
INTERACTWE SCRIPT INSTANTIATION
Michael J. Pazzani
The MITRE Corporation
Bedford, MA 01730

ABSTRACT

The KNOBS [ENGELMAN 801 planning system is an
experimental expert system which assists a user by
instantiating a stereotypical solution to his
problem. sm, the natural language
understanding component of KNOBS, can engage in a
dialog with the user to allow him to enter
components of a plan or to ask questions about the
contents of a database which describes the
planning world. User input is processed with
respect to several knowledge sources including
word definitions, scripts which describe the
relationships among the scenes of the problem
solution, and four production system rule bases
which determine the proper database access for
answering questions, infer missing meaning
elements, describe how to conduct a conversation,
and monitor the topic of the conversation. SNUKA
differs from GUS [BOBROW 771, a dialog system
similar to SNUKA in its goals, in its use of a
script to guide the conversation, interpret
indirect answers to questions, determine the
referents of nominals, perform inferences to
answer the user's questions, and decide upon the
order of asking questions of the user to maintain
a coherent conversation. SNUKA differs from other
script-based language understanders such as SAM
[CULLINGFORD 781 and FRUMP [DEJONG 791 in its role
as a conversational participant instead of a story
understander.

I INTRODUCTION

In this paper, we wish to illustrate the
knowledge sources necessary to participate in a
type of natural language dialog. The type of
dialog we wish to consider occurs when a person
whom we will call "the planner" asks a person (or
computer) whom we will call "the servant" to
perform or arrange for the performance of a
commonly occuring activity. Conversations of this
sort are often held with travel agents,
secretaries, military aids, building contractors,
stockbrokers, etc. Most importantly, as the
fields of knowledge based expert systems and
natural language understanding emerge, these
conversations will occur with a computer playing
the part of the servant. The objective of this
type of conversation is for the planner to

describe to the servant the type of activity to be
carried out, and to name the particular objects
and persons participating in this activity. The
servant is often capable of criticizing the
planner's plan, or answering questions about
objects and the roles they can play in the plan.
We will call the processing the servant does in
this type of conversation interactive script
instantiation.

We utilize scripts as the knowledge source
for participating in these stereotypical
conversations to contain and control the inference
processes needed during understanding. Three
situations which require inference during dialog
understanding have been identified: the
understanding of indirect answers to questions,
the memory search required to answer questions and
the recognition of intentions from questions or
requests. In addition, the script can serve as
the model of a plan which is being generated. The
model is used to help conduct a coherent
conversation. We have also introduced the notion
of conversation rules to help the servant decide
how to generate responses and take initiative in
the conversation. We have implemented our ideas
in a computer program called SNUKA, the natural
language dialog component of the KNOBS system.

II APPLICATION

The KNOBS system supports a planner by
checking the consistency of plan components,
enumerating or ranking possible choices for plan
components, or automatically generating a complete
plan. KNOBS embodies a model of stereotypical
planning, where a generic solution to the plan is
known and the planner's task is to instantiate an
individual plan solution with a consistent set of
plan variable bindings. (The plan variables are
represented as slots of FRL frames [ROBERTS 771.)
The current application domains of KNOBS are the
planning of an Air Force tactical air mission, the
planning of a Naval "show the flag" mission and
the scheduling of crew activities of the NASA
space shuttle. A sample conversation with KNOBS
demonstrates both its planning and its
conversational capabilities:

320

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

1. USER:

2. KNOBS:
3. USER:
4. KNOBS:
5. KNOBS:

6. USER:

7. KNOBS:

8. USER:
9. KNOBS:

10. USER:
11. KNOBS:

12. USER:

13. KNOBS:

14. USER:
15. KNOBS:

16. USER:

17. KNOBS:

I want to send 4 aircraft from the
707th Fighter Wing to strike Boston
between 1140 and noon.
Which aircraft do you want to send?
What aircraft can the wing supply?
The 707th Fighter Wing has F-4s.
Would you like to use F-4s for the
aircraft?
No, F-16s from the 606th Fighter
Wing.
The 606th Fighter Wing does not
contain F-16s.
Where are there F-16s?
There are F-16s at Kennedy and
LaGuardia.
What wings at LaGuardia have them?
The 808th Fighter Wing and the 909th
Fighter Wing have F-16s.
Fly them out of the 808th Fighter
Wing at LaGuardia.
What weapon system should the F-16s
carry?
Which are acceptable?
The acceptable weapon systems are Dl,
D2, and D4.
Hit the target with D4 and plan the
rest.
The time over target is 1150.
The time of departure is 1120.
The call sign is PEACE 7.
The transponder code is 5351.

