
OPERATOR DECOMPOSABILITY: A NEW TYPE OF PROBLEM STRUCTURE 

I)cparrmcnt of Computer Scicncc 

Carncgic-Mellon University 

Pittsburgh, Pa. 1.5213’ 

Abstract 
‘This paper dcscribcs a structural property of problems that allows an 

efficient strategy for solving a large number of problem instances to be 
based on a small amount of knowlcdgc. Specifically, the property of 
o)~emlor ~~~~o/)?l~osabili/~~ is shown to bc 21 sufficient condition for the 
cffcctivc application of the Macro Problem Solver, a method that 
rcprcscnts its knowlcdgc of a problem by ;I small number of operator 
scqlKnccs. Roughly, operator decomposability exists in a problem to 
the cxtcnt that the cffcct of an operator on cuch component of a state 
can bc cxprcsscd as a function of only a subset of the components, 
indcpcndcnt of the remaining state components. 

1. Int reduction 
Fundamentally, learning is conccrncd with situations whcrc WC arc 

intcrcstcd in solving many instances of a problem, rather than just one 
instance. In that cast. it may bc advantageous to first learn a gcncral 
strategy for solving any instance of the problem, and then apply it to 
each problem instance. This allows the computational cost of the 
learning stage to bc amortized over all the probicm instances to bc 
solved. Such an approach will only bc useful if thcrc is some structure 
to the collection of prohlcm instances such that the fixed cost of 
learning a single strategy plus the marginal cost of applying it to each 
problem instance is less than the cost of solving each instance from 
scratch. This paper presents one such structural property, that of 
opern/or riefc,ot,lf)osabilify. Operator decomposability is a sufficient 

condition for the success of macro problem solving, a lcr\rning and 
problem solving method first dcscribcd in [2]. 

2. Macro Problem Solving 
WC begin with a brief description and cxamplc of macro problem 

solving taken from [2]. ‘I’hc rcadcr familiar with that work may skip this 
section. Macro problem solving is partly based on the work of Sims [4] 
and Bancrji (11. Complctc details of the problem solving and learning 
programs can be found in [3]. 

1 author’s current address: 
New York, N.Y. 10027 

Dcparlmcnt of Computer Sclcncc. Columbia Unikcrsity. 

This rcscarch was sponsored by the Dcfcnsc Advanced Research Projects Agency 
(DOD). ARPA Order No 3597, and monitored by the hlr I‘orcc Avionics laboratory 
under Contract 1:33615-81-K-1539. The VICWS and conclusions in 0-11s document arc those 
of the author and should not bc interpreted a$ rcprcscnting the official politics, tither 
cxprcsscd or lmplicd, of the Dcfcnsc Advanced Rcscarch Prcyccts Agency or the U.S. 
Go\cmment. 

‘I’hc Macro Problem Solver is a program that can cfficicntly solve a 
number of problems, including the Eight Pu//lc, liubik’s Cube, and the 
Towers of I-lanai, without any search. For simplicity, WC will conridcr 
the Eight Pu/Ac as an cxamplc. ‘I’hc problcrn solver starts with a simple 
set of ordcrcd subgoals. In this case, each subgoal will bc to move a 
particular tilt to its goal position, including the blank “tile”. ‘I’hc 
operators to bc used arc not the primitive operators of the problem 
space but rather scqucnccs of primitive operators called 
ill(/cro-(~l)erCI/OrS or jnacros for short. Each macro has the property that it 
achicvcs one of the subgoals of the problem without disturbing any 
subgoals that have been previously achicvcd. Intcrmcdiate states 
occurring within the application of a macro may violate prior subgoals, 
but by the end of the macro all such subgoals will have been restored. 
and the next subgoal achicvcd as well. 

