
SCHEMA SELECTION AND STOCHASTIC INFERENCE 

IN MODULAR ENVIRONMENTS 

Paul Smolensky 
Institute f or Cognitive Science 

University of California. San Diego C-015 
La Jolla. CA 92093 

AB!3TRAtX 

Given a set of stimuli presenting views of some environment, 
how can one characterize the natural modules or “objects” that 
compose the environment? Should a given set of items be 
encoded as a collection of instances or as a set of rules? Res- 
tricted formulations of these questions are addressed by analysis 
within a new mathematical framework that describes stochastic 
parallel computation. An algorithm is given for simulating this 
computation once schemas encoding the modules of the environ- 
ment have been seIected. The concept of computational tempera- 
ture is introduced. As this temperature is Iowered, the system 
appears to display a dramatic tendency to interpret input, even if 
the evidence for any particular interpretation is very weak. 

IIltrodoction 

Our sensory systems are capabIe of representing a vast 
number of possible stimuli. Our environment presents us with 
only a smaI1 fraction of the possibilities; this se&ted subset is 
characterized by many regularities. Our minds encode these regu- 
larities, and this gives us some ability to infer the probable current 
condition of unknown portions of the environment given some 
Iimited information about the current state. What kind of regu- 
larities exist in the environment, and how should they be 
encoded? 

This paper presents preliminary results of research founded 
on the hypothesis that in real environments there exist reguIarities 
that can be idealized as mathematical structures that are simpIe 
enough to be anaIyxabIe. Only the simpIest kind of reguhuity is 
considered here: I will assume that the environment contains 
modules (objects) that recur exactly, with various states of the 
environment being comprised of various combinations of these 
modules. Even this simplest kind of environmental regularity 
offers interesting Iearning problems and results. It also serves to 
introduce a general framework capable of treating more subtle 
types of regularities. And the probIem considered is an important 
one, for the delineation of moduIes at one level of conceptual 
representation is a major step in the construction of higher Ievel 
representations. 
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To analyze the encoding of modukuity of the environment, I 
will proceed in three steps. First, I will describe a genera1 infor- 
mation processing task, completion, for a cognitive system. Then I 
will describe the entities, schemas, I use for encoding the modules 
in the environment and discuss how they are used to perform the 
task. FinaIly I will offer a criterion for how the encoding of the 
environment into schemas should be done. The presentation will 
be informal; more precise statements of definitions and results 
appear in the appendix. 

Completions and Schemas 

The task I consider, completion, is the inferring of missing 
information about the current state of the environment. The cog- 
nitive system is given a partial description of tkat state as input, 
and must produce as output a compIetion of that description. 

The entities used to represent the environmental modules 
are called schemas. A given schema represents the hypothesis that 
a given module is present in the current state of the environment. 
When the system is given a partial description of the current state 
of the environment, the schemas look at the information to see if 
they fit it; those that do become active. When inference from the 
given information to the missing information is possible, it is 
because some of the schemas represent moduIcs that incorporate 
both given and unknown information. Such a schema being 
active, i.e. the belief that the module is present in the current 
environmental state, permits inferences about the missing infotma- 
tion pertaining to the module. (Thus if the given information 
about a word is ALG##fTHM, the schema for the module algo- 
rithm is activated, and inferences about the missing letters are pos- 
sibIe.) 

There is a probIem here with the sequence of decision- 
making. How can the schemas decide if they fit the current situa- 
tion when that situation is onIy partially described? It wouId 
appear that to really assess the relevance of a schema, the system 
wouId first have to fill in the missing information. But to decide 
on the missing portions, the system first needs to formulate beliefs 
concerning which moduks are present in the current state. I call 
this the schema/inference decision problem; what is desired is a way 
of circumventing it that is general and extremely simple to 
describe mathematicaIIy. 

Rarmony and Compn tationd Temperature 

Before discussing the algorithm used to tackle this problem, 
Iet us first try to characterize what outcome we would like the 
algorithm to produce. The approach I am pursuing assumes that 
the best inference about the missing information is the one that best 
sarisfies the most hypotheses (schcmas). That is, consider all possi- 
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ble responses of the system to an input (a partially specified 
environmentaI state). Each such response involves (a) a decision 
about exactly which schemas are active, and (b) a decision about 
how to specify all the missing information. Given such a response, 
‘I propose a measure of the internal consistency that computes the 
degree to which the hypotheses represented by the active sehemas 
are satisfied by the input and output. I call this measure the liar- 
mony function H. Responses characterized by greater internal con- 
sistency - greater harmony - are “better.” (The definition of H is 
simple, but requires the formalism given in the appendix.) 

