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It is well kncwn that top-dcwn backtracking 
context free parsers are easy towrite in Prolog, 
and that these parsers can be extended to give them 
the per of ATN's. This report shows that a 
number of other familiar parser designs can be very 
naturally implemented in Prolog. The top-dotJn 
parsers can easily be constrained to do 
deterministic parsing of m(k) languages. 
Bottcm-up backtrack parsers can also be elegantly 
implemented and similarly constrained to do 
deterministic m(k) parsing. Very natural 
extensions of these I&(k) parser designs suffice 
for deterministic parsing of natural languages of 
the sort carried out by the Marcus(1980) parser. 

I gJT!ROlXKYION 

Pereira and Warren(1980) have shcwn that Prolog 
provides facilities for writing topdmn 
backtracking context free parsers.* For example, a 
simple context free grammar like (CFGl) is easily 
converted into the Prolog code for the 
corresponding parser (CFPl): 

(CEw 
s --> np vp det --> your 
w --> det n n --> claim 
np --> det n rel ComP --> that 
rel --> camp s v --> is 
VP --> v adj adj --> funny 

(C=w 
s([s,NP,VP],P0,P):-np(NP,P0,Pl),vp(VP,Pl,P). 
np([np,Det,N],PB,P):-det(Det,P0,Pl),n(N,Pl,P)* 
np([np,Det,N,Pel],P0,P):-det(Det,P0,Pl),n(N,Pl,P2), 

rel(Rel,P2,P). 
rel([rel,Ccmp,S],P0,P):-comp(Cc-mp,P0,Pl),s(S,Pl,P). 
vp([vp,V,Adj] ,PB,P):-v(V,P0,Pl),adj(Adj,Pl,P). 
det([det,yourl,[yourIT],T). 
n([n,claim] ,[claim]T],T) . 
ccmp([comp,that],[thatlT],T). 
v( [v,isl I [is ITI 2) . 
adj ( Wj I funny1 , C funny I Tl J) - 

------------------- 
* The slight acquaintance with Prolog required for 
a complete understanding of this report will just 
be presumed. Prolog is coming to be fairly well 
kncwn, and there are good introductions to the 
language (Clocksin and Mellish, 1981). 

In the parser, the category symbols 2, a, yp and 
so on, are treated as three place predicates, where 
the first argument holds a labelled brackettiny 
representing the derivation tree dominated by that 
category symbol, andwhere the string to be parsec' 
is given in what remains of the list in the second 
argument when the list in the third argument place 
is taken off its tail. So given (CFPl), the Prolog 
query I 

s(P,[your,claim,is,funny],[]). 

is a request to parse a string generated by the 
grammar. The query will succeed and return the 
parse tree, 

P= [s, hp, WeWoW , b,claU I, 
[VP, I% isI r Wj d-y1 11 

Since Prolog tries the rules of the grammar in 
order, itwill first try to get a successful parse 
with the first rule for a, and if this attempt 
fails (as itwill for any m containing a a, the 
parser will backtrack and the second rule will be 
tried. 

This kind of parser has all of the problems of 
standard context free top-dcwn backtrack parsers: 
left recursive rules can cause looping; the 
language generated by a context free grammar will 
not generally be the language that is parsable by 
the corresponding parser (evenwhen the parser does 
not loop); and, like any backtracking parser, this 
kind of prser can be quite inefficient (Aho and 
Ullman, 1972). Pereira and Warren(1980) have 
pointed out that we can increase the power of such 
a Prolog parser as much as we like by elaborating 
the parser rules. It is not hard, for example, to 
elaborate the rules of such a parser to produce a 
parser that is equivalent to an ATN. A number of 
projects have used elaborations of Prolog top-dcwn 
context free parsing capabilities with some success 
(Pereira and Warren, 1980), but since other parser 
designs have particular advantages, it is of 
interest to consider whether Prolog is a good 
implementation language for them. Deterministic 
parsers can be substantially more efficient than 
backtrack parsers, and there is some reason to 
think that deterministic bottcm-up parser designs 
are particularly well suited for natural languages 
(Marcus, 1980) . This report will show hew these 
parser designs can be implemented very naturally in 
Prolog. 
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II lidlLLKlpARsING 