Sentences (7), (15) and (17) respectively
illustrate the constraint checking, enumeration,
and automatic planning aspects of the KNOBS
system. (1) is an example of entering a range as
a restriction for a plan variable value which is
later refined by KNOBS. (In addition to
dialog-driven planning, the KNOBS system provides
a menu-based interface with these same
capabilities.)

SNUKA uses APE-II [PAZZANI 831, a conceptual
dependency (CD) [SCHANK 721 parser, to produce a
meaning representation of user input by consulting
expectations from word definitions, expectations
from scripts, expectations activated by system
generated questions, and a database of object
primitives [LEHNERT 78b]. Once the meaning of the
user's utterance has been represented, an
appropriate response is produced by means of a set
of conversational rules. Simple rules state such

things as that questions should be answered; more
complex rules monitor the topics of the
conversation and activate or deactivate
expectations when the topic changes. A question
is answered by invoking productions which are
composed of three facets: a test, which is a CD
pattern which typically binds variables to the
major nominals in a question conceptualization; an
action, which utilizes the referents of these
nominals to produce a database query; and a
response which is a template English sentence in
which the answer and referents are inserted.
(SNUKA currently does not include a natural
language generation component.) This approach to
question answering is discussed in further detail
in [PAZZANI 831.

The remainder of this paper will first
describe some prior related work, and then discuss
the method of understanding the user's commands
and replies as well as the method of making
inferences when required to interpret a user's
query.

III RELATED WORK

GUS is a frame-driven dialog system which
performs the role of a travel agent. It operates
by instantiating a frame and sequentially finding
fillers for the slots of this frame, directed by a
specification found in its prototype. When this
specification instructs GUS to ask the client a
question, GUS activates an expectation which is a
skeletal sentence in which the client's response
can be inserted to handle ellipsis by forming a
syntactically complete sentence. The client's
response is expected to specify a value for this
slot, although the client can gain some initiative
by asking a question or supplying values for other
(or additional) slots.

321

actions which occur in a context. This knowledge
can be used to help answer the user's questions,
to extract the bindings of plan variables (script
roles) from the user's utterances, to determine
the questions which must be asked of the user and
the order in which they are asked, and to assist
the parsing process in selecting word senses and
pronominal referents when analyzing the user's
input.

A. Inference

The question answering component of SNUKA can
use the inference patterns of the script to
respond to an extended range of questions.
Because the KNOBS databases are static
descriptions of the attributes of objects,
question answering rules typically refer to
states. Many questions, however, refer to actions
which are enabled by states described in the
database. If a question answering question
answering rule cannot be found to answer a
question, and the question refers to a scene in an
active script, causal inferences are used to find
an answerable question which can be constructed as
a state or action implied by the original
question. For example, in (3), the user asks a
question for which there is no question answering
rule. Sentence (3) is then identified as a scene

3. USER: What aircraft can the wing supply?

in $OCA, the Air Force mission script: the
transferring of control of aircraft from its wing.
The action referred to by this question is enabled
by a state, that the wing contains the aircraft.
A new "question" is constructed by substituting
the script role bindings into this state: "What
aircraft does the wing contain?".. The script
patterns required to make this inference are
illustrated in Figure 1.

(DEF-SCRIPT-PATTERN NAME WING-SUPPLY-AIRCRAFT
SCRIPT $OCA
PATTERN ("ATRAN OBJECT &OCA:AIRCRAFT

FROM &OCA:WING)
ENABLED-BY WING-HAVE-AIRCRAFT
BEFORE AIRCRAFT-FLY-TO-TARGET)

(DEF-SCRIPT-PATTERN NAME WING-HAVE-AIRCRAFT
SCRIPT $OCA
PATTERN (;'EQUIV* CONA &OCA:AIRCRAFT

CONB (PART OF &OCA:WING))
ENABLES WING-SUPPLY-AIRCRAFT)

Fieure 1. Definitions of Script Patterns

These script patterns are used in responding
to question (3). The first step is to recognize
that (3) refers to the script scene
WING-SUPPLY-AIRCRAFT of the $OCA script, This is

accomplished by matching script patterns from the
currently active script against the question.
(me $OCA script was activated by (1)). Once the
scene referred to by the question is identified,
the causal links of the script are traversed to
find a scene which enables the scene referred to
by the question. In this case, the scene
WING-HAVE-AIRCRAFT is the enabling scene. This
scene is instantiated with the bindings of script

variables found in the question. The result of
this instantiation is a question conceptualization
which can be answered by a question-answering
production.

