order to answer user questions is an interesting
problem in its own right (as has been }f\(jinted out b
many researchers, including [Lehnert 77; McKeown 82]{
As part of RESEARCHER, we have included a question
answering module that concentrates on taking advantage
of Generalization-Based Memory to more -effectively
convey information to a user. Here we can only provide a
flavor of the approach we are taking.

e

o

RESEARCHER accepts questions in natural langua
format. It uses the same parser used to process texts t
create a conceptual representation of the question. This
is much the same approach as taken in BORIS [Dyer 82].
Also in similar fashion to BORIS, we eventually expect
the question parsing process to identify actual structures
in memory, greatly simplifying the answering process.

Once RESEARCHER has developed a conceptual
representation of a question, it searches memory to find
an answer using an approach similar to {Lehnert t] That
is, a set of heuristics 1s used to decide upon the fype of
question and what constitutes a reasonable answer. The
answer heuristics focus on using generalizations that occur
in memory to quickly convey large amounts of
information, and then describing how_particular instances
may differ from the generalizations. We are_also looking
at “how _generalization-based heuristics might aid in
determining what aspects of very complex representations
to try and convey to a questioner.

6 Conclusion

The development of RESEARCHER has led to interestin
results in 'a number of areas. Natural language tha
involves complex physical objects is an exgltingveopic, one
that can lead to many interesting applications. We believe
that the representation scheme described here, the
application of memory-based parsing and Generalization-

ased Memory, as well as generalization-based question
answermﬁ will all help lead to the successful development
of powerful, robust, dynamic understanding systems.
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