As was noted, the simple parser presented above 
will have to backtrack to parse any m containing a 
&l, but it is clear that the parser could always 
avoid this backtracking if it could look ahead 3 
symbols: All m's will begin with a &t and a T]L, 
and only rip's containing a ti will have a mp 
after the a. It is easy to elaborate (CFPl) so 
that it performs this lookahead to determin- 
istically parse the language generated by (CFGl) as 
an U(3) language. We need only reverse the two 
rules for w so that the rule for the 
ccnnplements will be considered first, and chang 
that rule so that itwill apply only if the B 
"that" is the thirdwordwaiting to be parsed: 

(CFP2) 
np([np,Det,N,Rel],[Wl,W2,that]T],P):- 

!,det(Det,[Wl,W2,that]T],Pl), 
n(WLP2) I 
rel(Rel,P2,P). 

np([np,Det,N],PB,P):-!,det(Det,P0,Pl), 
n(N,Pl,P) .* 

Obviously, we could use this technique to perform 
any test we like on the first k symbols of the 
string remaining to be wrsed, so this sort of 
implementation will always suffice for LL(k) 
parsing. Notice that the Prolog representation of 
the function from the first k symbols of the string 
to the parser rule to be used is quite perspicuous. 

III EEEZHJPPARSING 

Bottom-up parsers for context free languages 
are quite popular. The simplest and best-kncwn are 
the "shift-reduce" parsers which "shift" a symbol 
from the input stream into a stack and then try to 
"reduce" the structures at the top of the stack to 
higher level structures using the grammar rules; 
when no more reductions of the symbols at the top 
of the stack are possible, another symbol is 
shifted frcm the input stream, and so on until the 
input stream is empty (or until sOme final 
punctuation is reached) and the stack contains only 
a sentence structure. The follcwing Prolog parser 
for (CEGl) neatly captures this design: 

(CFP3) 
start([IIXl,P):-parse(X,[I],P). 

parse([IIX],Stack,P):-reduce(Stack,Nazlstack), 
parse(X,[IINewstack],P) . 

parse([],Stack,[slS]):-reduce(Stack,[[s]S]]). 

reduce([X]Y],[X2]Y2]):- 
reducel([XlY],[XllYl]), 
reduce([XlIYl],[X2lY2]). 

reduce(X,X). 

-------------------- 
* The Prolog cut symbol, "!", blocks bactracking. 
Since this parser is deterministic, wewant to 
begin every rulewith a cut. This will have the 
desired effect of causing the parser to abandon any 
parse which tries to use a rule and fails. 

reducel( [your IX] ,I. [det,yourl IX]). 
reducel([claimlX],[[n,claim]IX]). 
reducel([[n,N],[det,Det] IX], 

[[npJdet,Detl, bINI 1 IWL 
reducel([thatlX],[[comp,that]]X]). 
reducel( [ [s IS1 v kcqM~p1 IX1 , 

[ [rel, k~~?~~pl~ is IS1 1 IX1 1. 
reducel([~rellRel],[n,N],[det,Det]lX], 

[ b-q?, [deWetlI [n,Nl , be1 Dell 1 IX1 1. 
=duceU [ MC-WI h?lW IX], 

[ [s, bplNPII [wlW 1 IX1 1. 
reducel(] [adjAdjl,[v,Vl IX], 

[ [VP, b,Vl I Wj dWl1 IX1 1. 
reducel([islX],[[v,is]lX]). 
reducel([funnylX],[[adj,funny]lXI). 

The predicate start takes a list containing the 
string to be parsed (the input buffer) as its first 
argument, andwill return the labelled bracketting 
for that string as its second argument. The 
predicate w keeps the remaining input as its 
first argument, the active node stack as its second 
argument, andwill return the finished labelled 
bracketting as its third argument. The parsing 
begins when start puts the first symbol of the 
input string into the active node stack and calls 
the procedure parse. Parse reduces the stack and 
then shifts the next input symbol onto the stack, 
until the input buffer ic L) empty and the active node 
stack contains just one structure dominated by the 
sentence category s!. The predicate Educe simply 
calls the reducel rules until they no longer apply, 
and the reduce1 rules simply match their first 
arguments with structures in the stack 
corresponding to the right-hand sides of (CEw 
grammar rules and return as their second argument a 
structure dominated by the category on the left 
hand side of the grammar rule. Thus, given the 
query r 

start([your,claim,is,funny],P). 

this parser will shift "your" onto the stack, and 
the first reduce1 rule will apply to reduce "your" 
to the structure "[det,your]". Another symbol is 
then shifted fram the input onto the stack, and so 
on until the stack contains the same labelled 
bracketting that (CFPl) produces for the string. 

