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ABSTRACT 

Even after an unambiguous semantic interpretation 
has been computed for a sentence in context, there are at 
least three reasons that a system may map the semantic 
representation R into another form S. 

1. The terms of R, while reflecting the user 
view, may require deeper understanding, e.g. 
may require a version S where metaphors 
have been analyzed. 

2. Transformations of R may be more 

appropriate for the underlying application 

system, e.g. S may be a more nearly optimal 
form. These transformations may not be 
linguisticly motivated. 

3. Some transformations 
structural context. 

depend on non- 

Design considerations may favor factoring the process into 
two stages, for reasons of understandability or for easier 
transportability of the components. 

This paper describes the use of Horn clauses for the 
three classes of transformations listed above. The 

transformations are part of a system that converts the 
English description of a software module into a formal 
specification, i.e. an abstract data type. 
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TRODUCTDON 
Parsing, semantic interpretation, definite reference 

resolution, quantifier scope decisions, and determining the 
intent of a speaker/author are well-known problems of 
natural langauge understanding. Yet, even after a system 
has generated a semantic representation R where such 
decisions have been made, there may still be a need for 
further transformation and understanding of the input to 
generate a representation S for the underlying application 
system. There are at least three reasons for this. 

First, consider spatial metaphor. Understanding spatial 
metaphor seems to require computing some concrete 
interpretation S for the metaphor; however, understanding 
the metaphor concretely may be attempted after computing 
a semantic representation R that represents the spatial 
metaphor formally but without full understanding. Explaining 
the system’s interpretation of a user input (e.g. for 
clarification dialog, allowing the user to check the system’s 
undersanding, etc.) is likely io be more understandable if 
the terminology of the user is employed. By having an 
intermediate level of understanding such as R, and 
generating English output from it, one may not have to 
recreate the metaphor, for the terms in R use it as a 
primitive. 

Second, the needs of the underlying application 
system may dictate transformations that are neither essential 
to understanding the English text nor linguisticly motivated. 
In a data base environment, transformations of the semantic 
representation may yield a retrieval request that is 
computationally less demanding [ 1 11. To promote 
portability, EUFID Cl31 and TQA [61 are interfaces that 
have a separate component for transformations specific to 
the data base. In software specification, mapping of the 
semantic representation R may yield a form S which is 
more amenable for proving theorems about the 
specification or for rewriting it into some standard form. 

The following example, derived from a definitron of 
stacks on page 77 of Cl 01 illustrates both of the reasons 
above. 

A stack is an ordered list in which all 
insertions and deletions occur at one end called 
the top. 
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A theorem prover for abstract data types would normally 
assume that the end of the stack in question is referred to 
by a notation such as A[ 11 if A is the name of the stack, 
rather than understanding the spatial metaphor “one end”. 

Third, it may be convenrent to design the 
transformation process in two phases where the output of 
both phases is a semantic representation. In our system, 
we have chosen to map certain paraphrases into a common 
form via a two step process. The forms “ith element” and 
“element i” each generate the same term as a result of 
semantic interpretation. However, the semantic interpreter 
generates another term for “element at position i” due to 
the extra lexical items “at” and “position”. Obviously, all 
three expressions correspond to one concept. The 
mapping component recognizes that the two terms 
generated by the semantic interpreter are paraphrases and 
maps them into one form. 

Section 2 gives an overview of the system as a 
whole. Section 3 describes the use of Horn clauses for 
the mapping from R to S. Related research and our 
conclusions are presented in sections 4 and 5. 

2. BRIEF SYSTEM OVERVIEW 
The overall system contains several components 

beside the mapping component that is the focus of this 
paper. The system takes as input short English texts such 
as the data structure descriptions in [lo]. The output is a 

formal ;Ispecification 
clauses . 

of the data structure defined in Horn 

First, the RUS parser [3], which includes a large 
general-purpose grammar of English, calls a semantic 
component to incrementally compute the semantic 
interpretation of the phrases being proposed. As soon as 
a phrase is proposed by the grammar, the semantic 
interpreter either generates a semantic interpretation for the 
phrase or vetoes the parse. The only modifications to 
adapt the parser to the application of abstract data types 
were to add mathematical notation, so that phrases such as 
“the list (A [ 11, A[2], . . . . A [Nl I” could be understood. Thus, 

a text s%ch as the following can be parsed by the modified 
grammar . 