The macros arc lcarncd automatically by a macro learning program. 
‘l‘hcy arc organized into a two-dimensional matrix cnllcd a macro /able. 
‘I’ablc 2-1 shows a macro table for the Eight PuAc, corresponding to 
the goal state shown in Figure 2-1. A primiti\,c mo~c is rcprcscntcd by 
the first letter of Right, I,cft, Up. or Down. This is unambiguous since 
only one tilt. excluding the blank, can bc moved in cnch direction in a 
given state. F’ach column contains the macros ncccssarq to move one 
tilt to its correct position from any possible initial position without 
disturbing previously positioned tilts. ‘I’hc order of the columns give5 
the solution order or the scqucncc in which the tiles arc to be 
positioned. ‘I’hc rows of the table correspond to the different possible 
starting positions for the next tilt to bc placed. Figure 2-1 also gives the 
names of the diffcrcnt tile posi:ions. 

12 3 
8 4 
7 6 5 

Iiigurc 2-1: I’ight PuAc Goal State 

The algorithm used by the Macro Problem Solver is as follows: First, 

the position of the blank is dctcrmincd, that position is used as a row 
index ;nto the first column of the macro tAlc, and the macro at that 
location is applied. This moves the blank to its goal position. which is 
the ccntcr in this case. Next. the number 1 tilt is located, its position is 
used as a row index into the second column. and the corresponding 
macro is applied. This moves tllc 1 rile to its goal position and also 
returns the blank to the ccntcr. ‘l’hc macros in the third column move 
the 2 tilt into its goal position while Ica~ing the blank and 1 tiles in their 
proper places. Similarly, the 3, 4, 5, and 6 tilts XC positioned by the 
macros in their corresponding columns. At this point. tiles 7 and 8 must 
bc in their go~1 positions or clsc the pu/~lc cannot bc sol\ cd. ‘l‘hc lower 

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved. 



triangular iornl of oh\: t:lbic is due to rhc f,~cr th,~t ;F, tilts .IIY moved to 
their 2:>,11 pocition\. !h:rc arc fcwcr pAtions th,lt the rcm,lining tiles 
can occ~lpy. 

In tiidtlition to tlls ITight l’~u/irlc, this technique h,ls been applied to 
tllc 1 iftecn l’u/Ac. Ru+ik’s Cube. the ‘I‘owcrs c:f llan!)i problem. and 
the ‘l’hink-A-l)c;t Inachinc. ‘I‘hc key fcatulc that m:ikcs this method 
uscfi~l iz that only ;: \m.ll! number of macros ‘II’C‘ nccdcd in order to 
cfficicntly ~01~~ -, . i a large numhcr of problem instances. In the cast of the 
Fight l~uz~lc, all 18 1.410 problem instances can be sc:lvcd without an) 
starch using onl} 35 n)acl’os. Similarly, for Rubik’s Cube, al] 4~10’~ 
problem instances can hc solved without search using only 238 macros. 

l’hc rcmaindcr of’ this paper prcscnts the struc.tural property of these 
problems that makes this savings possible. We hcgin with an abstract 

rcprcscniation oftllc. cx,~nil~lc problems. 

3. State-Vector Representation 
A htatc of a probicln is qccificd by givirlg the Villllcs of a Vector of 

SLitC V,lri,lhlcs. t:or Cxamplc. the :;tatC V;lri;lbl~~s for [hc I:ighl t’u/./]c are 
tltc nine diffcrcnt tilt\ of’thc pu//lc, includin~~ b the blank. ;rnd [hc values 
;IrL‘ the positions occupied by cnch tilt in ;i particular st;~tc. l.or l{ubik’s 
C~lbc, i!lc ~ariablcs ,Irc the ditli:rcIlt indi\,idual m!)\ ;ihic picccs, cal]cd 
~~tbif\, ;tIld [IIC \aluc~ cncodc h~~[h the positions of [hc cubits and their 
c~ric:iL!lion. In the case of the Towers of Iianoi, L!X \;iri,lb]cs arc the 
disk<. ;~nd the \alucs ;:rc the !,cgs that the disks arc on. 

For cnch problem, a single goal state is spccificd by assigning 
particular values to the state variables, called their goal values. 
l:urthcrmorc. WC include in the problem space only those states which 
arc solvnble in the scnsc that there exists a path from each state to the 
goal state. A problem instance then bccomcs a combination of a 
problem and a particular initial state. 