Notice that (CFP3) is a backtracking 
shift-reduce parser; it will have to backtrack 
whenever it parses a string containing a 
complement. This is so because whenever it gets? 
noun structure and a determiner structure at the 
top of the stack, it will reduce them to a 
nounphrase structure regardless of whether a 
camplement is waiting in the input buffer to be 
parsed next. This backtracking can be eliminated, 
though, with one symbol of lookahead. We simply 
need to constrain the &ucel rule that performs 
the m reduction so that itwill not apply if there 
is a camp at the head of the input buffer. This 
requires that the reduce1 rules apply not only 
according towhat is at the top of the stack but 
also according to what is in the input buffer; the 
nm reduce1 rules accordingly have the input buffer 
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as their first argument. Since every && 0 
sequence allcwed by (CEGl) is followed either by 
the a "that" or the y "is", the easiest way to 
avoid backtracking is simply to allow the simple 
noun phrase reduction (i.e., the application of the 
third redtucel rule) only when the symbol "is" is at 
the head of the input buffer: 

(CFP4) 
start([IlX],P):-parse(X,[I],P). 

parse([IIX],Stack,P) :-reduce([IIX],Stack,Newstack), 
!,parse(X,[I]Newstack] ,P) . 

parse([],Stack,[slS]):-reduce(Input,Stack,[[slS]])~ 

reduce(Input,[X]Y],[X2lY2]):- 
reducel(Input, [XIY], [XlIYl]),!, 
reduce(Input,[XllYl],[X21Y2]). 

reduce(Input,X,X). 

reducel(Input,[your]X],[[det,your]]X]). 
reducel(Input,[claim]X],[[n,claim]lX])~ 
reducel([islI],[[n,l'J],[det,Det]/X], 

[ bp, [det,Detl I b,N 1 IX1 1. 
reducel(Input,[that]X],[[comp,that]/XI). 
reducel(Input,[[slS],[comp,Ccmp] IX], 

HreL[ccw,C~pl IMSll IXI). 
reducel(Input,[[rel]Rel],[n,N],[det,Det] IX], 

[ b-q?, Wet,Wtl I [n,Nl I Ire1 IRe111 IX1 IO 
reducel(InpuL [ [vpl~lr [npbJPl IX1 r 

[ [s, [nplNPl, WplW 1 IX1 1 l 
reducel(Input, [ [adj,Adjl , [v,Yl 1x1, 

[ [VP, bMl, Wj JWI 1 IX1 1 e 
reducel(Input,[is]X],[[v,is]lX]). 
reducel(Input,[funny]X],[[adj,funny]]X]). 

This is a deterministic LR(l) parser for (CFGl). 
Obviously, we could allow our &cel. rules to 
perform whatever computations we wanted on the 
first k symbols of the Input and on the Stack, so 
this style of implementationwill suffice for any 
U?(k) parsing. Again, the representation of the 
function fran the first k symbols of the input and 
the active node stack to the parser rule to be used 
is perspicuous; it is equivalent to the standard 
LR table representations. 

v ?HEMARerJSPARSER 

Marcus(1980) shcxrJed hew E:e basic design of an 
LR(k) parser can be extended to give it sufficient 
power to parse English in a very I:atural way. Most 
importantly: we allow arbitrary tests on the first 
k cells of the input buffer (in Narcus, 1980, k=5); 
we allcw the parser to put parse structures into 
the cells of the input buffer as well as into the 
active node stack; we allow the parser to look 
arbitrarily deep into the active node stack; and 
we group the parser rules into packets in such a 
way that only rules frcm active packets can be 
executed, and these packets are activated and 
deactivated by the parser rules. 

The rules of the Marcus parser arewritten in a 
language (Pidgin) which is compiled into Lisp. 
Fach grammar rule has the form: 

[testl][test2][test3][**c;test4] -> action 

where test1 is a test performed on the structure in 
the first buffer cell, similarly for test2 and 
test3, and test4 is a test on the active node 
stack. In our Prolog implementation, corresponding 
to each of Elarcus's grmnmar rules there is a parser 
rule of the form:* 

reduce([First,Second,Third]Restbuffer], 
[[Packet,Activenode] IReststack],Counter,P):- 

member(name,Packet), 
testl(First), 
test2(Second), 
test3(Third), 
test4([[Packet,Activenode]lReststack]), 
reduce(Newbuffer,Nmstack,Nmcounter,P). 