2 
Horn clauses are a version of first order logic, where all well- 

formed formulas have the form C IF Al & A2 & . . . & An. Each of the 

AI IS an atomic formula; C IS an atomic formula; and n>=CJ. Therefore, 

all variables are free. 

3 
Thts IS a modlfled version of a definition given on pages 41-42 of 

ClOl. 

1. We say that an ordered list is empty or it can 
be written as (A[ 11, A[2], . . . . A [N]) where 
the AC11 are atoms from some set S 

2. There are a variety of 
performed on these lists. 

operations that are 

3. These operations include the following 

4. Find the length N of the list. 

5. Retrieve the ith element, lc=l<=N 

6. Store a new value at the ith position, l<=l<=N. 

7. Insert a new element at position I, l<=l<=N+ 1 
causing elements numbered I, I+ 1, . . . . N to 
become numbered I+ 1, l+2, . . . . N+ 1. 

8. Delete :he element at position I, l<=l<=N 
causing elements numbered I+ 1, . . . . N to 
become numbered I, I+ 1, ., N- 1. 

The semantic component we developed employs case 
frames for disambiguation and generation of the semantic 
interpretation of a phrase. However, the semantic 
component does not make quantifier scope decisions. 

Quantifier scope decisions, reference resolution, and 
conversion from first-order logic to Horn clauses is 
performed after the semantic interpreter has completed its 
processing. The knowledge governing these three tasks is 
itself encoded in Horn clauses and was developed by Daniel 
Chester. The output from this component is the input to 
the mapping component, which is the focus of this paper. 
In the appendix, examples of the Horn clause input to the 

mapping component are given for some of the sentences 
of the text above. 

The semantic representation R of a single sentence is 
therefore a set of Horn clauses. In addition, the model of 
context built in understanding the text up to the current 
sentence is a set of Horn clauses and a list of entities 
which could be referenced in succeeding sentences. The 
mapping component performs the three tasks described in 
the previous section to generate a set S of Horn clauses. 
S is added to the model of context prior to processing the 
next input sentence. 

The choice of Horn clauses as the formal 
representatron of the abstract data type is based on the 
following motivations: 

1. Once a text has been understood, the set of 
Horn clauses can be added to the knowledge 
base (which is also encoded as Horn clauses). 
This offers the potential of a system that 
grows in power. 
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2. The semantics of Horn clauses, their use in 
theorem proving, and their executability makes 
them an appropriate formalism for defining 
abstract data types. 

3. A Horn clause theorem prover [5] allowing 
free intermixing of lisp and theorem proving is 
readily available. 

3. MAPPING IN THE SYSTEM 
The rules of the mapping component are all encoded 

as Horn clauses. The antecedent atomic formulas of our 
rules specify either 

1. the structural change to be made in the 
collection of formulas or 

2. conditions which are not structural in nature 
but which must be true if the mapping is to 

apply. 

An underscore preceding an identifier means that the 
identifier is a variable. We will use the notation (MAPPING- 

RULE (al . . . am) -x (c 1 . . . ck) -y) to mean that the atomic 
formulas a 1 .., am must be present in the list -x of atomic 
formulas; the list -x of formulas is assumed to be 
implicitly conjoined. The variable -y will be bound to the 
result of replacing the formulas al, . . . . am in -x with the 
formulas c 1, . . . . ck. There is a map between two lists, -x 
and -y, of atomic formulas if (MAP -x -y) is true. 

Three examples are detailed next. For expository 
purposes the rules given in this section are simplified. 

Consider the following example: A stack is an 
ordered list in which all insertions and deletions occur 
at one end called the top. ADD/IS) adds item I to stack 
S. In this environment spatial metaphors tend to be more 
frozen than creative. To understand “one end”, we assume 
the following rules: 

1. For a sequence -D, we may map “-E is an 
end of -D” to “-E is the first sequence 
element of -D”. 

2. An ordered list is a sequence. 

Facts ( 1) and (2) are encoded as Horn clauses below. 

I. (MAP -X ,Y) IF 
(SEQUENCE -D) & 
(MAPPING-RULE 

((END -E -D)) -X 
((SEQUENCE-ELEMENT -E 1 -D)) -Y) 

2. (SEQUENCE -D) IF (ORDERED-LIST ,D) 

The system knows how to map the notion of “end of a 
sequence”, and it knows that ordered lists are sequences. 

