
DETERMINISTIC AND BOTTOM-UP PARSING IN PROLOG

Edward P. Stabler, Jr.

University of Western Ontario
London, ranada

It is well kncwn that top-dcwn backtracking
context free parsers are easy towrite in Prolog,
and that these parsers can be extended to give them
the per of ATN's. This report shows that a
number of other familiar parser designs can be very
naturally implemented in Prolog. The top-dotJn
parsers can easily be constrained to do
deterministic parsing of m(k) languages.
Bottcm-up backtrack parsers can also be elegantly
implemented and similarly constrained to do
deterministic m(k) parsing. Very natural
extensions of these I&(k) parser designs suffice
for deterministic parsing of natural languages of
the sort carried out by the Marcus(1980) parser.

I gJT!ROlXKYION

Pereira and Warren(1980) have shcwn that Prolog
provides facilities for writing topdmn
backtracking context free parsers.* For example, a
simple context free grammar like (CFGl) is easily
converted into the Prolog code for the
corresponding parser (CFPl):

(CEw
s --> np vp det --> your
w --> det n n --> claim
np --> det n rel ComP --> that
rel --> camp s v --> is
VP --> v adj adj --> funny

(C=w
s([s,NP,VP],P0,P):-np(NP,P0,Pl),vp(VP,Pl,P).
np([np,Det,N],PB,P):-det(Det,P0,Pl),n(N,Pl,P)*
np([np,Det,N,Pel],P0,P):-det(Det,P0,Pl),n(N,Pl,P2),

rel(Rel,P2,P).
rel([rel,Ccmp,S],P0,P):-comp(Cc-mp,P0,Pl),s(S,Pl,P).
vp([vp,V,Adj] ,PB,P):-v(V,P0,Pl),adj(Adj,Pl,P).
det([det,yourl,[yourIT],T).
n([n,claim] ,[claim]T],T) .
ccmp([comp,that],[thatlT],T).
v([v,isl I [is ITI 2) .
adj (Wj I funny1 , C funny I Tl J) -

* The slight acquaintance with Prolog required for
a complete understanding of this report will just
be presumed. Prolog is coming to be fairly well
kncwn, and there are good introductions to the
language (Clocksin and Mellish, 1981).

In the parser, the category symbols 2, a, yp and
so on, are treated as three place predicates, where
the first argument holds a labelled brackettiny
representing the derivation tree dominated by that
category symbol, andwhere the string to be parsec'
is given in what remains of the list in the second
argument when the list in the third argument place
is taken off its tail. So given (CFPl), the Prolog
query I

s(P,[your,claim,is,funny],[]).

is a request to parse a string generated by the
grammar. The query will succeed and return the
parse tree,

P= [s, hp, WeWoW , b,claU I,
[VP, I% isI r Wj d-y1 11

Since Prolog tries the rules of the grammar in
order, itwill first try to get a successful parse
with the first rule for a, and if this attempt
fails (as itwill for any m containing a a, the
parser will backtrack and the second rule will be
tried.

This kind of parser has all of the problems of
standard context free top-dcwn backtrack parsers:
left recursive rules can cause looping; the
language generated by a context free grammar will
not generally be the language that is parsable by
the corresponding parser (evenwhen the parser does
not loop); and, like any backtracking parser, this
kind of prser can be quite inefficient (Aho and
Ullman, 1972). Pereira and Warren(1980) have
pointed out that we can increase the power of such
a Prolog parser as much as we like by elaborating
the parser rules. It is not hard, for example, to
elaborate the rules of such a parser to produce a
parser that is equivalent to an ATN. A number of
projects have used elaborations of Prolog top-dcwn
context free parsing capabilities with some success
(Pereira and Warren, 1980), but since other parser
designs have particular advantages, it is of
interest to consider whether Prolog is a good
implementation language for them. Deterministic
parsers can be substantially more efficient than
backtrack parsers, and there is some reason to
think that deterministic bottcm-up parser designs
are particularly well suited for natural languages
(Marcus, 1980) . This report will show hew these
parser designs can be implemented very naturally in
Prolog.