In some instances, more than one scene in the
script enables a scene referred to by the user's
question. In this case, the answer to the
question can be found by intersecting the answers
to questions constructed from each of the enabling
scenes. In the $OCA script, this occurs in
answering a question such as "What aircraft at
Logan can strike the target?". The states which
enable this are that the aircraft be able to reach
the target and that the aircraft be suitable for
the type of target. In effect, the question that
is answered is "What aircraft at Logan which can
reach the target from Logan are suitable for the
target?". Because scripts contain the necessary
inferences, the search for all enabling conditions
is very efficient. In contrast, to answer this
question by using a deductive database retrieval,
such as that used by ACE, may require finding a
large number of enabling conditions, many of which
are not germane to this problem (e.g., that the
aircraft have landing gear).

Another type of inference must be made to
fill in missing meaning elements when the meaning
of an utterance is not complete. These
"conceptual completion" inferences are expressed
as rules organized by the role of the meaning
element which they are intended to explicate. For
example, when processing the question "What
aircraft at Kennedy can reach the target?", the
source of the physical transfer is not explicitly
specified, but must be inferred from the initial
location of the object. The initial meaning
representation for this question is displayed in
Figure 2a. Note that the FROM role is not filled.
Conceptual-completion inferences are run only when
required, i.e., when needed by the conceptual
pattern matcher to enable a question-answering

pattern, a script pattern, or even another
conceptual completion pattern to match
successfully. Figure 2b and Figure 2c illustrate
the question production and the conceptual
completion inference pattern needed to answer the
above question.

The question answering production in Figure
2b would be sufficient to answer the question
"What aircraft at Kennedy can reach the target
from Kennedy?". If there is no filler of the FROM
role of a question, it can be inferred by the
conceptual completion inference in Figure 2c.
This inference binds the pattern variable &OBJECT
to the filler of the OBJECT role and executes the
function FIND-LOCATION which can check the
database for the known location of the referent
of &OBJECT or, as in this example, examine the
LOCATION role of &OBJECT.

B. Understanding Requests

It is also necessary to reference the domain
knowledge represented in scripts while
interpreting the user's commands. For example,

322

(-r;PTRANS*
OBJECT (AIRCRAFT LOCATION (KENNEDY)

IS-A ("?':))
TO (TARGET REF (*DEF*))
FROM (NIL)
MODE (*POTENTIAL*))

Figure 2a. The meaning representation
aircraft at Kennedy can reach the target".

of "What

(DEF-QUESTION-PRODUCTION SCRIPT $OCA
PATTERN ("PTRANS" OBJECT &AIRCRAFT

FROM &SOURCE
TO &DESTINATION)

Q-FOCUS (OBJECT IS-A)
ACTION <lisp code to compute answer>
RESPONSE <lisp code to print answer>)

Figure 2b. A Question Answering Production.

(DEF-COMPLETION-INFERENCE SCRIPT DEFAULT
PATTERN (+PTRANS" OBJECT &OBJECT)
INFERENCE (FROM)
ACTION (FIND-LOCATION &OBJECT))

Figure 2c. Conceptual Completion Pattern.

(1) refers to two scenes of the $OCA script, and
yields bindings for several script roles:

1. USER: I want to send 4 aircraft from the
707th Fighter Wing to strike
Boston between 1140 and noon.

TARGET to Boston, AIRCRAFT-NUMBER to 4, WING to
707th Fighter Wing and TIME-OVER-TARGET to the
time range from 1140 to 1200. This sentence,
creates an instance of the $OCA script. In SNUKA,
when this occurs the script role bindings are
passed to KNOBS to be checked for consistency.

