From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

OPERATOR DECOMPOSABILITY: A NEW TYPE OF PROBLEM STRUCTURE

Richard ¥. Korf

Department of Computér Science
Carncgic-Mellon University
Pittsburgh, Pa. 15213}

Abstract

This paper describes a structural property of problems that allows an
cfficient strategy for solving a large number of problem instances to be
based on a small amount of knowledge. Specifically, the property of
operator decomposability is shown to be a sufficient condition for the
cffective application of the Aacro Problem Solver, a method that
represents its knowledge of a problem by a small number of operator
scquences. Roughly, operator decomposability exists in a problem to
the extent that the cffect of an operator on each component of a state
can be cxpressed as a function of only a subsct of the components,
independent of the remaining state components.

1. Introduction

Fundamentally, learning is concerned with situations where we are
interested in solving many instances of a problem, rather than just one
instance. In that case, it may be advantageous to first lcarn a general
strategy for solving any instance of the problem, and then apply it to
cach problem instance. This allows the computational cost of the
learning stage to be amortized over all the problem instances to be
solved. Such an approach will only be useful if there is some structure
to the collection of problem instances such that the fixed cost of
learning a single strategy plus the marginal cost of applying it to cach
problem instance is less than the cost of solving cach instance from
scratch. ‘This paper presents one such structural property, that of
operator decomposability. Opcrator decomposability is a sufficient

condition for the success of macro problem solving, a learning and
problem solving method first described in [2).

2. Macro Problem Solving

We begin with a brief description and example of macro problem
solving taken from [2]. ‘The reader familiar with that work may skip this
scction, Macro problem solving is partly based on the work of Sims [4]
and Banerji [1]. Complete details of the problem solving and lcarning
programs can be found in [3}.

]aulhor's current address: Department of Computer Science, Columbia University,
New York, N.Y. 10027

‘This rescarch was sponsored by the Defense Advanced Research Projects Agency
(DOD). ARPA Order No. 3597, and monitored by the Air Force Avionics I aboratory
under Contract 1°33615-81-K-1539. The vicws and conclusions in this document are those
of the author and should not be interpreted as representing the official policies, cither
expressed or implied, of the Defense Advanced Rescarch Projects Agency or the U.S.
Government.

206

The Macro Problem Solver is a program that can cfficiently solve a
number of problems, including the Eight Puzzle, Rubik’s Cube, and the
Towers of Hanoi, without any scarch. For simplicity, we will consider
the Eight Puzzle as an example. The problem solver starts with a simple
sct of ordered subgoals. In this case, cach subgoal will be to move a
particular tile to its goal position, including the blank "tile". The
operators to be used arc not the primitive operators of the problem
spacc but rather sequences of primitive operators called
macro-operators or macros for short. Each macro has the property that it
achieves one of the subgoals of the problem without disturbing any
subgoals that have been previously achieved. Intermediate states
occurring within the application of a macro may violate prior subgoals,
but by the end of the macro all such subgoals will have been restored,
and the next subgoal achicved as well.

The macros are learned automatically by a macro learning program.
They arc organized into a two-dimensional matrix called a macro table.
Table 2-1 shows a macro table for the Eight Puzzle, corresponding to
the goal state shown in Figure 2-1. A primitive move is represented by
the first letter of Right, Left, Up, or Down. This is unambiguous since
only onc tile, excluding the blank, can be moved in cach direction in a
given state. Each column contains the macros necessary to move one
tile to its correct position from any possible initial position without
disturbing previously positioned tiles. ‘The order of the columns gives
the solution order or the sequence in which the tiles are to be
positioned. The rows of the table correspond to the different possible
starting positions for the next tile to be placed. Figure 2-1 also gives the
names of the different tile positions.

12
8
7

O W

6

Figure 2-1: Eight Puzzle Goal State

The algorithm uscd by the Macro Problem Solver is as follows: First,

the position of the blank is determined, that position is used as a row
index into the first column of the macro table, and the macro at that
location is applicd. 'This moves the blank to its goal position, which is
the center in this case. Next, the number 1 tile is located, its position is
uscd as a row index into the sccond column, and the corresponding
macro is applied. "This moves the 1 tile to its goal position and also
returns the blank to the center. The macros in the third column move
the 2 tile into its goal position while lcaving the blank and 1 tiles in their
proper places. Similarly, the 3, 4, S, and 6 tiles arc positioned by the
macros in their corresponding columns. At this point, tiles 7 and 8 must
be in their goal positions or clse the puzzle cannot be solved. The lower

triangular form of the tabic is due to the fact that as tiles :ue moved to
their goal positions, there are fewer positions that the remaining tiles
can occupy.