Given that better responses are characterized by greater har- 
mony, the obvious thing to do is hill-climb in harmony. However 
this method is apt to get stuck at local maxima that are not global 
maxima. We therefore temporarily relax our desire to go directly 
for the “best” response. Instead we consider a stochastic system 
that gives different responses with different probabilities: the 
better the response, the more likely the system is to give it. The 
degree of spread in the probability distribution is denoted T; for 
high values of T, the distribution is widely spread, with the better 
responses being only slightly more likely than Iess good ones; for 
low values of T, the best response is much more likely than the 
others. Thus T measures the “randomness” in the system; I call it 
the computational temperature. When we want only good 
responses, we must achieve low temperature. 

A general stochastic algorithm can be derived that realizes 
this probabilistic response; it provides a method for computer 
simulation. A parallel relaxation method is used to resolve the 
schema/inference decision problem in a way that involves no 
sophisticated control. 

The variables of the system Fe the activations of aI the 
schemas (1 = active, 0 = inactive) and the bits of missing informa- 
tion. The system starts with (a) all schemas inactive, and (b) com- 
pletely random guesses for all bits of missing information. Then 
randomly a schema or a bit of missing information is selected as 
the variable to be inspected; it will be now be assigned a (possibly 
new) value of 1 or 0. Using the current guesses for all the other 
variables, the harmony function is evaluated for the two possible 
states of the selected variable. These two numbers, H(1) and 
H(O), measure the overall consistency for the two cases where the 
selected variable is assigned 1 and 0; they can be computed 
because tentative guesses have been made for all the schema 
activations and missing information. Next a random choice of 
these 1,0 states is made, with the probability of the choices 1 and 0 

having ratio $$. (Th e reason for the exponential function is 

given in the appendix.) 

This random process - pick a schema or bit of missing infor- 
mation; evaluate the two harmonies; pick a state - is iterated. In 
the theoretical limit that the process continues indefinitely, it can 
be proved that the probability that the system gives any response is 
proportional to eHfl, where H is the harmony of that response. 
This probability distribution satisfies the qualitative description of 
response probabilities we set out to realize. 

Cooling the System 

In this algorithm, each schema activation or bit of missing 
information is determined randomly; most likely the value with 
higher harmony is chosen, but sometimes not. Thus most of the 
time the changes raise the harmony, but not always. The higher 

the temperature, the more random are the decisions, that is, the 
more often the changes go “downhill.” Thus this algorithm, unlike 
strict hill-climbing, does not get stuck at local maxima. However, 
there is a tradeoff. The higher the temperature, the faster the sys- 
tern escapes local maxima by going downhill; but the higher the 
temperature, the more random is the motion and the more of the 
time the system spends in states of low harmony. EventuaIIy, to 
be quite sure the system’s response has high harmony, the tem- 
perature must be low. 

As the computation proceeds, the optimization point of this 
tradeoff shifts. InitiaIIy, the guesses for the missing information 
are completely random, so the information on which schemas are 
determining their relevance is unreliable. It is therefore desire- 
able to have considerable randomness in the decision making, i.e. 
high temperature. Even at high temperature, however, the system 
is more likely to occupy states of higher harmony than lower, so 
the guesses become more reliable than their completely random 
start. At this point it makes sense for the schemas to bc somewhat 
less random in their activity decisions, so the temperature should 
be lowered a bit. This causes the system to spend more of its time 
in states of higher harmony, justifying a further decrease in tem- 
perature. And so the temperature should be gradually lowered to 
achieve the desired final condition of low temperature. (A centraI 
concern of future work is analysis of how to regulate the cooling 
of the system.) 

As the computation proceeds and the temperature drops, the 
system’s initially rough and scattered response becomes progres- 
sively more accurate and consistent. This is just the kind of com- 
putation typical in people and just the kind needed in any large 
parallel system, where 
input from the others. 

each subsystem needs a constant stream of 

Cognitive Crystakation 

As computation proceeds, does accuracy increase slowly and 
steadily, or does the system undergo sudden and dramatic changes 
in behavior, as do physical systems when they are cooled past criti- 
cal temperatures marking phase transitions? This question has 
been addressed both through computer simulation and analytic 
approximation of a two-choice decision. The system has two sche- 
mas representing conflicting interpretations of the environment. 
The approximate theory allows computation of the probabilities of 
various completions given an input that partly describes the 
environment. It is useful to ask, what is the completion of a com- 
pletely ambiguous input? For high temperatures, as one might 
expect, the completions form random mixtures of the two 
interpretations; the system does not choose either interpretation. 
However, below a certain “freezing temperature: the system adopts 
one of the interpretations. Each interpretation is equally likely to 
be selected. The computer simulation approximates this behavior; 
below the freezing point, it dips back and forth between the two 
interpretations, occupying each for a long time. 