The process of identifying the script roles
mentioned in an utterance is a method of
understanding the user's indirect answers to
questions. In (13), KNOBS asks the user a
question which he answers in the first part of
(16)
for
this

This question was generated to find a value
the weapon-system Role of the script. When
question is asked, an expectation is

13.

16.

KNOBS: What weapon system should the F-16s
carry?

USER: Hit the target with D4 . . .

activated to assist in the understanding of an
elided response as well as in the selection of
intended word senses. (This type of expectation
is discussed in further detail in section IV D.)
This expectation consists of a template meaning
structure derived from the script scene referred
to by the question. The indirect answer is
understood by noticing that the user has
accomplished the binding of the script role by
means other those expected.

c. Question Ordering

An important part of participating in a
coherent conversation is the selection of a
reasonable order for questions to be asked.

The question ordering approach used by SNUKA is
similar to that of DM in that there are usually
several potential questions which can be asked.
SNUKA differs from DM, however, in that its rules,
rather than being domain specific, are generic
rules operating on a knowledge structure which
represents the domain. The rules used by SNUKA

encode the observations of some research
[GROSZ 771 [HIRST 811 that the structure of a
conversation is reflected by the structure of the
plans and goals of the participants. Those
questions which clarify a previous utterance or
establish the goals of the user are considered
most important, followed by those which continue a
topic brought up by the user, followed by those
questions which refer to the scene which
temporally follows the scene referenced by the
last utterance. A question which SNUKA asks is
considered to continue a topic when the user's
last utterance refers to a scene of a script, some
script roles are not specified, and the question
asks for a value for one of these roles. For
example, if initially given a request such as
"Send 4 F-4C's to the target", a question which is
considered to continue the topic is llFrom which
airbase should the F-4C's fly?".

The above discussion of question ordering
focused on the topic of the question to ask. In
addition, the question ordering rules of SNUKA can
help to choose the form of the question. For
example, (12) is a request which refers to the
script scene of the departing of aircraft from a
target The topic of weapon systems for the next
question (13) is decided upon because the next
script scene is the carrying of a weapon system by
the aircraft. This decision also yields the
meaning representation of the question to be
asked.

D. Ellipsis

To interpret ellipsis, SNUKA sets up
expectations when it produces a question. These
differ from the expectations of GUS in that they
encode the meaning of the anticipated reply,
instead of the its lexical expression. This
enables SNUKA to accept a wider class of ellipses.
For example, in (6) the ellipsis can not be

5. KNOBS: Would you like to use F-4s for the
aircraft?

6. USER: No, F-16s from the 606th Fighter
Wing.

inserted into a template English sentence because
additional information must replace part of the
expected response. This is an example of both

replacement and expansion ellipsis
[Wieschedel 821. The expectation activated when
question (5) is asked is shown in Figure 3.

This expectation sets up a context for
understanding several types of ellipsis. The
simplest response anticipated is "Yes." or "No."
and SNUKA will expand these into complete
conceptualizations which could be expressed as 'tI

323

want F-4 to be used for the aircraft of mission
OCAlOOl." or "I do not want F-4 to be used for the
the aircraft of mission OCAlOOl.". This expansion
fills a role of the concept found in the CONTEXT
facet of the expectation with the concept produced
by the user's actual reply. The role to be
filled (in this example, it is the MODE role) is
stored in the RESPONSE-FOCUS facet of the
expectation. In addition, this expectation helps
in forming a complete conceptualization in the
case that user replies ((Use F-4s.", "I want to
use F-4s.", "I want F-4s to be used.n or "I'd
like to employ F-4s.". A wide variety of replies
can be understood by the same expectation because
SNUKA's expectations are based on the anticipated
meaning of the reply, as opposed to a syntactic or
lexical representation of this meaning. The
processing of (6) requires the same type of
expansion of an elided response to a full
conceptualization, with the added complexity of
the substitution a subconcept of the expected
response with a concept from the actual response.

(EXPECTATION CONVERSATION-FOCUS (AIRCRAFT)
CONTEXT (J:GOAL+: ACTOR ("USER")

GOAL (%JSE": OBJECT (F-4)
FOR (&OCA:AIRCRAFT)
OF (OCAlOOl)))

RESPONSE-FOCUS (MODE))

Figure 3. A Response Expectation.

