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Abstract 

It is too hard to tell vision systems what things look like. 
It is easier to talk about purpose and what things are for. 
Consequently, we want vision systems to use functional 
descriptions to identify things, when necessary, and we 
want them to learn physical descriptions for themselves, 
when possible, 
This paper describes a theory that explains how to make 
such systems work. The theory is a synthesis of two sets of 
ideas: ideas about learning from precedents and exercises 
developed at MIT and ideas about physical description 
developed at Stanford. The strength of the synthesis is 
illustrated by way of representative experiments. All of these 
experiments have been performed with an implemented 
system. 

Key Ideas 

It is t.oo hard to tell vision systems what things look like. 
It is easier to talk about purpose and what things are for. 
Consequently, we want vision systems to use functional 
descriptions to identify things, when necessary, and we 
want them to learn physical descriptions for themselves, 
when possible. 

For example, there are many kinds of cups: some have 
handles, some do not; some have smooth cylindrical bodies, 
some are fluted; some are made of porcelain, others are 
Styrofoam, and still others are metal. You could turn 
blue in the face describing all the physical possibilities. 
Functionally, however, all cups are things that are easy to 
drink from. Consequently, it is much easier to convey what 
cups are by saying what they are functionally. 
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To be more precise about what we are after, imagine 
that you are told cups are open vessels, standing stably, 
that you can lift. You see an object with a handle, an 
upward pointing concavity, and a flat bottom. You happen 
to know it is light. Because you already know something 
about bowls, bricks, and suitcases, you conclude that you 
are looking at a cup. You also create a physical model 
covering this particular cup type. 

Our first purpose, then, is to explain how physical 
identification can be done using functional definitions. Our 
second purpose is to show how to learn physical models using 
functional definitions and specific acts of identification. 

It is important to note that our theory of model learning 
involves a physical example and some precedents in addition 
to the functional definition: 

The physical example is essential, for otherwise there 
would be no way to know which precedents are relevant. 
The precedents are essential, for otherwise there would 
be no way to know which aspects of the physical example 
are relevant. 
We now proceed to explain our function-to-form theory 

and to illustrate the ideas using some examples that have 
been run through our implementation. 

WC begin by revicxwirig the sort of tasks pcrforrned by the 
syr:tcrn tli;~J, c~rnl~oclit~s the thcbory of Icarnirig by analogy 
arid constraint, transfer. For tlf:tails, see Winston [ 19811. 

o A natural language interface translates English sentences 
describing a precedent and a problem into links in a 
semantic net. 

The input English interface was conceived and written by 
Katz. For details, see Katz and Winston [1982]. 
e A matcher determines a correspondence bet,ween the parts 

of the precedent and the problem. Figure 1 illustrates. 
e An analogizcr determines if the questioned link in the 

problcrn is supported by the given links in the problem. 
To do this, the analogizer transfers the CAUSE links 
supplied by the precedent onto the problem. Figure 2 
illustrates. 
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Precedent Problem 

1 Match 

Figure 1. The matcher determines part correspondence using the 
links that populate the precedent and the problem. The matcher 
pays particular attention to links that are enmeshed in the CAUSE 
structure of the precedent. 

Precedent Problem 

Figure 2. The analogizer transfers CAUSE constraints from the 
precedent to the problem. The problem is solved if links in the 
problem match the links carried a!ong with the transferred CAUSE 
structure. In this simple illustration, there is only one CAUSE link. 
This CAUSE link leads from the link to be shown to a link that 
already holds. 

--- 

l A rule generator constructs an if-then rule to capture 
that portion of the causal structure in the precedent 
that is ferreted out by the problem. The then part of 

the if-then rule comes from the questioned link in the 
p&lc~~. The if parts come from links identified by the 
transferred CATJSE structure. 
thus t,Ile rules look like this: 

Rule 
RULE-1 

if 
link found using CAUSE structure 
link found using CAUSE structure 

then 
link to be shown to hold 

case 
names of all precedents used 

In more complicated situations, no single precedent 
can supply enough causal structure. Consequently, several 
preccdcrlts rrlust be strung tog&er. A new precedent is 
sought whenever there is a path in the transferred CAIJSI3 
structure that does not 1c;ul to an already established link 
iI1 the probl~~m. The exarnplcs in this paper all use multiple 
precedents. 

