
MAPPING BETWEEN SEMANTIC REPRESENTATIONS
USING HORN CLAUSES’

Ralph M. Weischedel
Computer & Information Sciences

University of Delaware
Newark, DE 197 11

ABSTRACT

Even after an unambiguous semantic interpretation
has been computed for a sentence in context, there are at
least three reasons that a system may map the semantic
representation R into another form S.

1. The terms of R, while reflecting the user
view, may require deeper understanding, e.g.
may require a version S where metaphors
have been analyzed.

2. Transformations of R may be more

appropriate for the underlying application

system, e.g. S may be a more nearly optimal
form. These transformations may not be
linguisticly motivated.

3. Some transformations
structural context.

depend on non-

Design considerations may favor factoring the process into
two stages, for reasons of understandability or for easier
transportability of the components.

This paper describes the use of Horn clauses for the
three classes of transformations listed above. The

transformations are part of a system that converts the
English description of a software module into a formal
specification, i.e. an abstract data type.

1
RESEARCH SPONSORED BY THE AIR FORCE OFFICE OF SCIENTIFIC

RESEARCH, AIR FORCE SYSTEM COMMAND, USAF, UNDER GRANT

NUMBER AFOSR-80-O 19OC. THE UNITED STATES GOVERNMENT IS

AUTHORIZED TO REPRODUCE AND DISTRIBUTE REPRINTS FOR

GOVERNMENTAL PUPOSES NOTWITHSTANDING ANY COPYRIGHT

NOTATION HEREIN.

TRODUCTDON
Parsing, semantic interpretation, definite reference

resolution, quantifier scope decisions, and determining the
intent of a speaker/author are well-known problems of
natural langauge understanding. Yet, even after a system
has generated a semantic representation R where such
decisions have been made, there may still be a need for
further transformation and understanding of the input to
generate a representation S for the underlying application
system. There are at least three reasons for this.

First, consider spatial metaphor. Understanding spatial
metaphor seems to require computing some concrete
interpretation S for the metaphor; however, understanding
the metaphor concretely may be attempted after computing
a semantic representation R that represents the spatial
metaphor formally but without full understanding. Explaining
the system’s interpretation of a user input (e.g. for
clarification dialog, allowing the user to check the system’s
undersanding, etc.) is likely io be more understandable if
the terminology of the user is employed. By having an
intermediate level of understanding such as R, and
generating English output from it, one may not have to
recreate the metaphor, for the terms in R use it as a
primitive.

Second, the needs of the underlying application
system may dictate transformations that are neither essential
to understanding the English text nor linguisticly motivated.
In a data base environment, transformations of the semantic
representation may yield a retrieval request that is
computationally less demanding [1 11. To promote
portability, EUFID Cl31 and TQA [61 are interfaces that
have a separate component for transformations specific to
the data base. In software specification, mapping of the
semantic representation R may yield a form S which is
more amenable for proving theorems about the
specification or for rewriting it into some standard form.

The following example, derived from a definitron of
stacks on page 77 of Cl 01 illustrates both of the reasons
above.

A stack is an ordered list in which all
insertions and deletions occur at one end called
the top.

424

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

A theorem prover for abstract data types would normally
assume that the end of the stack in question is referred to
by a notation such as A[11 if A is the name of the stack,
rather than understanding the spatial metaphor “one end”.

Third, it may be convenrent to design the
transformation process in two phases where the output of
both phases is a semantic representation. In our system,
we have chosen to map certain paraphrases into a common
form via a two step process. The forms “ith element” and
“element i” each generate the same term as a result of
semantic interpretation. However, the semantic interpreter
generates another term for “element at position i” due to
the extra lexical items “at” and “position”. Obviously, all
three expressions correspond to one concept. The
mapping component recognizes that the two terms
generated by the semantic interpreter are paraphrases and
maps them into one form.

Section 2 gives an overview of the system as a
whole. Section 3 describes the use of Horn clauses for
the mapping from R to S. Related research and our
conclusions are presented in sections 4 and 5.