.l‘hc operators of the problem space arc functions which map state 
vectors into state vectors. Formally, al! operators iIrC total functions in 
that they apply to all states. WC adopt the convention that if a state does 
not satisfy the preconditions of an operator. then the cffcct of t!lat 
operator on that state is to lcavc it unchapgcd. 

4. Mac ro Table Definition 
When WC cxaminc the macro &lc for the Eight Pu~lc (‘l‘ablc 2-l), 

WC notice th,lt the first column contains eight cntricc. ‘l’hcrc is one 
macro for each possible position that the bl‘lnk could occupy (other 
than its gc~11 position) in t!lc initial state, or one macro for c~h possible 
\a!uc of the first stntc variable. ‘!‘hus. the choice of whdt m,Icro to apply 
first dcpcnd\ only on the \iIIuC of the first stale VJriiiblC. Awt!lCr way 
of looking at this is that for a given ~aluc of the first stntc variable, the 
salnc macro will map it to its t,lrgct ~nlue rcg,ird!css of the villucs of the 
remaining state \ariablc5. In gcncr,l!. this property would not hold for 
an arbitrary problem. In fact, in the worst case, one’ would need a 
diffcrcnt macro in the first column for each diffcrcnt initial state of tile 
problem. In the second column as well, wc only need one macro for 
each possible value of the second state variable (the positions of the 1 
tilt). Again, this is due to the fact that its application is indcpcndcnt of 
the values of all succeeding variables in the solution order. Similarly, 
for the remaining columns of the table, the macros dcpcnd only on the 
previous state variables in the solution order and arc indcpcndcnt of the 
succeeding variables. 

MO~C formi~lly. let S 1~~ the set of all st;ltcs in the prohlcm spncc, ]ct 
S, bc the set of ail \titcs in uhicll the first i- 1 st,ltc \,trinblcs qua! 
their gOi V~IIUCS. illld ICt S, lx t!lC SllbSCt of S, in which the i/Ii state 
YLll'iilbk !laS ValUCj. '!‘!lCIl, WC Cdl1 dcfinc a macro table iIS follows: 

Ninilion I : A I?lncI’o /crDlr is a SCt of ITlilCrOS mu such that 

Operator decomposability is the property that allows macro tirblcs to 
exist. I-or pedagogical reasons, WC first prcscnt a special cast of 
operator decomposability called /o/o/ dcccl,,lposaDilif~,. 

5. Total Decomposability 
Gibcn that each state is a vector of the form (s,,.s,, . . . ,sn), WC define 

total dccompos,lbility as follows: 

Ikfinition 2: A vector function f is /o/nl/~~ tfccot~~~~sable if 

thcrc exists a scalar functionfsuch that 

&ES, f(s)=f(s,.s;, . . . ,sn)=(fl.q)9f(sj)?. . . A%,)). 

TILES 
0 1 2 3 4 5 6 

0 

1 UL 

P 2 U RDLU 
0 
S 3 UR DLURRDLU DLUR 
I 
T 4 R LDRURDLU LDRU RDLLURDRUL 

0 5 DR ULDRURDLDRUL LURDLDRU LDRULURDDLUR LLURD 
N 
S 6 D URDLDRUL ULDDRU URDDLULDRRUL ULDR RDLLlJlJRDLDRRUL 

7 DL RULDDRUL DRUULDRDLU RULDRDLULDRRUL URDLULDR ULDRURDLLURD URDL 

8 L DRUL RULLDDRU RDLULDRRUL RULLDR ULDRRULDLURD RULD 

‘I‘:~blc 2-I: Milcro ‘l’ablc for the Eight Pu//lc 

207 



‘l’his property can bc illustrated by the opcrarors of liubik’s Cube. 
Recall that the state variables arc the individual cubits and the values 
cncodc their positions and oricntntions. Each opcmtor will affect some 
subset of the cubits or state variables. and Icavc the rcmnining state 
vari&lcs unchanged. f lowcvcr, the resulting position and orientation of 
each cubic as a result of any operator is solely a function of that cubic’s 
position and oricnt&ion bcforc the operator wa\ applied, and 
indcpcndcnt of the posltions and orientations of the other cubits. 