The Synthesis 

In this section, we briefly describe the steps involved in our 
synthesis of the learning of ANALOGY and the physical 
representations of ACRONYM, an object modelling system 
based on generalized cylinders [Binford 1971, 1981, 1982; 
Brooks 19811. In the next section we illustrate the steps by 
explaining a particular scenario in which the identification 
and learning system recognizes one physical model of a cup, 
expressed in ACRONYM’s representation primitives, and 
then creates a model, in the form of an if-then rule, for 
that kind of cup. Here then are the steps in the synthesis: 
1. Describe the thing to be recognized in functional terms. 
The functional description is given in English and translated 
into semantic net links. 
2. Show a physical example. 
At the moment, the physical description is given in 
English, bypassing vision. The description is couched in the 
generalized-cylinder vocabulary of ACRONYM, however. 
Eventua.lly this description will come optionaliy from 
ACRONYM. 
3. Enhance the physical example’s physical description. 
The basic physical description, produced either from 
English or from an image, occasionally requires English 
enhancement. English enhancement is required when there 
is a need to record physical properties such as ma.terial 
composition, weight, and articulation, which are not easily 
obtained from a vision system or a vision-system prosthesis. 
4. Show that t,he functional requirements are met by 

the enhanced physical description, thus identifying the 
object. 

ANALOGY does this using precedents. Several precedents 
are usually necessary to show tha.t all of the functional 
requirements are met. 
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5. Create a physical model of the functionally-defined 
concept. 

ANAI,OC,Y creates a physical model in the form of an 
if-then rule whenever it successfully shows that a concept’s 
functional rcquiremcnt,s are met by a parlicular physical 
example. Sillcc functional rcquircmcnts usually can bc met 
in a nllmbtlr of ways, thrre may br a nurnbcr of physical 

models, each genc~ratod from a dif[iarcnt physica. example. 
Once if-tlicn b;~tl physicxl rr~oclf:l~ are learned, examples 

of the concept cari be rc:c:o!;riizcd dirccl,ly, without rcfcrcrice 
t80 furlcf,ioll;~l rc~cl”if.c,rrlc:rlt~s or to pr~c:tfc~nIs. Morclovcr, 
AC~IIONL’M (:iIrl 11s~ OIIC Ic;lrrlcd r)tlysical Irlotlclx tm Irlalte 

top-down predictions about what things will be seen so 
that bottom-up procedures can look for those things. 

Learning What an Ordinary Cup Looks Like 

Now let us walk through the steps of the learning process, 
showing how to learn what an ordinary cup looks like. 

The first step is to describe the cup concept in terms of 
functional qualities such as liftability, stability, and ability 
to serve as an accessible container. This is done by way of 
the following English: 

Let X be a definition. X is a definition of an 
object. The object is a cup because it is a 
stable liftable open-vessel. Remember X. 

Of course, other, more elaborate definitions are possible, 
but this one seems lo us LO be good enough for the purpose 
of illustrating our learning theory. 

The English is translated into the semantic net shown in 
figure 3. 

CUP 

object 
cause 

open-vessel 

stable 
liftable 

Figure 3. The functional definition of a cup. This semantic net is 
produced using an English description. AK0 = A Kind Of. 

The next step is to show an example of a cup, such as the 
one in figure 4. ACRONYM is capable of translating such 
visual information into the semantic net shown in figure 
4. But inasmuch as our connection to ACRONYM is not 
complete, we currently bypass ACRONYM by using the 
following English instead. 

Let E be an exercise. E is an exercise about 
a red object. l’he object’s body is small. Its 
bottom is flat!. The object has a handle and 
an upward-pointing concavity. 