Slowly vacillating interpretation of genuinely ambiguous 
input is a familiar but not particularly important feature of human 
cognition. What is significant here is that even when the input pro- 
vides no help whatever in selecting an interpretation, the system even- 
tually (when cooled sufficiently) abandons meaningless mixtures of 
interpretations and adopts some coherent interpretation. A robust 
tendency to form coherent interpretations is important both for 
modelling human cognition and for building intelligent machines. 
The above analysis suggests that in processing typical inputs, which 

379 



are at most partially ambiguous, as processing continues and the 
temperature drops, the system wanders randomly through an 
ever-narrowing range of approximate solutions until some time 
when the system freezes into an answer. 

Schema Selection 

Having discussed how schemas are used to do completions, it 
is time to consider what set of schemas ought to be used to 
represent the regularities in a given environment. Suppose the sys- 
tern experiences a set of states of the environment and from these 
it must choose its schemas. Call these states the training set. Since 
the schemas are used to try to construct high-harmony responses, a 
reasonable criterion would seem to be: tk best schemas are those 
that permit tk greatest total harmony for responses to tk training 
set. 

I call this the training harmony criterion. I will not here dis- 
cuss an algorithm for finding the best schemas. Instead, I shall 
present some elementary but non-obvious implications of this very 
simple criterion. To explore these implications, we create various 
idealized environments displaying interesting modularity. Choos- 
ing a training set from within this environment, we see whether 
the training harmony criterion allows the system to induce tk 
modularity from the training set, by choosing schemas that encode 
the modularity. 

Perceptoal Grouping 

We perceive sceneS not as wholes, nor as vast collections of 
visual features, but as collections of objects. Is there some general 
characterization of what is natural about the particular levels of 
grouping that form these “objects”? This question can be 
addressed at a simple but abstract level by considering an environ- 
ment of strings of four letters in some fixed font. In this idealized 
environment, the modules (“objects”) are letter tokens, and in 
various states of the environment they recur exactly: each letter 
always appears in exactly the same form. The location of each of 
the four letters is absolutely fixed; I call the location of the first 
letter the “first slot,” and so forth. The environment consists of aI 
combinations of four letters. 

Now consider a computer given a subset of these four-letter 
strings as training; call these the training words. The image the 
computer gets of each training word is just a string of bits, each 
bit representing whether some portion of the image is on or off. 
The machine does not know that “bit 42” and “bit 67” represent 
adjacent places; a11 bits are spatially meaningless. Could the 
machine possibly induce from the training that certain bits “go 
together” in determining the “first letter”, say? (These, we know, 
represent the first slot.) Is there some sense in which schemas for 
the letter A in the 
this environment? 

PIY 

first slot, and so on, are natural encodings of 

As an obvious alternative, for example, the system could sim- 
create one schema for each training word. Or it could create a - 

schema for each bit in the image. These are the two extreme cases 
of maximally big and small schemas; the letter schemas fall some- 
where in between. Which of these three cases is best? Tk 
training harmony criterion implies that letter schemas are best, pro- 
vided the training set and number of bits per letter are not too 
small. 

This result can be abstracted from the reading context in 
which it was presented for expository convenience; the mathemati- 
cal result does not depend upon the interpretation we place upon 
the modules with which it deals. Thus the result can be character- 
ized more abstractly: Natural schemas encoding tk modules of an 
environment are inducible by tk training harmony criterion, provided 
the modules recur exactly. This investigation must now be 
extended to cases in which the recurrence of the modules is in 
some sense approximate. 

Roles vs. Instances 

When should experience be encoded as a list of instances 
and when as a collection of rules? To address this issue we con- 
sider two environments that are special subsets of the four-Ietter 
environment considered above: 

Environment R 
FAMB VEiUB SIMB ZOMB 
FAND VEND SIND ZOND 
FARP VERP SIRP ZORP 
FALT VELT SILT ZOLT 

Environment I 
FARB VAMP SALT ZAND 
FENP VELB SEiUD ZERT 
FIMT VIRD SINB ZILP 
FOLD VONT SORP ZOMB 

In the highly regular environment R, there are strict rules such as 
“F is always followed by A”; in the irregular environment I, no 
such rules exist. Note that here, schemas for the “rules” of 
environment R are just digraph schemas: FA-, VE-, . . . . -RP. -LT; 
schemas for “instances” are whole-word schemas. 