2. BRIEF SYSTEM OVERVIEW
The overall system contains several components

beside the mapping component that is the focus of this
paper. The system takes as input short English texts such
as the data structure descriptions in [lo]. The output is a

formal ;Ispecification
clauses .

of the data structure defined in Horn

First, the RUS parser [3], which includes a large
general-purpose grammar of English, calls a semantic
component to incrementally compute the semantic
interpretation of the phrases being proposed. As soon as
a phrase is proposed by the grammar, the semantic
interpreter either generates a semantic interpretation for the
phrase or vetoes the parse. The only modifications to
adapt the parser to the application of abstract data types
were to add mathematical notation, so that phrases such as
“the list (A [11, A[2], A [Nl I” could be understood. Thus,

a text s%ch as the following can be parsed by the modified
grammar .

2
Horn clauses are a version of first order logic, where all well-

formed formulas have the form C IF Al & A2 & . . . & An. Each of the

AI IS an atomic formula; C IS an atomic formula; and n>=CJ. Therefore,

all variables are free.

3
Thts IS a modlfled version of a definition given on pages 41-42 of

ClOl.

1. We say that an ordered list is empty or it can
be written as (A[11, A[2], A [N]) where
the AC11 are atoms from some set S

2. There are a variety of
performed on these lists.

operations that are

3. These operations include the following

4. Find the length N of the list.

5. Retrieve the ith element, lc=l<=N

6. Store a new value at the ith position, l<=l<=N.

7. Insert a new element at position I, l<=l<=N+ 1
causing elements numbered I, I+ 1, N to
become numbered I+ 1, l+2, N+ 1.

8. Delete :he element at position I, l<=l<=N
causing elements numbered I+ 1, N to
become numbered I, I+ 1, ., N- 1.

The semantic component we developed employs case
frames for disambiguation and generation of the semantic
interpretation of a phrase. However, the semantic
component does not make quantifier scope decisions.

Quantifier scope decisions, reference resolution, and
conversion from first-order logic to Horn clauses is
performed after the semantic interpreter has completed its
processing. The knowledge governing these three tasks is
itself encoded in Horn clauses and was developed by Daniel
Chester. The output from this component is the input to
the mapping component, which is the focus of this paper.
In the appendix, examples of the Horn clause input to the

mapping component are given for some of the sentences
of the text above.

The semantic representation R of a single sentence is
therefore a set of Horn clauses. In addition, the model of
context built in understanding the text up to the current
sentence is a set of Horn clauses and a list of entities
which could be referenced in succeeding sentences. The
mapping component performs the three tasks described in
the previous section to generate a set S of Horn clauses.
S is added to the model of context prior to processing the
next input sentence.

The choice of Horn clauses as the formal
representatron of the abstract data type is based on the
following motivations:

1. Once a text has been understood, the set of
Horn clauses can be added to the knowledge
base (which is also encoded as Horn clauses).
This offers the potential of a system that
grows in power.

425

2. The semantics of Horn clauses, their use in
theorem proving, and their executability makes
them an appropriate formalism for defining
abstract data types.

3. A Horn clause theorem prover [5] allowing
free intermixing of lisp and theorem proving is
readily available.

3. MAPPING IN THE SYSTEM
The rules of the mapping component are all encoded

as Horn clauses. The antecedent atomic formulas of our
rules specify either

1. the structural change to be made in the
collection of formulas or

2. conditions which are not structural in nature
but which must be true if the mapping is to

apply.

An underscore preceding an identifier means that the
identifier is a variable. We will use the notation (MAPPING-

RULE (al . . . am) -x (c 1 . . . ck) -y) to mean that the atomic
formulas a 1 .., am must be present in the list -x of atomic
formulas; the list -x of formulas is assumed to be
implicitly conjoined. The variable -y will be bound to the
result of replacing the formulas al, am in -x with the
formulas c 1, ck. There is a map between two lists, -x
and -y, of atomic formulas if (MAP -x -y) is true.