In contrast to the definition, the qualities involved in the 

dmmi~)lior~ Of the J);Il.1 ic*ular cll[b WC 211 p}iysic;ll qll;Jitjcs, 

JlOL f’llJlCLiOJl;Ll OJlflS. (Assurrlo ttlilt. all qtralitics irlvolving 

scales, like small size and light weight, are relative to the 
human body, by default, unless otherwise indicated.) 

In the next step, we enhance the physical example’s 
physical description. This enables us to specify physical 
properties and links that are not obtainable from vision. 

The object is light. 

Now it is time to show that the functional requirements 
are met by the enhanced physical description. To do 
this requires using precedents relating the cup’s functional 
descriptors to observed and stated physical descriptors. 
Three precedents are used. One indicates a way an object 
can be determined to be stable; another relates liftability 
to weight and having a handle; and still another explains 
what being an open-vessel means. All contain one thing 
that, is irrclevar1.t with respect to dealing with cups; these 

The 
object is light. 

irrelevant things are representative of the detritus that can 
accompany the useful material. 

Let X be a description. X is a description of a 
brick. The brick is stable because its bottom 
is flat. The brick is hard. Remember X. 
Let X be a description. X is a description 
of a suitcase. The suitcase is liftable because 
it is graspable and because it is light. The 



suitcase is graspable because it has a handle. 
The suitcase is useful because it is a portable 
container for clothes. Remember X. 
Let X be a description. X is a description of 
a bowl. The bowl is an open-vessel because it 
has an upward-pointing concavity. The bowl 
contains tomato soup. Remember X. 

With the functional definition in hand, together with 
relevant precedents, the analogy apparatus is ready to 
work as soon as it is stimulated by the following challenge: 

In E, show that the object may be a cup. 
This initiates a search for precedents relevant to showing 

something is a cup. The functional definition is retrieved. 
Next, a matcher determines the correspondence between 
parts of the exercise and the parts of the functional 
definition, a trivial task in this instance. Now the verifier 
overlays the cause links of the functional definition onto 
the exercise. Tracing through these overlayed cause links 
raises three questions: is the observed object stable, is it 
an open vessel, and is it liftable. All this is illustrated in 
figure 5. 

CUP 

Figure 5. The cause links of a functional description, acting as a 
precedent, are overlayed on the exercise, leading to other questioned 
links. Note that all of the exercise description is physical, albeit not 
all visual. Overlayed structure is dashed. 

Questioning if the object is liftable leads to a second 
search for a precedent, this time one that relates function to 
form, causing the suitcase description to be retrieved. The 
suitcase description, shown in figure 6, is matched to the 
exercise, its causal structure is overlayed on the exercise, 
and other questions are raised: is the observed object light 
and does it have a handle. Since it is light and does have 
a handle, the suitcase description suffices to deal with the 
liftable issue, leaving open the stability and open-vessel 
questions. 

Thus the suitcase precedent, in effect, has a rule of 
inference buried in it, along with perhaps a lot of other 
useless things with respect to our purpose, including the 
statcmcnt about why the suitcase itself is useful. The job 
of analogy, then, is to find and exploit such implicit rules 
of inference. 

has 

red 4 

landle 

open-vessel 

stable 
liftable 

.’ 
t I_- - *graspable 

I ! w has 
1 I 
1 I 
1 I 
I lis 
lakn 

*light 

JUUUI‘, 

+ tJlfE----;dy 
Qz;\;;;;%.ng 

Figure 6. Cause links from the suitcase precedent are overlayed on 
the exercise, leading to questlons about whether the object is light 
and whether the object has a handle. Overlayed structure is dashed. 
Many links of the suitcase precedent are not shown to avoid clutter 
on the diagram. 

Checking out stability is done using the description of 
a brick. A brick is stable because it has a flat bottom. 
Similarly, to see if the object is an open-vessel, a bowl is 
used. A bowl is an open vessel because it has an upward- 
pointing concavity. Figure 7 illustrates. 

At this point, there is supporting evidence for the 
conclusion that the exercise object is a cup. 