In addition to the Fight Puzzle, this technique has been applied to
the Fifteen Puzzle. Rubik’s Cube. the Towers of Hanoi problem. and
the "Think-A-Dot machine. The key feature that makes this method
uscful is that only a small number of macros are needed in order to
cfficiently solve a large number of problem instances. In the casc of the
Eight Puzzle. all 181440 problem instances can be selved without any
scarch using only 35 macros. Similarly, for Rubik’s Cube, all 4x10%
problem instances can be solved without scarch using only 238 macros.

The remainder of this paper presents the structural property of these
problems that makes this savings possible. We begin with an abstract

representation of the examiple problems.

3. State-Vector Representation

A state of a probiem is specified by giving the values of a vector of
state vaviables, For example. the state variables for the Fight Puzzle are
the nince different tiles of the puzzle, including the blank, and the values
are the positions occupicd by cach tile in a particular state. For Rubik’s
Cube, the variables are the different individual movabic picees, called
cubies, and the values encode both the positions of the cubies and their
orientation. In the case of the Towers of Hanoi, the variables are the
disks. and the values are the pegs that the disks are on.

For cach problem, a single goal state is specified by assigning
particular values to the state variables, called their goal values.
Furthermore, we include in the problem space only those states which
arc solvable in the sensc that there cxists a path from cach state to the
goal state. A problem instance then becomes a combination of a
problem and a particular initial state.

The operators of the problem space are functions which map state
vectors into state vectors. Formally, all operators arc total functions in
that they apply to all states. We adopt the convention that if a state does
not salsfy the preconditions of an operator, then the cffect of that
operator on that statc is to leave it unchanged.

4. Macro Table Definition

When we examine the macro table for the Eight Puzzle (Table 2-1),
we notice that the first column contains cight entrics. ‘There is onc
macro for cach possible position that the blank could occupy (other
than its goal position) in the initial state, or onc macro for cach possible
value of the first state variable. Thus. the choice of what macro to apply
first depends only on the value of the first state variable. Another way
of looking at this is that for a given value of the first state variable, the
sarne macro will map it to its target value regardless of the values of the
remaining state variables. In general, this property would not hold for
an arbitrary problem. In fact, in the worst case, one would need a
different macro in the first column for cach different initial state of the
problem. In the sccond column as well, we only need onc macro for
cach possible value of the sccond state variable (the positions of the 1
tile). Again, this is due to the fact that its application is independent of
the values of all succeeding variables in the solution order. Similarly,
for the remaining columns of the table, the macros depend only on the
previous statc variables in the solution order and arc independent of the
succceding variables.

More formally, let S be the set of all states in the problem space, let
S; be the set of ail states in which the first i—1 state variables equal
their goal values, and Tet S;; be the subset of S; in which the i state
variable has value j. Then, we can define a macro table as follows:

Definition 1: A snacro table is a set of macros m j such that

VseS,-j, m(s}eS;,,

Operator decomposability is the property that allows macro tables to
exist. For pedagogical reasons, we first present a special case of
operator decomposability called twral decomposability.

5. Total Decomposability
Given that cach state is a vector of the form (s,.5,, . .
total decomposability as follows:

..Sp). we define

Definition 2: A vector function T is totally decomposable if
there exists a scalar function fsuch that

VseS f(s)=1(s5.8, - . . s= () Ss) - . - STsp)

TILES
0 1 2 3 4 5 6
0
1 UL
P 2 U RDLU
0
S 3 UR DLURRDLU DLUR
I
T 4 R LDRURDLU LDRU RDLLURDRUL
I
0 5 DR ULDRURDLDRUL LURDLDRU LDRULURDDLUR LURD
N
S 6 D URDLDRUL ULDDRU URDDLULDRRUL ULDR RDLLUURDLDRRUL
7 DL RULDDRUL DRUULDRDLU RULDRDLULDRRUL URDLULDR ULDRURDLLURD URDL
8 L DRUL RULLDDRU ROLULDRRUL RULLDR ULDRRULDLURD RULD

Table 2-1:

207

Macro Table for the Eight Puzzle

‘This property can be illustrated by the operators of Rubik’s Cube,
Recall that the state variables are the individual cubics and the values
cncode their positions and orientations. Each operator will dfTCC[some

shoat oF tlaa

subsct of the

UUH.\ w hLdL\- leldl}l\.b unu l\.dV\, lll\-
variables unchanged. However, the resulting position and orientation o
cach cubic as a result of any operator is solely a function of that cubie’s
position and orientation before the - operator was applied, and
independent of the positions and orientations of the other cubics.