383

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

II lidlLLKlpARsING

As was noted, the simple parser presented above
will have to backtrack to parse any m containing a
&l, but it is clear that the parser could always
avoid this backtracking if it could look ahead 3
symbols: All m's will begin with a &t and a T]L,
and only rip's containing a ti will have a mp
after the a. It is easy to elaborate (CFPl) so
that it performs this lookahead to determin-
istically parse the language generated by (CFGl) as
an U(3) language. We need only reverse the two
rules for w so that the rule for the
ccnnplements will be considered first, and chang
that rule so that itwill apply only if the B
"that" is the thirdwordwaiting to be parsed:

(CFP2)
np([np,Det,N,Rel],[Wl,W2,that]T],P):-

!,det(Det,[Wl,W2,that]T],Pl),
n(WLP2) I
rel(Rel,P2,P).

np([np,Det,N],PB,P):-!,det(Det,P0,Pl),
n(N,Pl,P) .*

Obviously, we could use this technique to perform
any test we like on the first k symbols of the
string remaining to be wrsed, so this sort of
implementation will always suffice for LL(k)
parsing. Notice that the Prolog representation of
the function from the first k symbols of the string
to the parser rule to be used is quite perspicuous.

III EEEZHJPPARSING

Bottom-up parsers for context free languages
are quite popular. The simplest and best-kncwn are
the "shift-reduce" parsers which "shift" a symbol
from the input stream into a stack and then try to
"reduce" the structures at the top of the stack to
higher level structures using the grammar rules;
when no more reductions of the symbols at the top
of the stack are possible, another symbol is
shifted frcm the input stream, and so on until the
input stream is empty (or until sOme final
punctuation is reached) and the stack contains only
a sentence structure. The follcwing Prolog parser
for (CEGl) neatly captures this design:

(CFP3)
start([IIXl,P):-parse(X,[I],P).

parse([IIX],Stack,P):-reduce(Stack,Nazlstack),
parse(X,[IINewstack],P) .

parse([],Stack,[slS]):-reduce(Stack,[[s]S]]).

reduce([X]Y],[X2]Y2]):-
reducel([XlY],[XllYl]),
reduce([XlIYl],[X2lY2]).

reduce(X,X).

* The Prolog cut symbol, "!", blocks bactracking.
Since this parser is deterministic, wewant to
begin every rulewith a cut. This will have the
desired effect of causing the parser to abandon any
parse which tries to use a rule and fails.

reducel([your IX] ,I. [det,yourl IX]).
reducel([claimlX],[[n,claim]IX]).
reducel([[n,N],[det,Det] IX],

[[npJdet,Detl, bINI 1 IWL
reducel([thatlX],[[comp,that]]X]).
reducel([[s IS1 v kcqM~p1 IX1 ,

[[rel, k~~?~~pl~ is IS1 1 IX1 1.
reducel([~rellRel],[n,N],[det,Det]lX],

[b-q?, [deWetlI [n,Nl , be1 Dell 1 IX1 1.
=duceU [MC-WI h?lW IX],

[[s, bplNPII [wlW 1 IX1 1.
reducel(] [adjAdjl,[v,Vl IX],

[[VP, b,Vl I Wj dWl1 IX1 1.
reducel([islX],[[v,is]lX]).
reducel([funnylX],[[adj,funny]lXI).

The predicate start takes a list containing the
string to be parsed (the input buffer) as its first
argument, andwill return the labelled bracketting
for that string as its second argument. The
predicate w keeps the remaining input as its
first argument, the active node stack as its second
argument, andwill return the finished labelled
bracketting as its third argument. The parsing
begins when start puts the first symbol of the
input string into the active node stack and calls
the procedure parse. Parse reduces the stack and
then shifts the next input symbol onto the stack,
until the input buffer ic L) empty and the active node
stack contains just one structure dominated by the
sentence category s!. The predicate Educe simply
calls the reducel rules until they no longer apply,
and the reduce1 rules simply match their first
arguments with structures in the stack
corresponding to the right-hand sides of (CEw
grammar rules and return as their second argument a
structure dominated by the category on the left
hand side of the grammar rule. Thus, given the
query r

start([your,claim,is,funny],P).

this parser will shift "your" onto the stack, and
the first reduce1 rule will apply to reduce "your"
to the structure "[det,your]". Another symbol is
then shifted fram the input onto the stack, and so
on until the stack contains the same labelled
bracketting that (CFPl) produces for the string.