Now we are ready for the final task, to build a physical 
model of the functionally defined concept. This is done by 
constructing an if-then rule from the links encountered in 
the problem-solving process: the questioned link goes to 
the then part; the links at the bottom of the transferred 
CAUSE structure go to the if part; and the intermediate 
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brick 

open-v+gel 

-bottom -- /;’ ?lRU, / - 
. 

Figure 7. The brick precedent and the bowl precedent establish that 
the object is stable and that it is an open vessel. The cause links of 
the precedents are overlayed on the exercise, leading to questioned 

links that are immediately resolved by the facts. Overlayed structure 
is dashed. Many h&s of the precedents are not shown to avoid clutter 
on the diagram. 

links of the transfcrrcd CAUSE structure go into the unless 
part.l 

The resuf t follows: 

‘The unless part,s come from the links lying between those links 
supplying the if and f,tnarl parls of tliC- rult. Par a rule to al,ply, it 
~rtust txa lhat t.hr>rc is no &rr:ct ~C~~SOI) 10 bc:licvc dliv lirlk in the rhlc’8 
7bnless pitrt, as exphind in an wrlim paper IWinston 1982). 
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Rule 
RULE-l 

if 
[OBJECT-9 IS LIGHT] 
[OBJECT-9 HAS CONCAVITY-71 
[OBJECT-g HAS HANDLE-41 
[OBJECT-9 HAS BOTTOM-71 
[CONCAVITY-7 AK0 CONCAVITY] 
[CONCAVITY-7 IS UPWARD-POINTING] 
[HANDLE-4 AK0 HANDLE] 
[BOTTOM-7 AK0 BOTTOM] 
[BOTTOM-7 IS FLAT] 

then 
[OBJECT-O AK0 CUP] 

unless 
[[OBJECT-9 AK0 OPEN-VESSEL] IS FALSE] 
[[OBJECT-9 IS LIFTABLE] IS FALSE] 
[[OBJECT-9 IS GRASPABLE] IS FALSE] 
[[OBJECT-O IS STABLE] IS FALSE] 

case 
DEFINITION-1 DESCRIPTION-2 DESCRIPTION-3 DESCRIPTION-l 

At first the unless conditions may seem strange, for if all 
the ordinary conditions hold and if the causal connections in 
the precedents represent certainties, then none of the unless 
conditions could trigger. However, the learning system 
assumes that the precedents’ cadsal connections indicate 
tendencies, rather than certainties. Consequently, from the 
learning system’s perspective, the unless conditions must 
appear. An earlier paper gives several examples where 
similar unless conditions are necessary [Winston 19821. 

Learning What a Styrofoam Cup Looks Like 

Styrofoam cups without handles are described by another 
rule t,Ilat is learned in the same way using the same 
functional description. The only differences is that liftability 
is handled by way of a flashlight precedent rather than by 
the suitcase precedent. 

Let X be a description. X is a description of a 
flaslllight. The flashlight is lift.able because its 
body is graspable and because the flashlight 
is light. The flashlight’s body is graspable 
because it is small and cylindrical. liemember 
X. 

Thus the learned rule is as follows: 

Rule 
RULE-2 

if 
[OBJECT-IO IS LIGHT] 
[OBJECT-IO HAS Bow-91 
[OBJECT-IO HAS coNc~vm-81 
[OBJECT-lo HAS BOTTOM-81 
[CONCAVITY-8 AK0 CONCAVITY] 
[CONCAVITY-8 IS UPWARD-POINTING] 
[BODY-9 AK0 BODY] 
[BODY-9 IS CYLINDRICAL] 
[BODY-~ Is mALLI 
[BOlTOh!- AK0 BOTTOM] 
[BOTTOM-8 IS FLAT] 

then 
[OBJECT-IO AK0 cup1 

unless 
TTOBJECT-10 AK0 OPEN-VESSEL] IS FALSE] 
[[OBJECT-10 Is LIFTABLE] IS FALSE1 
[[OBJECT-10 IS STABLE] IS FALSE1 
[[BODY-S IS GRASPABLE] IS FALSE] 

case 
DEFINITION-1 DESCRIPTION-2 DESCRIPTION-4 DESCRIPTION-1 

Recognizing Cups and Using Censors 

We now have two descriptions that enable direct recognition 
of cups. These can be used, for example, on the following 
descriptions, conveyed by ACRONYM or by the natural 
language interface: 