SNUKA must monitor the expectations activated
when it asks a question in order to deactivate
those that are no longer appropriate. In the
simplest case, an expectation is deactivated when
it has been satisfied. The expectation can be
satisfied when it is used in the expansion of an
ellipsis or when the user replies with a full
conceptualization which is equivalent to that
which would be produced by the expansion of an
ellipsis. In the case that the CONTEXT of the
expectation is a GOAL, the expectation can be

deactivated when the goal is fulfilled by any
means. The expectation in Figure 3 is satisfied
when an aircraft is selected for the mission.
This could be accomplished by a command posed in
English, or by a value chosen from a menu or
inserted into a form.

Expectations must also be deactivated when
the topic of conversation changes, i.e., the user
ignores SNUKA's question. The determining of the
topic of an utterance has not been earnestly
approached in this work. Instead, SNUKA uses a
set of simple heuristics to determine if the user
has changed the topic after it asks a question.
One such rule states that the topic has not
changed if a concept in the user's utterance is a
member of the same class as the concept expected
to be the answer to a question. This rule uses
the CONVERSATION-FOCUS of the expectation.

SNUKA utilizes two kinds of expectations to
interpret ellipses. The expectation in Figure 3
is called a "meaning template" expectation because
it can be used as a template in which the meaning
of the user's reply can be inserted, as well as a

source for fillers to complete the user's reply.
A weaker form of expectation is a tlmeaning
completion" expectation. This type of expectation
can only be used to complete the meaning of a
user's reply. During the course of a
conversation, a meaning template expectation can
become a meaning completion expectation. For
example, when SNUKA asks question (13) it sets up

13. KNOBS: What weapon system should the F-16s
carry?

14. USER: Which are acceptable?
15. KNOBS: The acceptable weapon systems are Dl,

D2, and D4.
16. USER: Hit the target with D4 and plan the

rest.

a meaning template expectation to handle an elided
reply such as "D4." or "The lightest acceptable
weapon system.II instead of (14). When the user
replies with a question (14), this expectation is
changed to a meaning completion expectation.
(This is accomplished by removing the
RESPONSE-FOCUS facet of the expectation). This is
done because
enter, for

it is not
example,

reasonable for the user to
"D4 . " instead of (16).

However, if the user enters "Carry D4." instead of
(16) it is necessary to have the CONTEXT of the
expectation available for completing the meaning
of this ellipsis.

E. Conversational Rules

The top level control structure of the
response module of SNUKA is implemented as a set
of demons which monitor the assignment of values
to state variables. Rieger calls this type of
control structure spontaneous computation
[RIEGER 781. These demons are rules which
describe how to conduct a conversation. The
process of responding to the user's utterance is
initialized by setting the variable "CONCEPTS; to
the conceptualization produced by the parser.
This can trigger any of a number of permanent or
temporary demons. In the case that the *CONCEPTj;
is a question with a complete conceptualization, a
demon is triggered which invokes the question
answering program and sets the state variables
9c;ANSmR" to the answer conceptualization of the
question, and the variable *UNDERSTOOD* to the
question conceptualization. The handling of
ellipsis was added to SNUKA by activating
temporary rules which monitor the setting of the
variable "CONCEPP and expand an incomplete
concept (i.e., one pcoduced when parsing ellipsis)
to a complete concept before the *CONCEPw is
processed for question answering or responding to
requests. These temporary rules are activated
when SNUKA generates a question and deactivated by
other temporary rules which monitor ellipsis
processing or monitor *UNDERSTOOD* for changes in
iopic.

In addition to instructing SNUKA on how to
respond to the user's input, there are rules which
allow SNUKA to take some initiative to assist the
user in accomplishing his goals. One such rule
instructs SNUKA to ask the user if he would like
to use a particular value for a script role, in
the case SNUKA asked the user to specify a value

(DEF-CONVERSE-RULE NAME MONITOR-ANSWER
VARIABLE "UNDERSTOOD*
TEST (AND (IS-QUESTION? $"CONCEPp)

(UNIQUE? $*ANSWER")
(EXPECTED-QUESTION? $f:CONCEPT;'; $J:ANSWER"

$*EXPECTED-ANSWER*)
(ACCEPTABLE? $‘?'ANSWER* $%CRIPT-ROLE" $JSCRIPw))

ACTION (ASK-USE-Y/N $J:ANSWER* $%CRIPT-ROLE" $%CRIPTJ:)))

Figure 4. A Conversation Rule
for this role, and he replied with a question
whose answer is a unique acceptable value fo; this
role. Question (5) is generated by this rule (see
Figure 4.).