Since the first sentence is discussing the end of an 
ordered list, the two rules above are sufficient to map 
“end” into the appropriate concrete semantic representation. 
The power and generality of this approach is that 

- a chain of reasoning may show how to view 
some entity -D as a sequence (and therfore 
the rules show how to interpret “end of -D”), 
and 

- other mapping rules may state how to 
interpret spatial metaphors unrelated to “end” 
or to sequences. 

We propose that the same mechanism can deal with 
certain vague, extended uses of words, such as add in the 
previous example. In stating that ADD(I,S) adds item I to 
stack S, add cannot be predefined for stacks, since its 
meaning is being defined. Nevertheless, it is reasonable to 
assume that there is a general relation between add and 
related concepts such as uniting, including, or, in the data 
structure environments, inserting. Consequently, we 
propose the following fact in addition to the two above: 

- For a sequence -S, we may map “add _I to 
-s” to “insert _I at some position -X of 
,S”. 

It may be stated formally as 

(MAP -W ,Z) IF 
(MAPPING-RULE ((ADD -I -S)) -W 

((INSERT -I -S -X)) -Z) 
& (SEQUENCE -S) 

Notice that -X will be unbound. However, the Horn 
clauses generated for the first sentence (A stack is an 
ordered list in which a// insertions and deletions occur 
at one end ca/led the top) will imply that -X is the 
position corresponding to the end called top. Therefore, 
the vague, extended use of “add’ can be understood using 
the inference mechanism of the mapping component. Other 
rules may state how to interpret an extended use of add 
by relating it to views other than sequences. 

Another example involves mapping the forms ‘7th 
element”, “element i”, and “element at position i” into the 
same representation. Assume that the semantic interpreter 
generates for each of the first two the list of formulas 
((ELEMENT -X) (IDENTIFIED-BY -X -Y)). The Horn clause 
for that mapping is as follows: 

(MAP -W -Z) IF 
(SEQUENCE -T) & (TOPIC -T) & 
(MAPPING-RULE 

((ELEMENT ,X) (IDENTIFIED-BY -X ,Y)) 
-W ((SEQUENCE-ELEMENT -X -Y -T)) -Z) 



Note that this rule assumes that in context some sequence 
-T has been identified as the topic; the rule identifies that 
the element -X is the -Yth member of the sequence -T. 
For the phrase “element at position i”, assume the semantic 
interpreter generates the list of formulas ((ELEMENT -XI 

(AT -X (POSITION -PII (IDENTIFIED-BY -P -VI). The 
mapping rule for it is similar to the one above. 

(MAP -W -2) IF 
(SEQUENCE -T) & (TOPIC -T) & 
(MAPPING-RULE 

((ELEMENT -XI (AT -X (POSITION -PII 
(IDENTIFIED-BY -P -Y)) 

-W ((SEQUENCE-ELEMENT -X -Y -T)) ,Z) 

This second rule must be tried before the prior one. 

The mapping component maps from a representation 
R of a single sentence to another representation S, given 
the context of the sentence. For Horn clauses, mapping 
rules may apply to the antecedents or to the consequents. 
For each Horn clause, its antecedents are collected in a list 
and bound to -W in the relation (MAP -W -Z). The 
result of applying one rule is bound to -Z. Mapping is 
then tried on the result -Z, and so on until no more rules 

apply. In additin to applying to antecedents, mapping rules 
apply to the consequents C 1, . . . . Ck (k>O) of Horn clauses 
having the same list of antecedents. C 1, . . . . Ck are 
collected in a list and bound to -W in the relation (MAP 

-W -Z) as for the case of antecedents. The mapper 
halts when no more rules can be applied. The result of the 
mapping is a new set of Horn clauses which are the 
representation S. 

4. RELATED WORK 
A number of applied Al systems have been 

developed to support automating software construction 
[ 1, 8, 2, 71. Of these. only our effort has focussed on 

the mapping problem. 

Viewing spatial metaphors in terms of a scale was 
proposed in [S]. Our model is somewhat more general in 
that the inference process 

- permits specific constraints for each 
metaphor, not just the one view of a scale, 
and 

- accounts for other mapping 
addition to spatial metaphor. 

problems in 

A very similar approach to mapping has been 
proposed in [12]. Instead of using Horn clauses as the 
formalism for mapping, they encode their rules in KL-ONE 

c41. The concern in [ 121 is inferring the appropriate 
service to perform in response to a user request, rather 
than demonstrating means of interpreting spatial metaphors 
or of finding contextually dependent paraphrases. 