Three examples are detailed next. For expository
purposes the rules given in this section are simplified.

Consider the following example: A stack is an
ordered list in which all insertions and deletions occur
at one end called the top. ADD/IS) adds item I to stack
S. In this environment spatial metaphors tend to be more
frozen than creative. To understand “one end”, we assume
the following rules:

1. For a sequence -D, we may map “-E is an
end of -D” to “-E is the first sequence
element of -D”.

2. An ordered list is a sequence.

Facts (1) and (2) are encoded as Horn clauses below.

I. (MAP -X ,Y) IF
(SEQUENCE -D) &
(MAPPING-RULE

((END -E -D)) -X
((SEQUENCE-ELEMENT -E 1 -D)) -Y)

2. (SEQUENCE -D) IF (ORDERED-LIST ,D)

The system knows how to map the notion of “end of a
sequence”, and it knows that ordered lists are sequences.

Since the first sentence is discussing the end of an
ordered list, the two rules above are sufficient to map
“end” into the appropriate concrete semantic representation.
The power and generality of this approach is that

- a chain of reasoning may show how to view
some entity -D as a sequence (and therfore
the rules show how to interpret “end of -D”),
and

- other mapping rules may state how to
interpret spatial metaphors unrelated to “end”
or to sequences.

We propose that the same mechanism can deal with
certain vague, extended uses of words, such as add in the
previous example. In stating that ADD(I,S) adds item I to
stack S, add cannot be predefined for stacks, since its
meaning is being defined. Nevertheless, it is reasonable to
assume that there is a general relation between add and
related concepts such as uniting, including, or, in the data
structure environments, inserting. Consequently, we
propose the following fact in addition to the two above:

- For a sequence -S, we may map “add _I to
-s” to “insert _I at some position -X of
,S”.

It may be stated formally as

(MAP -W ,Z) IF
(MAPPING-RULE ((ADD -I -S)) -W

((INSERT -I -S -X)) -Z)
& (SEQUENCE -S)

Notice that -X will be unbound. However, the Horn
clauses generated for the first sentence (A stack is an
ordered list in which a// insertions and deletions occur
at one end ca/led the top) will imply that -X is the
position corresponding to the end called top. Therefore,
the vague, extended use of “add’ can be understood using
the inference mechanism of the mapping component. Other
rules may state how to interpret an extended use of add
by relating it to views other than sequences.

Another example involves mapping the forms ‘7th
element”, “element i”, and “element at position i” into the
same representation. Assume that the semantic interpreter
generates for each of the first two the list of formulas
((ELEMENT -X) (IDENTIFIED-BY -X -Y)). The Horn clause
for that mapping is as follows:

(MAP -W -Z) IF
(SEQUENCE -T) & (TOPIC -T) &
(MAPPING-RULE

((ELEMENT ,X) (IDENTIFIED-BY -X ,Y))
-W ((SEQUENCE-ELEMENT -X -Y -T)) -Z)

Note that this rule assumes that in context some sequence
-T has been identified as the topic; the rule identifies that
the element -X is the -Yth member of the sequence -T.
For the phrase “element at position i”, assume the semantic
interpreter generates the list of formulas ((ELEMENT -XI

(AT -X (POSITION -PII (IDENTIFIED-BY -P -VI). The
mapping rule for it is similar to the one above.

(MAP -W -2) IF
(SEQUENCE -T) & (TOPIC -T) &
(MAPPING-RULE

((ELEMENT -XI (AT -X (POSITION -PII
(IDENTIFIED-BY -P -Y))

-W ((SEQUENCE-ELEMENT -X -Y -T)) ,Z)

This second rule must be tried before the prior one.