Since it can easily bc shown that the composition of two totally 
dccomposnblc functions is also totally dccomposablc, WC state the 
following lemma without proof: 

I,cnlm;~ 3: A macro is totally dccolnposablc if each of the 

operators in it arc totally dccomposablc. 

Next, wc dcfinc total decomposability as a property of a problem 
space as opposed to just a function. 

Ikfinition 4: A problem is totally decomposable if each of 

its primitive operators is totally decomposable. 

Finally, WC prcscnt the main result of this section, that total 
dccotnpos~tbility is ;I sufficient condition for the cxistcncc of a macro 
table. 

‘I’heorcn~ 5: If a problem is t(Jtijlly dccomposablc. then 

thcrc exists il I?lilCI’O tilblc for lb.2 problem. 

WC will omit the formal dctnils of the proof [3] and prcscnt only its 
outline. ‘I‘hc basic argument is thilt for CiKh pair iJ WC11 thilt S, is IlOt 

cmpt}, thcrc must bc sonic macro which maps some clcmcnt of S,, to 
the goili state since thcrc is a path from cvcry state to the goill. Since the 
gOa StiltC is 311 clcmcnt Of S, + 1 for any i. this mijcro maps an clcmcnt of 
S, to an clcmcnt of S,, ,. ‘I’hcn. the total dccomposnbility property is 
used to show that this macro maps UHJ’ clcmcnt of S, to an clcmcnt of 
S,+ ). and hcncc qualifes aS mti 

6. Serial Decomposability 
‘i’hc small number of macros in the macro table is due to the fact that 

the cffcct of a macro on a state varinblc is indcpcndcnt of the 
succcrdiug variables in the solution order. Howcvcr, the cffcct of a 
m;iCro on a state variable need not bc indcpcndcnt of the preceding 
\ ;1ri,blcs in the solution order, since thcsc viIllICS arc known when the 
macro is applied. ‘I his suggests that a wcakcr and more gcncral form of 
operator dccompositbility would still admit a macro table. lhis is the 
cast with the Eight Public, the Think-a-l>ot problem, and the Towers 
of Hanoi problem. 

liccall that in the Eight Puzzle, the state variables correspond to the 
different tiles, including the blank. Each of the four operators (Up, 
Down. I.cft. and Right) affect exactly two state variables, the tilt they 
mo\c and the blank. While the cffccls oh each of thcsc two tiles arc 
totalllq dccomposnblc, the prccorldi/iorrs of the opcr<ltors arc not. Note 
that while thcrc arc no preconditions on any operators for liubik’s 
Cube. i.c. all operators ;lrc always ,Ipplicablc, the I-&ht Pu~/lc operators 
must satisfy the precondition that the blank bc adjilccnt to the tile to be 
mc?vcd and in the direction it is to bc moved. ‘I’hus. whcthcr or not an 
operator is i~pplicablc to a particular tilt ~ilriirblc dcpcnds on whcthcr 
the blank variable has the correct value. In order for an operator to bc 

t,otally dccomposablc. the decomposition must hold 
preconditions and the postconditions of the operator. 

for both 

‘I‘hc obvious solution to this problem is to pick the blank tilt to be 
first in the solution order. ‘I’hcn, in all succeeding staglgcs the position of 
the blank will bc known and hcncc the dcpcndcncc on this variable will 
not affect the macro table. ‘I‘hc net result of this wcakcr form of 
operator dccomposnbility is that it places a constraint on the possible 

solution orders. ‘I‘hc constr;lint is that the 4tdtC Vill?;lhlCS must 1x2 
ordcrcd SUCK that L~c prccondilions i\Ild the cffccts of CiIch opcr,ltor on 
C,K~ St‘ltC virri‘tblc depend only 011 th:lt \,rr-iablc and prcccding state 
vi~riablcs in the solution order. If SUCK i1n ordering exists, WC say that 
thC OpCriltOl5 exhibit scricll dcc,ottil,c)Jtrbi///}‘. In the CiISC of the I’ight 
l’u//lc, the constraint is simply that the blank must occur first in the 
solution order. 