The rule in Figure 4 would be activated by

generating questions to ask the user. The
following hypothetical conversation illustrates
responses which must make use of the user's
intentions:

SNUKA after producing question (2). In addition,
SNUKA sets the state variables %CRIPT?;- to the

2. KNOBS:
3. USER:
4. KNOBS:
5. KNOBS:

Which aircraft do you want to send?
What aircraft can the wing supply?
The 707th Fighter Wing has F-4s.
Would you like to use F-4s for the
aircraft?

101. USER: I want to strike Boston at
with 4 aircraft carrying D2

10:30

102. KNOBS: Which aircraft do you want to send?

103. USER: What aircraft does Kennedy have?

104. KNOBS: The aircraft at Kennedy
carry D2 are F-16's.

which can
current script, *SCRIPT-ROLE* to the script role
mentioned in question (2), and J:EXPECTED-ANSWER*
to a meaning template expectation similar to the
one in Figure 3. (SNUKA also sets up a demon
which also uses *EXPECTED-ANSWER;? to interpret a
possible elided response.) The demon,
MONITOR-ANSWER, is executed after answering
question (3), when %JNDERSTOODJ: is set to the
question conceptualization. In this example, the
test evaluates to TRUE, and the action procedure,
ASK-USE-Y/N, produces (Sj and sets up a context to
understand the user's reply.

105. KNOBS: Would you like to send 4 F-16's from
Kennedy?

If question (103) were taken literally, an
appropriate response would be a listing of all the
aircraft at Kennedy including those which are not
appropriate for this type of mission, those which
cannot carry the weapon system D2, and those which
are assigned to other missions. By recognizing
the user's plan a more intelligent response such
as (104) can be produced. In addition, question
(105) can be generated to ask the user to confirm
both an aircraft and an airbase to supply the
aircraft. The conversation rule illustrated in
Figure 4 would not be able to ask about the
airbase because it does not utilize the user's
intentions.

V FUTURE WORK

Future extensions to include the
incorporation of a natural language generation
program and the incorporation of graphical input
and output devices. Some questions might best be
answered by a table or graph instead of an English
reply. A generalization of the conversational
rule in Figure 4. could display a menu for the
user to select his choice in the case that he asks

Allen [ALLEN 821 has shown how possible plans
can be inferred from an utterance. This inference
process chains forward from the logical form of an
utterance and backward from a set of possible a question whose answer is a group of objects.

This would be an appropriate response to (14). goals.

The most important aspect of intelligently In conversation about stereotypical
situations scripts can provide an efficient
mechanism to infer plans and goals from
utterances. To be fully understood an utterance
must be related to the context in which it was
produced. The identification of the script scene
and the script roles referenced by an utterance
can help to recognize the plans and goals it was
intended to serve. The conditions which a
helpful, intelligent response must meet can be
discovered as part of the memory process necessary
to understand an utterance. In this manner,

participating in a conversation is the recognition
of goals and plans of the other participant.
These goals and plans must be inferred from the
participant
plans are

‘S utterances.
known, they

Once , the goals
must be taken i

and
nto

consideration when generating responses. In
SNUKA, we expect to make use of the user's

answering his questions and when intentions when

responding to
opportunistic

utterance can be
przcess [McGUIRE 821.

considered an
For example,

325

question (103) refers to the script scene
AIRCRAFT-AT-AIRBASE with the AIRBASE role
identified as Kennedy. By infering that the user
intends to use Kennedy for the AIRBASE, and an
aircraft at Kennedy for the AIRCRAFT in his plan,
a better answer can be produced for his question.
The aircraft which can be used are those which are
compatible with the proposed binding of the
AIRBASE role in addition to the binding of other
script roles established by (101). The conditions
which potential bindings for the aircraft must
meet are represented by the enabling state of the
script.

VI CONCLUSION

SNUKA integrates a number of knowledge
sources to conduct a conversation in a
stereotypical domain. The most important of these
knowledge structures, the script, is also the one
which most limits its applicability (to
conversations about stereotypical situations).
However, this script based approach is most
appropriate as an interface to the KNOBS system
which assists a planner by instantiating a
stereotypical solution to his problem. SNUKA has
demonstrated a method of conducting a conversation
utilizing the domain knowledge represented in
scripts, knowledge which had previously been
applied to story understanding.