Since it can casily be shown that the composition of two totally
decomposable functions is also totally decomposable. we state the
following lemma without proof:

Lemma 3: A macro is totally decomnposable if cach of the
operators in it are totally decomposable.

Next, we define total decomposability as a property of a probiem
spacc as opposed to just a function.

Definition 4: A problem is totally decomposable if cach of
its primitive operators is totally decomposable.

Finally, we present the main result of this scction, that total
decomposability is a sufficient condition for the existence of a macro
table.

Theorem 5; If a problem is totally decomposable, then

there exists a macro table for the problem.

outlinc. 'The basic argument is thut for cach pair ij such thal S is not
cmpty, there must be some macro which maps some clement of g,} to
the goal state since there is a path from cvery state to the goal. Since the
goal state is an clement of S, , for any /. this macro maps an clement of
Sy to an clement of S;, . "Then, the total decomposability property is
used to show that this macro maps any clement of Sy to an clement of
S;+ 1. and hence qualifics as my;.

6. Serial Decomposability

T'he small number of macros in the macro table is due to the fact that
the effect of a macro on a state variable is independent of the
succeeding variables in the solution order. However, the cffect of a
macro on a state variable need not be independent of the preceding
variables in the solution order, since these values are known when the
macro is applied. ' his suggests that a weaker and more general form of
operator decomposability would still admit a macro table. This is the
casc with the Eight Puzzle, the Think-a-Dot problem, and the Towers
of Hanoi problem.

Recall that in the Eight Puzzle, the state variables correspond to the
different tiles, including the blank. Each of the four opcrators (Up,
Down. Left. and Right) affect exactly two state variables, the tile they
move and the blank. While the effects on cach of these two tiles are
totally decomposable, the preconditions of the operators arc not. Note
that while there are no preconditions on any operators for Rubik’s
Cube, i.c. all operators are always applicable, the Eight Puzzie operators
must satisfy the precondition that the blank be adjacent to the tile to be
maoved and in the direction it is to be moved. Thus. whether or not an
operator is applicable to a particular tile variable depends on whether
the blank variable has the correct value. In order for an operator to be

208

totally decomposable, the decomposition must hold for both the
preconditions and the postconditions of the operator.

obvig

The obvious solution to this problem is to pick the blank tile

first in the solution order. Then, in all succceding stages the position of
the blank will be known and hence the dependence on this variable will
not affect the macro tabie. ‘i'he net resuit of this weaker form of
operator decomposability is that it places a constraint on the possible

solution orders. 'The constraint is that the state variables must be
ordered such that the preconditions and the effects of cach operator on
cach state variable depend only on that variable and preceding state
variables in the solution order. 1f such an ordering exists, we say that
the operators exhibit serial decomposability. In the case of the Iight
Puzzle, the constraint is simply that the blank must occur first in the
solution order.

What follows is a more formal treatment of serial decomposability.
The presentation exactly parallels that of total decomposability.

Given that a solution order is a permutation of the state variables,
and that the numbering of the state variables coincides with the
solution order, we define serial decomposability as follows:

Definition 6: A vector function f is scrially decomposable
with respect to a solution order if there exists a sct of
functions f; such that

Vses, f(S)=1(s1.5 - . s =) B(505). .. 505 - . . o5p))

As in the case of total decomposability, if all the operators in a macro
arc scrially decomposable, then the macro is serially decomposable. We
define a problem to be scrially decomposable if there exists some
solution order such that all the primitive opcrators arc scrially
decomposable with respect to this solution order. Finally, we arrive at
the main result of this paper:

Theorem 7: If a problem is scrially decomposable, then
there exists a macro table for the problem.

‘The proof is entirely analogous to that for the total decomposability
thcorem. Note that total decomposability is merely a special case of
serial decomposability.

While the Eight Puzzle is the simplest example of a scrially
decomposable problem. the ‘Think-a-1Dot problem exhibits a much
richer form of scrial decomposability that results in a morc complex
constraint on the solution order. Think-a-Dot is a toy which involves
dropping marbles through gated channels and observing the effects on
the gates. Figure 6-1 is a schematic diagram of the device. There are
three input channcls at the top, labelled A, B, and C, into which
marbles can be dropped. When a marble is dropped in, it falls through
a sct of channcls governed by cight numbered gates. Fach gate has two
states. Left and Right. When a marble encounters a gate, it goes left or
right depending on the current state of the gate and then flips the gate
to the opposite state. A state of the machine is specified by giving the
states of cach of the gates. 'The problem is to get from any arbitrary
initial state to some goal state, such as all gates pointing 1.¢ft.