Let E be an exercise. E is an exercise about a 
light object. The object’s body is small. The 
object has a handle. The object’s bottom 
is flat. Its concavity is upward-pointing. Its 
contents are hot. In E show that the object 
may be a cup. 
Let E be an exercise. E is an exercise about 
a light object. The object’s bottom is flat. Its 
body is small and cylindrical. Its concavity 
is upward-pointing. Its contents are hot. Its 
body’s material is an insulator. In E show 
that the object may be a cup. 

For the first of these two exercises, the rule requiring 
a handle works immediately. It is immaterial that the 
contents of the cup are hot. 

For the second, the rule requiring a small, cylindrical 
body works immediately. Again it is irnmatcrial that the 
contents of the cup arc hot since nothing is kIlown about 
the links among coutcnt temperature, grilsl)ilbility, and 
insul;ltirlg rrl;lt,OriitlS. Proving sornc l~IloWlc~cl::c: ;ll~Ollt tllcse 
t,tlings by way of sor110 ccr~sorx ril;tkcs iclc~Illific~itt~iorl more 

interesting, 

Suppose, for example, that we teach or tell the machine 
that an object with hot contents will not have a graspable 
body, given no reason to doubt that the object’s body is 
hot. Further suppose that we teach or tell the machine that 
an object’s body is not hot, even if its contents are, if the 
body is made from an insulator. All this is captured by the 
following censor rules, each of which can make a simple 
physical deduction: 

Let Cl be a Censor. Cl is a censor about 
an object. The object’s body is not graspable 
because its contents are hot unless its body is 
not hot. Make Cl a censor using the object’s 
body is not graspable. 

Let C2 be a censor. C2 is a censor about 
an object. The object’s contents are hot. Its 
body is not hot because its body’s material 
is an insulator. Make C2 a censor using the 
object’s body is not hot. 

Repeating the second exercise now evokes the following 
scenario: 

Asking whether the object is a cup activates the rule 
about CUPS without handles. The if conditions of the rule 
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are satisfied. 

The unless conditions of the rule are checked. One of 
these conditions states that the object’s body must not be 
plainly ungraspable. 

Asking about graspability activates the censor relating 
graspability to hot contents. The censor’s if condition is 
satisfied, and the censor is about to block the cup-identifying 
rule. The censor’s unless condition must be checked first, 
however. 

The censor’s unless condition pertains to hot bodies. 
This condition activates a second censor, the one denying 
that a body is hot if it is made of an insulator. This second 
censor’s if condition is satisfied, and there are no unless 
conditions. 

The second censor blocks the first censor. The first censor 
therefore cannot block the cup-identifying rule. The rule 
identifies the object as a cup. It would not have worked 
if the contents were hot and the body wcrc made from 
something other than an insulator. 

Related Work 

The theory explained in this paper builds directly on two 
sets of ideas: one set that involves a theory of precedent- 
driven learning using constraint transfer [Winston 1979, 
1981, 19821; and another set that involves model-driven 
recognition using generalized cylinders [Binford 1971, 
1981, 1982; Brooks 19811. 

Another important precedent to this paper is the work of 
Freeman and Newell on the role of functional reasoning in 
design. In their paper on the subject [1971], they proposed 
that available structures should be described in terms 
of functions provided and functions performed, and they 
hinted that some of this knowledge might be accumulated 
through experience. 

Another way to learn what things look like is by near 
misses. Since the use of near misses was introduced by 
Winston [1970], several researchers have offered improved 
methods for exploiting near miss information. See Dietterich 
and Michalski [1981] for an excellent review of work by the 
authors, Iiayes-Roth, and Vere. Also see work by Mitchell 
[1982]. 
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