The mapping component maps from a representation
R of a single sentence to another representation S, given
the context of the sentence. For Horn clauses, mapping
rules may apply to the antecedents or to the consequents.
For each Horn clause, its antecedents are collected in a list
and bound to -W in the relation (MAP -W -Z). The
result of applying one rule is bound to -Z. Mapping is
then tried on the result -Z, and so on until no more rules

apply. In additin to applying to antecedents, mapping rules
apply to the consequents C 1, Ck (k>O) of Horn clauses
having the same list of antecedents. C 1, Ck are
collected in a list and bound to -W in the relation (MAP

-W -Z) as for the case of antecedents. The mapper
halts when no more rules can be applied. The result of the
mapping is a new set of Horn clauses which are the
representation S.

4. RELATED WORK
A number of applied Al systems have been

developed to support automating software construction
[1, 8, 2, 71. Of these. only our effort has focussed on

the mapping problem.

Viewing spatial metaphors in terms of a scale was
proposed in [S]. Our model is somewhat more general in
that the inference process

- permits specific constraints for each
metaphor, not just the one view of a scale,
and

- accounts for other mapping
addition to spatial metaphor.

problems in

A very similar approach to mapping has been
proposed in [12]. Instead of using Horn clauses as the
formalism for mapping, they encode their rules in KL-ONE

c41. The concern in [121 is inferring the appropriate
service to perform in response to a user request, rather
than demonstrating means of interpreting spatial metaphors
or of finding contextually dependent paraphrases.

5. CONCLUSIONS
There are several reasons why one may have a

second transduction phase even after a semantic
representation for an utterance has been computed. The
advantage of using Horn clauses (or any other deduction
mechanism) in this mapping phase is the ability to include
nonstructural conditions. This means that the mapping rules
may be based on reasoning about the context.

There are three areas for future work:

- generating
texts,

mapping

- investigating use of the mapping
reference resolution, and

on additional

component in

- developing an indexing technique to
mapper in a forward chaining mode.

run the

APPENDIX

For sentences 3 through 7 of the example text in
section 2, we include here the actual Horn clauses that
serve as the output of the semantic component and as the
input to the mapping component. The English that
generated the Horn clauses is provided for reference in
italics; it is not supplied as input to the mapping component.
Ampersands have been inserted for expository purposes.

These operations include the following.

(((INCLUDE A 16 A3401
IF (FOLLOW A3401

& (EQUIV Al6
(SETOF A0034

(AND (OPERATION A0034)
(PERFORM NIL A0034 A231111

& (LIST A23) & (ORDER NIL A23)))

Find the length, N, of the list.

(((EQUIV (A0037 A231 NI
IF (LIST A231 & (ORDER NIL A2311

((LENGTH (A0038 A231 A231
IF (LIST A231 & (ORDER NIL A2311

(((EQUIV (A0038 A231 (A0037 A23111
IF (LIST A231 & (ORDER NIL A23))

((FOLLOW (FIND NIL (A0038 A23111
IF (LIST A23) & (ORDER NIL A231))

Retrieve the ith element, I<= I<= N.

(((LE 1 1)
IF (ELEMENT A221 & (IDENTIFIED-BY NIL A22 I))

((LE I N)
IF (ELEMENT A22) & (IDENTIFIED-BY NIL A22 I))

((FOLLOW (RETRIEVE-FROM NIL A22 NIL))
IF (ELEMENT A221 & (IDENTIFIED-BY NIL A22 1)))

427

Store a new value into the ith position, l<=l<=N.

(((LE I I)
IF (POSITION A33) & (IDENTIFIED-BY NIL A33 I)

& (VALUE Al 5) & (NEW Al 5))

((LE I N)
IF (POSITION A331 & (IDENTIFIED-BY NIL A33 I)

& (VALUE A15) & (NEW A15))
((FOLLOW (STORE NIL Al 5 (INTO A331))

IF (POSITION A331 & (IDENTIFIED-BY NIL A33 I)
& (VALUE A151 & (NEW A15111

Insert a new element at position I, I<=l<= N+ I
causing elements numbered I,/ + I,...,N to become numbered
I + I,! +2 I..., N+ 7.