One might hope that a criterion for schema selection would 
dictate that environment R be encoded in digraph schemas 
representing the rules while environment I be encoded in word 
schemas representing instances. Tk training harmony criterion 
implies that for the regular environment, digraph sckmas are better 
than word schemas; for tk irregular environment, it is tk reverse. 
(In each case the entire environment is taken as the training set.) 

Higher Level Analyses 

The framework described here is capable of addressing more 
sophisticated learning issues. In particular, it is well-suited to 
analyzing the construction of higher-level representations and con- 
sidering, for example, the value of hierarchical organization 
(which is not put into the system, but may come out in appropri- 
ate environments.) In addition to addressing issues of schema 
selection at the more perceptual levels considered here, the frame- 
work can be employed at higher conceptual levels. The selection 
of temporal scripts, for example, can be considered, by taking the 
environment to be a collection of temporally extended episodes. 
The simulation method described here for systems with given 
schemas can also be applied at higher levels; it is being explored, 
for example, for use in text comprehension. 
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APPENDIX: The Formal Framework of Harmony Theory 

In the following general discussion, the specifics of the four- 
letter grouping environment discussed in the text are presented in 
parentheses. 

The possible beliefs B of the cognitive system about the 
current state of the environment forms a space 5. This space is 
assumed to have a set p of binary coordinates p; every belief B is 
defined by a set of bits B(p) in {+1,-l}, one for each p s p. (Each 
p represents a distinct pixel. B(p) is +l if the system believes p is 
on, -1 if off. This belief can come from inference or input.) An 
input I to the system is a set of binary values I(p) for some of the p 
E up; an output is a set of binary values 0 (p) for the remaining p. 
Together, I and 0 form a complete belief state B, a completion of 1. 

The probability of any response (A,B) is a monotonically 
,increasing function f of its harmony H (A ,B). f is constrained by 
the following observations. If p1 and pz are not connected - even 
indirectly - through the knowledge base IJ, then inferences about 
p1 should be statistically independent of those about p2. In that 
case, H is the sum of the harmony contributed by three sets of 
schemas: those connected to pl, those connected to p2. and those 
connected to neither. The desired statistical independence 
requires that the individual probabiIities of responses for p1 and p2 
multiply together. Thus f must be a function that takes additive 
harmonies into multiplicative probabilities. The only continuous 
functions that do this are the exponential functions, a class that 
can be parametrized by a single parameter T ; thus 

prob(A J?) = n en(Aa)/r 

The normalization constant n is chosen so that the probabilities 
for all possible responses add up to one. T must be positive in 
order that the probabihty increase with H . As T approaches zero, 
the function f approaches the discontinuous function that assigns 
equal nonxero probability to maximal harmony responses and zero 
probability to all others. 

A schema S is defined by a value S(p) CE { +l,-1,0} for each p 
e p. (If pixel p does not lie in the first slot, the schema S for “the 
letter A in the first slot” has S(p) = 0. If p does lie in the first 
slot, then S(p) is + 1 according to whether the pixel is on or off.) 
If for some particular p, S (p)# 0, then that p is an argument of S; 
the number of arguments of S is denoted I S I. (For a word 
schema, every p is an argument.) 

Schemas are used by the system to infer likely states of the 
environment. For a given environment, some schemas should be 
absent, others present, with possibly varying relative strengths 
corresponding to varying likelihood in the environment. A 
knowledge base for the system is a function u that defines the rela- 
tive strengths of all possible schemas: u(S) zz 0 and a(S) = 1. 
(The knowledge bases relevant to the text have all a(S) = 0 
except for the schemas in some set S - like letters - for which the 
strengths are a11 equal. These strengths, then, are all l/#S, the 
inverse of the number of schemas in the set.) 

A response of the system to an input I is a pair (A a), where 
B is a completion of I, and A defines the schema activations: 
A(S) E {O,l} for each schema S . 

A harmony function H is a function that assigns a real number 
H,(A,B) to a response (A,B), given a knowledge base u, and 
obeys certain properties to be discussed elsewhere. A particular 
exemplar is 

H,(AJ) = ~4)A(S) B(p)S(p) - KI S I 
s I 

Here K is a constant in the interval [O,l]; it regulates what propor- 
tion E of a schema’s arguments must disagree with the beliefs in 
order for the harmony resulting from activating that schema to be 
negative: e = %.(l-K). In the following we assume z to be small 
and positive. (The terms without K make H simply the sum over 
all active schemas of the strength of the schema times the number 
of bits of belief (pixels) that are consistent with the schema minus 
the number that are inconsistent. Then each active schema incurs 
a cost proportional to its number of arguments, where K is the 
constant of proportionality.) 