Notice that (CFP3) is a backtracking
shift-reduce parser; it will have to backtrack
whenever it parses a string containing a
complement. This is so because whenever it gets?
noun structure and a determiner structure at the
top of the stack, it will reduce them to a
nounphrase structure regardless of whether a
camplement is waiting in the input buffer to be
parsed next. This backtracking can be eliminated,
though, with one symbol of lookahead. We simply
need to constrain the &ucel rule that performs
the m reduction so that itwill not apply if there
is a camp at the head of the input buffer. This
requires that the reduce1 rules apply not only
according towhat is at the top of the stack but
also according to what is in the input buffer; the
nm reduce1 rules accordingly have the input buffer

384

as their first argument. Since every && 0
sequence allcwed by (CEGl) is followed either by
the a "that" or the y "is", the easiest way to
avoid backtracking is simply to allow the simple
noun phrase reduction (i.e., the application of the
third redtucel rule) only when the symbol "is" is at
the head of the input buffer:

(CFP4)
start([IlX],P):-parse(X,[I],P).

parse([IIX],Stack,P) :-reduce([IIX],Stack,Newstack),
!,parse(X,[I]Newstack] ,P) .

parse([],Stack,[slS]):-reduce(Input,Stack,[[slS]])~

reduce(Input,[X]Y],[X2lY2]):-
reducel(Input, [XIY], [XlIYl]),!,
reduce(Input,[XllYl],[X21Y2]).

reduce(Input,X,X).

reducel(Input,[your]X],[[det,your]]X]).
reducel(Input,[claim]X],[[n,claim]lX])~
reducel([islI],[[n,l'J],[det,Det]/X],

[bp, [det,Detl I b,N 1 IX1 1.
reducel(Input,[that]X],[[comp,that]/XI).
reducel(Input,[[slS],[comp,Ccmp] IX],

HreL[ccw,C~pl IMSll IXI).
reducel(Input,[[rel]Rel],[n,N],[det,Det] IX],

[b-q?, Wet,Wtl I [n,Nl I Ire1 IRe111 IX1 IO
reducel(InpuL [[vpl~lr [npbJPl IX1 r

[[s, [nplNPl, WplW 1 IX1 1 l
reducel(Input, [[adj,Adjl , [v,Yl 1x1,

[[VP, bMl, Wj JWI 1 IX1 1 e
reducel(Input,[is]X],[[v,is]lX]).
reducel(Input,[funny]X],[[adj,funny]]X]).

This is a deterministic LR(l) parser for (CFGl).
Obviously, we could allow our &cel. rules to
perform whatever computations we wanted on the
first k symbols of the Input and on the Stack, so
this style of implementationwill suffice for any
U?(k) parsing. Again, the representation of the
function fran the first k symbols of the input and
the active node stack to the parser rule to be used
is perspicuous; it is equivalent to the standard
LR table representations.

v ?HEMARerJSPARSER

Marcus(1980) shcxrJed hew E:e basic design of an
LR(k) parser can be extended to give it sufficient
power to parse English in a very I:atural way. Most
importantly: we allow arbitrary tests on the first
k cells of the input buffer (in Narcus, 1980, k=5);
we allcw the parser to put parse structures into
the cells of the input buffer as well as into the
active node stack; we allow the parser to look
arbitrarily deep into the active node stack; and
we group the parser rules into packets in such a
way that only rules frcm active packets can be
executed, and these packets are activated and
deactivated by the parser rules.

The rules of the Marcus parser arewritten in a
language (Pidgin) which is compiled into Lisp.
Fach grammar rule has the form:

[testl][test2][test3][**c;test4] -> action

where test1 is a test performed on the structure in
the first buffer cell, similarly for test2 and
test3, and test4 is a test on the active node
stack. In our Prolog implementation, corresponding
to each of Elarcus's grmnmar rules there is a parser
rule of the form:*

reduce([First,Second,Third]Restbuffer],
[[Packet,Activenode] IReststack],Counter,P):-

member(name,Packet),
testl(First),
test2(Second),
test3(Third),
test4([[Packet,Activenode]lReststack]),
reduce(Newbuffer,Nmstack,Nmcounter,P).

This form is appropriate since the active packets
are associated with each node in the active node
stack, so the member clause checks to make sure
that the rule me is in the active packet; the
tests on the first three buffer cells and the stack
are done next, and if they succeed, the action
consisting of appropriately modifying the input
buffer and the stack is carried out, and reduce is
called again. The counter is used simply to number
the nodes as they are created and pushed onto the
active node stack. The last argument of reduce is
the completed parse which will be in the active
node stack when final punctuation at the end of a
grammatical string is picked up from the buffer.