What follows is a more formal trcatmcnt of serial decomposability. 
The prcscntation exactly p:irallcls that of total decomposability. 

Given that a solution order is a permutation of the state variables, 
and that the numbering of the state variables coincides with the 
solution order, WC dcfinc serial decomposability as follows: 

Ikfinition 6: A vector function f is scriillly dccomposablc 

with rcspcct to a solution order if dicrc exists a set of 

functions f, such that 

VSES, f(s)=f(s,,s, 1 - - * ,sn>=(f,(s,),f*(s,,s*), . . . ,f,(s,,s,, . . . ,sJ) 

As in the cast of toM decomposability, if all the operators in a macro 
arc serially dccomposablc, then the macro is serially dccomposi\blc. WC 
dcfinc a problem to bc serially dccomposablc if thcrc exists some 
solution order such that all the primitive operators arc serially 
dccomposablc with rcspcct to this solution order. Finally, WC arrive at 
the main result of this paper: 

‘I’hcorcm 7: If a problem is serially decomposable, 
thcrc exists 3 macro table for the problem. 

‘I‘hc proof is cntircly analogoG to that for the total decomposability 
thcorcm. Note that total decomposability is mcrcly 3 spccinl cast of 
serial decomposability. 

While the Eight Puz/Ic is the simplest cxamplc of a serially 
dccomposdblc probIcm. the ‘f‘hink-a-l)ot problem exhibits a much 
richer form of serial decomposability that results in a more complex 
constraint on the solution order. Think-a-l>ot is a toy which involves 
dropping marbles through gatcd channels and obicrvmg the effects on 
the gates. Figure 6-l is a schcmiltic diagram of the dcvicc. ‘I‘hcrc arc 
three input channels at the top, labcllcd A, 13, and C, into which 
marbles can be dropped. When a marble is dropped in, it falls through 
a set of channels govcrncd by eight numbcrcd gates. Each gate has two 
states. Left and Right. When a marble encounters a gate, it goes left or 
right dcpcnding on the current state of the gate and then flips the gate 

to the opposite StiItC. A state of the m‘lchinc is spccificd by giving the 
StatCS Of CilCh Of thC @tCS. ‘I‘hc problem is lo get from any arbitrar) 
initial StiltC t0 SO17lC gOill state, SUCh ;lS illi &ltCS pointing I .Cft. 



A B C 

0 1 2 H 3 4 

5 6 7 

I;igurc 6- 1: Think-a-l)ot Machine 

‘Ihc state cariablcs of the problem arc the individual gates, and the 
values arc Right and I.cft. ‘l‘hc primitive operators arc A, 13, and C, 
corresponding to dropping a marble in wch of the input channels. 
‘l‘ablc 6-l shows a macro table for the Think-a-I)ot problem whcrc the 
goal state is all gates pointing I.cft. Note that thcrc arc only two possible 
lalucs for each State variable, one of which is the goal state, and hcncc 
only one macro in each column. ‘l‘hc last gate in the macro table is gate 
6 since once the first scvcn gates arc set, the state of the last gate is 
dctcrmincd, due to a situation similar to that of the Eight Puzzle. 

1 2 
GATES 
3 4 

Right A B C AA CC AAAA CCCC 
Left 

‘1’aI)lc 6-l: Macro ‘I‘ablc for Think-a-I)ot Machine 

I<oughly, the cffcct of an operator on a particular g&c can dcpcnd on 
the values of the gates abocc it. Marc precisely, the cffcct of an 
operator on a particular gate dcpcnds only on the \alucs of all of its 
“ancestors”, or those gates from which thcrc exists a dircctcd path to 
the given gate. Thus, the constraint on the solution order is that the 
ancestors of any gate must occur prior to that gate in the order. The 
serial decomposability structure of this pmblcm is directly cxhibitcd by 
the directed graph structure of the machine, and is based on the cffccts 
of the operators rather than their preconditions, since thcrc arc no 
preconditions on the Think-a-Ijot operators. 