(((POSITION (A0062 A 18))

IF (ELEMENT A181 & (NEW A1811
((IDENTIFIED-BY NIL (A0062 A181 I)

IF (ELEMENT Al 8) & (NEW A18))
((LE 1 I) IF (ELEMENT Al 8) & (NEW A 18))
((LE I (PLUS N 1)) IF (ELEMENT A 18) & (NEW A 18))
((FOLLOW (INSERT NIL Al 8 NIL (AT (A0062 Al 8))))

IF (ELEMENT A181 & (NEW A1811
((ITEM-OF (A0063 A54 A181

NIL
(SEQUENCE (PLUS I 1) (PLUS I 2)

ELLIPSIS (PLUS N 1)))
IF (ELEMENT A541

& (ITEM-OF A62 NIL
(SEQUENCE I (PLUS I 1) ELLIPSIS N))

& (IDENTIFIED-BY NIL A54 A621
& (NUMBER A621 & (ELEMENT Al 8) & (NEW A1811

((CAUSE (INSERT NIL Al 8 NIL (AT (A0062 A 18)))
(COME-ABOUT

(AND (IDENTIFIED-BY NIL A54 (A0063 A54 A18))
(NUMBER (A0063 A54 A 18)))))

IF (ELEMENT A541
&

&
&

Cl1

L-21

c31

(ITEM-OF A62 NIL
(SEQUENCE I (PLUS I 1) ELLIPSIS N))

(IDENTIFIED-BY NIL A54 A621
(NUMBER A62) & (ELEMENT Al 8) & (NEW A18111

REFERENCES

Robert Balzer, Neil Goldman, and David Wile.
Informality in Program Specification.
IEEE Transactions on Software Engineering

SE-4(2), March, 1978.

Alan W. Biermann and Bruce W. Ballard.
Toward Natural Language Computation.
American Journal of Computational Linguistics

6(2), 1980.

R. J. Bobrow.
The RUS System.
In B.L. Webber, R. Bobrow (editors), Research in

Natural Language Understanding, Bolt,
Beranek and Newman, Inc., Cambridge, MA,
1978.

BBN Technical Report 3878.

c41

c51

II431

c71

[81

c91

Cl01

Cl 11

II121

Cl31

Ronald Brachman.
A Structural Paradigm for Representing

Knowledge.
Technical Report, Bolt, Beranek, and Newman, Inc.,

1978.

Daniel L. Chester.
HCPRVR: An Interpreter for Logic Programs.
In Proceedings of the National Conference for

Artificial Intelligence, pages 93-95.
American Asociation for Artificial Intelligence,
Aug, 1980.

Fred J. Damerau.
Operating Statistics for the Transformational

Question Answering System.
American Journal of Computational linguistics

7(1):30-42, 1981.

Fernando Gomez.
Towards a Theory of Comprehension of Declarative

Contexts.
In Proceedings of the 20th Annual Meeting of the

Association for Computational Linguisitcs,
pages 36-43. Association for Computational
Linguistics, June, 1982.

C. Green.
The Design of the PSI Program Synthesis System
In Second International Conference on Software

Engineering. IEEE Computer Society, Ott,
1976.

Jerry R. Hobbs.
What the Nature of Natural Language Tells us about

how to Make Natural-Langauge-Like
Programming More Natural.

In SIGPLAN Notices, pages 85-93. SIGPLAN,
1977.

Ellis Horowitz and Sartaj Sahni.
Fundamentals of Data Structures.
Computer Science Press, Woodland Hills, CA, 1976

Jonathan J. King.
Intelligent Retrieval Planning.
In Proceedings of the National Conference for

Artificial Intelligence, pages 243-245.
American Asociation for Artificial Intelligence,
Aug, 1980.

William Mark.
Rule-Based Inference In Large Knowledge Bases.
In Proceedings of the National Conference on

Artificial Intelligence. American Association
for Artificial Intelligence, August, 1980.

Marjorie Templeton and John Burger.
Problems in Natural Language Interface fo DBMS

with Examples from EUFID.
In Conference on Natural Language Processing,

pages 3- 16. Association for Computational
Linguistics, Feb, 1983.

428