This form is appropriate since the active packets 
are associated with each node in the active node 
stack, so the member clause checks to make sure 
that the rule me is in the active packet; the 
tests on the first three buffer cells and the stack 
are done next, and if they succeed, the action 
consisting of appropriately modifying the input 
buffer and the stack is carried out, and reduce is 
called again. The counter is used simply to number 
the nodes as they are created and pushed onto the 
active node stack. The last argument of reduce is 
the completed parse which will be in the active 
node stack when final punctuation at the end of a 
grammatical string is picked up from the buffer. 

The similarity between Marcus's grammar rules 
and our prser rules is easy to see. Consider for 
example, the following rules from Marcus(1980) and 
our corresponding Prolog rules: 

(rule MAJOR-DECL-S in ss-start 
[=np][=verb]-> 
Label c s,decl,major. 
Deactivate ss-start.Activate parse-s&j.) 

(rule YES-NO-Q in ss-start 
[=auxverb][=np]-> 
Label c s,quest,ynquest,major. 
Deactivate ss-start.Activate parse-subj.) 

/*MZUOR-DECL IN ss-STMT*/ 
reduce([[First]Treel],[Second]Tree2]]Restbuffer], 

[[Packet,[Cat]Tree]] IReststack],Counter,P):- 
remove-member(ss-start,Packet,NeiJpacket), 
member(np,First), 
member(verb,Second),!, 
append(Cat,[s,decl,maj] ,NenJcat) , 
reduce([[First]Treel],[Second]Tree2]] 

Restbuffer], 
[[[parse-subj INewpacket],[Newcatll I 
Reststack], 
Counter,P). 

--a----------------- 
* Actually, in our implementation we use additional 
argument places in the reduce predicate to handle 
Marcus's "attention shift" rules, which are used in 
nounphrase parsing, and also for holding case 
structures. These rules are beyond the scope of 
this discussion, but they do not affect the basic 
ideas presented here. 
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/*YESJQ-Q IN SS-START*/ 
reduce([[First]Treel],[Second]Tree2]]Restbuffer], 

[[Packet,[Cat(Tree]J ]ReststackJ,Counter,P):- 
remove_Tnember(ss-start,Packet,New~cket), 
member(auxverb,First), 
member(np,Second),!, 
append(Cat,[s,quest,ynquest,maj] ,Newcat) , 
reduce([[First]Treel],[Second]Tree2]] 

Restbuffer], 
[[[parse-subj INew~cket],[Newcat]] I 
Reststack], 
Counter,P). 

Our parser, like Marcus's, associates a list of 
features with each node in the tree structures, so 
that the tests on the buffer cells are simple list 
membership tests. If they succeed, the rule is run 
and the new state of the parser is defined in the 
call of the reduce procedure. No rule that runs 
will fail unless the input string is unacceptable, 

backtracking over 
Eocked. 

calls to redue can be 
The parser operation is easy to follow, 

and the rules are easy to write. 

Our current Prolog implementation of the Marcus 
parser is not particularly fast, but it should be 
extendable to get greater coverage of the language 
without the substantial increases in parsing time 
that would be expected with extensions of a 
strictly top-dmn parser. The follcwing strings 
were parsed by our campiled DEC-10 Prolog 
implementation in the times indicated: 

[john,has,scheduled,a,meeting,for,wednesday] 
P= [s (1) , [w(2) ,joW I bux(3 I b--f(4) has1 1 I [vp(5 
),[verb(6),scheduled],[np(7),a meeting],[pp(8),for 
wednesday]],[finalpunc,.]] 
time=70ms 

[the,meeting,has,been,scheduled,for,wednesday] 
P= [s (1) , b-q(2) ,ee meeting1 I [aW3 , [perf (4) d-ml 
,[passive(5),been]l,[vp(6),[verb(7),scheduled],[np( 
8) ,trace boundto([the,meeting])],[pp(9),for wednesd 
ayl 1 I [ finalpmc, l 11 
time=84ms 

[the,meeting,seems,to,have,been,schedu1ed,for,wedne 
sdayl 
P= is (1) I bv(2) &he meeting1 I bW3) II [VP(~) I [verb 
(5) ,seems],[np(l6),[~(6),[np(7) ,trace boundto([the, 
meeting])],[aux(8),[to(9),to],[perf(l0),have],[~ss 
ive(ll),beenJ],[vp(l2),[verb(l3),sched~ed],[np(l4) 
,trace boundto([boundto([the,meeting])])],[pp(l5),f 
or wednesday]]]],[finalpunc,.ll 
time=145rrs 

[II 

[21 

131 

[41 
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