ACKNOWLEDGMENTS

This work was supported by USAF Electronics
System Division under Air Force contract
F19628-82-C-0001 and monitored by the Rome Air
Development Center. Special thanks are due Sharon
Walter and Dr. Northrup Fowler, III. I would also
like to thank Carl Engelman, Bud Frawley, Richard
Brown, Frank Jernigan, and Max Bacon for their
comments on this work. Captain Louis Albino
provided valuable assistance during the
development of SNUKA.

REFERENCES

[ALLEN 821 Allen, J., Frisch, A., Litman, D.
"ARGOT: The Rochester Dialogue System",
Proceedings of the National Conference on
Artificial Intelligence, Pittsburg, 1982.

[BOBROW 771 Bobrow, D.G., Kaplan, R., Kay, M.,
Norman, D., Thompson, H.S., and Winograd
T "GUS, a Frame-driven Dialog System",
Ariificial Intelligence, g(2), April 1977.

[CHARNIAK 801 Charniak, E., Riesbeck, C. and
McDermott, D., Artificial Intelligence
Programming. Erlbaum Press. Hillsdale, NJ,
1980.

[CULLINGFORD 781 Cullingford, R., "Script
Application: Computer Understanding of
Newspaper Stories", Research Report 116,
Department of Computer Science, Yale
University, 1978.

[CULLINGFORD 821 Cullingford, R., 'ACE: An
Academic Counseling Experiment",EE&CS
Department TR-82-12A, University of
Connecticut, 1982.

[DEJONG 791 DeJong, G., "Skimming Stories in Keal
Time: An Experiment in Integrated
Understanding", Research Report 158,
Department of Computer Science, Yale
University, 1979.

[ENGELMAN 801 Engelman, C., Scarl, E., and Berg,
C "Interactive Frame Instantiation",
PrAceedings of the First Annual Conference
on Artificial Intelligence, Stanford,
1980.

[GROSZ 771 Grosz, B., "The Representation and Use
of Focus in Dialog Understanding", PhD
dissertation, University of California at
Berkeley, 1977.

[HIRST 811 HIRST, G., 'Discourse-oriented Anaphora
Resolution in Natural Language
Understanding: A Review', American Journal
of Computational Linguistics, z(2), June
1981.

[LEHNERT 78a] Lehnert, W., The Process of Question
Answering, Lawrence Erlbaum Associates,
Hillsdale, NJ, 1978.

[LEHNERT 78b] Lehnert, W., 'Representing Physical
Objects in Memory", Research Report 1978,
Department of Cpmputer Science, Yale
University, 1979.

[McGUIRE 811 McGuire, R., Birnbaum, L., and
Flowers, M. "Opportunisitc Processing in
Arguments", Proceedings of the Seventh IJCAI,
Vancouver, B.C., 1981.

[PAZZANI 831 Pazzani, M., and Engelman, C.,
'Knowledge Based Question Answering",
Proceedings of the Conference on Applied
Natural Language Processing, Santa Monica,
1983‘.

[RIEGER 781 Rieger, C., "Spontaneous Computation
in Cognitive Models", Cognitive Science,
I(3), 1978.

[ROBERTS 771 Roberts, R., and Goldstein, I., 'The
FRL Manual, " MIT AI Lab. Memo 409, 1977.

[SCHANK 721 Schank, R., 'Conceptual Dependency: A
Theory of Natural Language Understanding',
Cognitive Psychology, z(4). 1972.

[SCHANK 771 Schank, R. and Abelson, H., Scripts,
Plans, Goals, and Understanding, Lawrence
Erlbaum Associates, Hillsdale NJ, 1977.

[STEINBERG 801 Steinberg, L., "Question Ordering
in Mixed Initiative Program Specification
Dialog", Proceedings of the First Annual
Conference on Artificial Intelligence,
Stanford, 1980.

[WEISCHEDEL 821 Weischedel, R. and Sondheimer, N.,
"An Improved Heuristic for Ellipsis
Processing," Proceedings of the 20th
Annual Meeting of the Association for
Computation Linguistics, Toronto, 1982.

326