The similarity between Marcus's grammar rules
and our prser rules is easy to see. Consider for
example, the following rules from Marcus(1980) and
our corresponding Prolog rules:

(rule MAJOR-DECL-S in ss-start
[=np][=verb]->
Label c s,decl,major.
Deactivate ss-start.Activate parse-s&j.)

(rule YES-NO-Q in ss-start
[=auxverb][=np]->
Label c s,quest,ynquest,major.
Deactivate ss-start.Activate parse-subj.)

/*MZUOR-DECL IN ss-STMT*/
reduce([[First]Treel],[Second]Tree2]]Restbuffer],

[[Packet,[Cat]Tree]] IReststack],Counter,P):-
remove-member(ss-start,Packet,NeiJpacket),
member(np,First),
member(verb,Second),!,
append(Cat,[s,decl,maj] ,NenJcat) ,
reduce([[First]Treel],[Second]Tree2]]

Restbuffer],
[[[parse-subj INewpacket],[Newcatll I
Reststack],
Counter,P).

--a-----------------
* Actually, in our implementation we use additional
argument places in the reduce predicate to handle
Marcus's "attention shift" rules, which are used in
nounphrase parsing, and also for holding case
structures. These rules are beyond the scope of
this discussion, but they do not affect the basic
ideas presented here.

385

/*YESJQ-Q IN SS-START*/
reduce([[First]Treel],[Second]Tree2]]Restbuffer],

[[Packet,[Cat(Tree]J]ReststackJ,Counter,P):-
remove_Tnember(ss-start,Packet,New~cket),
member(auxverb,First),
member(np,Second),!,
append(Cat,[s,quest,ynquest,maj] ,Newcat) ,
reduce([[First]Treel],[Second]Tree2]]

Restbuffer],
[[[parse-subj INew~cket],[Newcat]] I
Reststack],
Counter,P).

Our parser, like Marcus's, associates a list of
features with each node in the tree structures, so
that the tests on the buffer cells are simple list
membership tests. If they succeed, the rule is run
and the new state of the parser is defined in the
call of the reduce procedure. No rule that runs
will fail unless the input string is unacceptable,

backtracking over
Eocked.

calls to redue can be
The parser operation is easy to follow,

and the rules are easy to write.

Our current Prolog implementation of the Marcus
parser is not particularly fast, but it should be
extendable to get greater coverage of the language
without the substantial increases in parsing time
that would be expected with extensions of a
strictly top-dmn parser. The follcwing strings
were parsed by our campiled DEC-10 Prolog
implementation in the times indicated:

[john,has,scheduled,a,meeting,for,wednesday]
P= [s (1) , [w(2) ,joW I bux(3 I b--f(4) has1 1 I [vp(5
),[verb(6),scheduled],[np(7),a meeting],[pp(8),for
wednesday]],[finalpunc,.]]
time=70ms

[the,meeting,has,been,scheduled,for,wednesday]
P= [s (1) , b-q(2) ,ee meeting1 I [aW3 , [perf (4) d-ml
,[passive(5),been]l,[vp(6),[verb(7),scheduled],[np(
8) ,trace boundto([the,meeting])],[pp(9),for wednesd
ayl 1 I [finalpmc, l 11
time=84ms

[the,meeting,seems,to,have,been,schedu1ed,for,wedne
sdayl
P= is (1) I bv(2) &he meeting1 I bW3) II [VP(~) I [verb
(5) ,seems],[np(l6),[~(6),[np(7) ,trace boundto([the,
meeting])],[aux(8),[to(9),to],[perf(l0),have],[~ss
ive(ll),beenJ],[vp(l2),[verb(l3),sched~ed],[np(l4)
,trace boundto([boundto([the,meeting])])],[pp(l5),f
or wednesday]]]],[finalpunc,.ll
time=145rrs

[II

[21

131

[41

Aho, A.V. and J.D. IJl1ma.n (1972) Z&!z m af
PaTsing, TrranslationL&~Volume;b;
Parsina. Englmood Cliffs, M: Prentice-Hall.

Clocksin, W.F. and C.S. Mellish (1981)

RRFFRENCES

Programming in &o.Ug. NW York:
Springer-Verlag.

Marcus, M. (1980) A L&%zy ad Sv'ntactic
w fhr. N&LX& l&nguzge. Cambridge,
MA: MIT Press.

Pereira, F.C.N. and D.H.D. Warren (1980)
Definite clause grammars for natural languages.
Artificial ~telliuence, U., pp.231-278.