An cxtrcmc case of serial decomposability occurs in the Towers of 
Hanoi problem. Note that in this context the problem is to move all the 
disks to the goal peg from a/l)) legal initial state. ‘l’ablc 6-2 shows a 
macro table for the three-disk Towers of Hanoi problem, whcrc the 
goal peg is peg C. ‘I’hc state variables arc the disks, numbered 1 through 

3 in increasing order of si/c. ‘I’hc values arc the diffcrcnt pegs the disks 
could bc on. li~bcllcd A, 13, and C. ‘I’hcrc arc six primitive moves in the 
pr&lcm spi\cc. ow corresponding to each possible ordcrcd pair of 
source peg alld destination peg. Since only the top disk on a peg can bc 
moved, this is an unambiguous rcprcscntntion of the operators. ‘l’hc 
cornplcLc set is thus {AH, AC, DA. UC, CA, Cl3). 

DISKS 
1 2 3 

‘l‘hc applicability of each of the operators to each of the disks 
dcpcnds upon the positions of all the smaller disks. In particular, no 
smaller disk may bc on the same peg as the disk to bc mo\cd, nor may a 
smaller disk bc on the destination peg. ‘l‘his totally constrains the 
solution order to bc from mallcst disk to 1,lrgcst d&k. WC dcscribc this 
as a boundary cast since it exhibits the maximum amount of 
dcpcndcncc possible without violating serial decomposability. 

Operator dccomposnbility in a problem is not only a function of the 
problem. but dcpcnds on the particular formulation of the problem in 
terms of state varinblcs as well. For cxamplc, under a dual 
rcprcscntation of the Fight Pu~ylc, whcrc State \arinblcs correspond to 
positions and values correspond to tiles, the operators arc not 
dccomposablc. ‘I‘hc rcitson is that thcrc is no ordering of the positions 
such that the cffcct of wch of the opcr,rtors on each of the positions can 
bc cxprcsscd as a function of only the previous positions in the order. 

7. Conclusions 
Operator decomposability is a newly discovered property of problem 

spaces that holds for a number of cxamplc problems. It is a sufficient 
condition for the application of macro problem solving and learning, 
since it allows an cfficicnt solution for a large number of problem 
instances to bc based on a small amount of knowlcdgc, or a small 
number of macros. 

Acknowledgements 
I would like to ,lcknowlcdgc milny helpful discussions concerning 

this rcscarch with I lcrbcrt Simon. Allen Ncwcll, I<an,rn Ihncrji, and 
Jon Ihtlcy. In addition, W,rltcr van Roggcn provided helpful criticism 
on a draft of this paper. 

References 

1. Ranan 13. Ihncrji. GI’S ,Ind ~11~ ~S~CIUJIO_SY of the liubik cubist: A 

study in rcnsoning about actions. In Ar-/ifjciol~~xl iluttrotr lrr~cl/i~et~ce. 

A. i~lithorn and I<. Dancrji, F.ds., North-l lolhnd, Amsterdam, 1983. 

2. Km-f. 1t.l-I. A program that lcarn~ to to solve Rubik’s Cube. 

Proceedings of the National Confcrcncc on Artificial Intclligcncc, 

Pittsburgh, Pa., August, 1982, pp. 164-167. 

3. Korf. I<.}‘. / rnnritlg lo ,S‘o/vr /‘roh/ett?s 0~~ S’carchitig for 

Alacro-Opcrzllorlr. 1’ll.l). ‘I‘ll., lkpill~tlllCllt of Computer Science, 
Carnegie-Mellon University, June 1983. 

4. Sims, Charles C. Computational methods in the study of 

permutation groups. In Co~~ipululrotial l’roblo~ir in ADsIrmI Algebra, 

John I .ccch, l-Zd..Pcrgamon Press, New York, 1970. pp. 169-183. 

P A AC CB AC BC CA CB AB AC BA BC AC 
E 
G B BC CA BC AC CB CA BA BC AB AC BC 

‘I’;~blc 6-2: Macro table for ‘l‘hrcc IXsk ‘I‘owcrs of Clanoi Problem 

209 