5. CONCLUSIONS 
There are several reasons why one may have a 

second transduction phase even after a semantic 
representation for an utterance has been computed. The 
advantage of using Horn clauses (or any other deduction 
mechanism) in this mapping phase is the ability to include 
nonstructural conditions. This means that the mapping rules 
may be based on reasoning about the context. 

There are three areas for future work: 

- generating 
texts, 

mapping 

- investigating use of the mapping 
reference resolution, and 

on additional 

component in 

- developing an indexing technique to 
mapper in a forward chaining mode. 

run the 

APPENDIX 

For sentences 3 through 7 of the example text in 
section 2, we include here the actual Horn clauses that 
serve as the output of the semantic component and as the 
input to the mapping component. The English that 
generated the Horn clauses is provided for reference in 
italics; it is not supplied as input to the mapping component. 
Ampersands have been inserted for expository purposes. 

These operations include the following. 

(((INCLUDE A 16 A3401 
IF (FOLLOW A3401 

& (EQUIV Al6 
(SETOF A0034 

(AND (OPERATION A0034) 
(PERFORM NIL A0034 A231111 

& (LIST A23) & (ORDER NIL A23))) 

Find the length, N, of the list. 

(((EQUIV (A0037 A231 NI 
IF (LIST A231 & (ORDER NIL A2311 

((LENGTH (A0038 A231 A231 
IF (LIST A231 & (ORDER NIL A2311 

(((EQUIV (A0038 A231 (A0037 A23111 
IF (LIST A231 & (ORDER NIL A23)) 

((FOLLOW (FIND NIL (A0038 A23111 
IF (LIST A23) & (ORDER NIL A231)) 

Retrieve the ith element, I<= I<= N. 

(((LE 1 1) 
IF (ELEMENT A221 & (IDENTIFIED-BY NIL A22 I)) 

((LE I N) 
IF (ELEMENT A22) & (IDENTIFIED-BY NIL A22 I)) 

((FOLLOW (RETRIEVE-FROM NIL A22 NIL)) 
IF (ELEMENT A221 & (IDENTIFIED-BY NIL A22 1))) 
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Store a new value into the ith position, l<=l<=N. 

(((LE I I) 
IF (POSITION A33) & (IDENTIFIED-BY NIL A33 I) 

& (VALUE Al 5) & (NEW Al 5)) 

((LE I N) 
IF (POSITION A331 & (IDENTIFIED-BY NIL A33 I) 

& (VALUE A15) & (NEW A15)) 
((FOLLOW (STORE NIL Al 5 (INTO A331)) 

IF (POSITION A331 & (IDENTIFIED-BY NIL A33 I) 
& (VALUE A151 & (NEW A15111 

Insert a new element at position I, I<=l<= N+ I 
causing elements numbered I,/ + I,...,N to become numbered 
I + I,! +2 I..., N+ 7. 

(((POSITION (A0062 A 18)) 

IF (ELEMENT A181 & (NEW A1811 
((IDENTIFIED-BY NIL (A0062 A181 I) 

IF (ELEMENT Al 8) & (NEW A18)) 
((LE 1 I) IF (ELEMENT Al 8) & (NEW A 18)) 
((LE I (PLUS N 1)) IF (ELEMENT A 18) & (NEW A 18)) 
((FOLLOW (INSERT NIL Al 8 NIL (AT (A0062 Al 8)))) 

IF (ELEMENT A181 & (NEW A1811 
((ITEM-OF (A0063 A54 A181 

NIL 
(SEQUENCE (PLUS I 1) (PLUS I 2) 

ELLIPSIS (PLUS N 1))) 
IF (ELEMENT A541 

& (ITEM-OF A62 NIL 
(SEQUENCE I (PLUS I 1) ELLIPSIS N)) 

& (IDENTIFIED-BY NIL A54 A621 
& (NUMBER A621 & (ELEMENT Al 8) & (NEW A1811 

((CAUSE (INSERT NIL Al 8 NIL (AT (A0062 A 18))) 
(COME-ABOUT 

(AND (IDENTIFIED-BY NIL A54 (A0063 A54 A18)) 
(NUMBER (A0063 A54 A 18))))) 

IF (ELEMENT A541 
& 

& 
& 

Cl1 

L-21 

c31 

(ITEM-OF A62 NIL 
(SEQUENCE I (PLUS I 1) ELLIPSIS N)) 

(IDENTIFIED-BY NIL A54 A621 
(NUMBER A62) & (ELEMENT Al 8) & (NEW A18111 
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