(@]

@ @ @
(3) (@)

¢ ¢

Figure 6-1: Think-a-1Jot Machine

The state variables of the problem are the individual gates, and the
values arc Right and l.cft. ‘The primitive operators arc A, B, and C,
corresponding to dropping a marble in cach of the input channcls.
Table 6-1 shows a macro table for the Think-a-Dot problem where the
goal state is all gates pointing l.eft. Note that there are only two possible
values for cach state variable, onc of which is the goal state, and hence
only one macro in cach column. The last gate in the macro table is gate
6 since once the first seven gates arc set, the state of the last gate is
determined, duc to a situation similar to that of the Eight Puzzle.

GATES
0 1 2 3 4 5 6
Right A B C AA CC AAAA ccCCC
Left

Table 6-1: Macro Table for Think-a-ot Machine

Roughly, the effect of an operator on a particular gate can depend on
the values of the gates above it. More precisely, the cffect of an
operator on a particular gate depends only on the values of all of its
"ancestors”, or those gates from which there exists a directed path to
the given gate. Thus, the constraint on the solution order is that the
ancestors of any gate must occur prior to that gate in the order. The
serial decomposability structure of this problem is directly exhibited by
the directed graph structure of the machine, and is bascd on the cffects
of the operators rather than their preconditions, since there are no
preconditions on the Think-a-Dot operators.

An extreme case of serial decomposability occurs in the Towers of
Hanoi problem. Note that in this context the problem is to move all the
disks to the goal peg from any legal initial statc. Table 6-2 shows a
macro table for the three-disk Towers of Hanoi problem, where the
goal peg is peg C. The state variables are the disks, numbered 1 through
3 in increasing order of size. ‘I'he values are the different pegs the disks
could be on, labelled A, B, and C. 'T'here are six primitive moves in the
problem space, one corresponding (o cach possible ordered pair of
source peg and destination peg. Since only the top disk on a peg can be
moved, this is an unambiguous representation of the operators. The
complete setis thus {AB, AC, BA, BC, CA, CB}.

DISKS
1 2 3
P A AC CB AC BC CA CB AB AC BA BC AC
(ES B BC CA BC AC CB CA BA BC AB AC BC
S C

Table 6-2: Macro table for Three Disk ‘Towers of Hanoi Problem

209

depends upon the positions of all the smaller disks. In particular,
smaller disk may be on the same peg as the disk to be moved, nor may a
smaller disk be on the destination peg. ‘This totally constrains the
solution order to be from smallest disk to largest disk. We describe this

as a boundary case since it cxhibits the maximum amount of
dependence possible without violating serial decomposability.

Operator decomposability in a problem is not only a function of the
problem. but depends on the particular formulation of the problem in
terms of state variables as well. For example, under a dual
representation of the Eight Puzzle, where state variables correspond to
positions and values correspond to tiles, the operators are not
decomposable. The reason is that there is no ordering of the positions
such that the effect of cach of the operators on cach of the positions can
be expressed as a function of only the previous positions in the order.

7. Conclusions

Opcrator decomposability is a newly discovered property of problem
spaces that holds for a number of example problems. It is a sufficient
condition for the application of macro problem solving and lcarning,
since it allows an cfficient solution for a large number of problem
instances to be based on a small amount of knowledge, or a small
number of macros.

Acknowledgements

I would like to acknowledge many helpful discussions concerning
this rescarch with Herbert Simon, Allen Newell, Ranan Banerji, and
Jon Bentley. In addition, Walter van Roggen provided helpful criticism
on a draft of this paper.

References

1. Ranan B. Bancerji. GPS and the psychology of the Rubik cubist: A
study in reasoning about actions. In Artificial and Human Intelligence,
A. Elithorn and R. Banerji, Eds., North-Holland, Amsterdam, 1983.

2. Korf, R.E. A program that lcarns to to solve Rubik’s Cube.
Proceedings of the National Conference on Artificial intelligence,
Pittsburgh, Pa., August, 1982, pp. 164-167.

3. Korf, R.E. Learning to Solve Problems by Searching for
Macro-Operators. Ph.). Th., Department of Computer Science,
Carnegic-Mcllon University, June 1983.

4. Sims, Charles C. Computational incthods in the study of
permutation groups. In Computational Problems in Abstract Algebra
John l.cech, Ed.,Pergamon Press, New York, 1970, pp. 169-183.