Considerations similar to those of the previous paragraph 
lead in thermal physics to an isomorphic formula (the Boltzmann 
law) relating the probability of a physical state to its energy. The 
randomness parameter there is ordinary temperature, and I there- 
fore caI1 T the computational temperature of the cognitive system. 

The probability of a completion B is simply the probability of 
all possible responses (A,B) that combine the beliefs B with 
schema activations A: prob(B) = n CA eH(Aa)/r. 

Monte carlo analyses of systems in thermal physics have pro- 
ven quite successful (Binder, 1976). Starting from the exponential 
probabiIity distribution given above, the stochastic process 
described in the text can be derived (as in Smolensky, 1981). The 
above formula for H leads to a simple form for the stochastic 
decision aigorithm of the text that supports the following interpre- 
tation. The variables can be represented as a network of “p 
nodes” each carrying value OCp), “S nodes” each carrying value 
A(S), and undirected links from each p to each S carrying label 
a(S) - S@) (links labelled zero can be omitted). The nodes 
represent stochastic processors running in parallel, continually 
transmitting their values over the links and asynchronously setting 
their values, each using only the IabeIs on the links attached to it 
and the vaIues from other nodes transmitted over those links. 
This representation makes contact with the neurally-inspired “con- 
nectivist” approach to cognition and parallel computation (Hinton 
and Anderson, 1981; McClelland and Rumelhart, 1981; Rumelhart 
and McClelland, 1982). Independently of the development of har- 
mony theory, Hinton and Sejnowski (1983) developed a closely 
related approach to stochastic parallel networks following 
(Hop field, 1982) and (Kirkpatrick, Gelatt, and Vecchi, 1983). 
From a nonconnectionist artificial intelligence perspective, Hofs- 
tadter (1983) is pursuing a related approach to perceptual group 
ing; his ideas have been inspirational for my work (Hofstadter, 
1979). 

An environment for the cognitive system is a probability dis- 
tribution on 5. (All patterns of on/off pixels corresponding to 
sequences of four letters are equally probable; all other patterns 
have probability zero.) A training set T from this environment is a 
sample of points T drawn from the distribution. (Each T is a 
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training word.) A responw A of the system to the set T is a 
specification of schema activations A(T) for each T. The training 
harmony of such a response is BI,(A,T) = CT H,(A(T),T). The 
maximum of H,(A,T) over all responses A is H,(T), the training 
harmony permitted by the knowledge base u . 

Each of the sets of schemas considered in the text (Ietters, 
digraphs, . ..) tile the training set T, in that each T agrees exactly 
with schemas that have nonoverIapping arguments and that 
together cover all of T. AII results cited in the text folIow from 
this elementary calculation: If the knowledge buw cr consists of a 
set of schemas S tlrat tile T, then H,(T) = const./#S where const. is 
u con.rtunt Ior a given T. Thus given a single training set T and 
two tilings of T with sets of schemas, the set with fewer schemas 
permits greater training harmony, and is preferred by the training 
harmony criterion. If the number of letters in the alphabet u is 
smaller than the number of pixels per letter, letters are a better 
encoding than pixels; if the number of training words exceeds 4a 
then letters are better than words. The number of word schemas 
needed in the restricted environments R and I is 16; the number of 
digraphs needed for R is 8 while for I it is 96. 

The calculation cited in the previous paragraph is quite sim- 
ple. Recall that if the proportion of a schema’s arguments that 
disagree with the beliefs exceeds Q, then the harmony resulting 
from activating that schema is negative. Thus if E is chosen smaI1 
enough (which we assume), then for any given training word T, 
only those schemas that match exactly can contribute positive har- 
mony. In the response A(T) that maximizes the harmony, there- 
fore, only exactly matching schemas will be active; the others will 
be inactive, contributing zero harmony. Since the schemas S tile 
T, for each pixel p in T there is exactIy one active schema with p 

as an argument, and the value B(p) of the pixel is consistent with 
that schema, so B(p )S(p) = 1. Thus 

~~p)~[B(pp@) - d s(p)11 = #p(i-K) = #p-26 
s P 

Because a(S) is a constant for a11 S c S, the harmony H,(A(T),T) 
is simply the previous expression times a(S) = l/# S, or 
&# p/#S. Since this quantity is identical for aI1 training words 
T, summing over aI1 T in the training set T just multiplies this by 
the size of T, giving 2e# p# T/# S as the training harmony permit- 
ted by u: 
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