
A Problem-Solver for Ma ing Advice Operational 

Jack Mostow 
USC lnformatlon Sciences Institute 

4676 Admiralty Way. 
Marina del Rey, CA. 90291’ 

Abstract’ 

One problem with taking advice arises when the advice is 
expressed in terms of data or actions unavailable to the advice- 
taker. For example. in the card game Hearts, the advice “don’t 
lead a suit in which some opponent has no cards left” is non- 
operational because players cannot see their opponents’ cards. 
Operationalization is the process of converting such advice into 
an executable (perhaps heuristic) procedure. This paper 
describes an interactive system, called BAR. that operationalizes 
advice by applying a series of program transformations. By 
awMw different transformation sequences, BAR can 
operationalize the same advice in very different ways. 

BAR uses means-ends analysis and planning in an abstraction 
space. Rather than using a hand-coded difference table, BAR 
analyzes the transformations to identify transformation sequences 
that might help solve a given problem. Thus new transformations 
can be added without modifying the problem-solver itself. 
Although user intervention is required to select among alternative 
plans, BAR reduces the number of alternatives by lo3 compared to 
an earlier operationalizer. 

1. Int reduction 
Many tasks that are onerous to program seem much easier to 

specify in terms of a body of advice. Examples include air traffic 
control (“keep planes three miles apart”), factory scheduling 
(“minimize re-tooling”), document preparation (“place a figure on 
the page that mentions it”)* and computer dating (*.no incestuous 
matches”). The idea of the advice-taking machine has been 
around for some time [McCarthy 681: in this paradigm, the 
machme accepts advice for how to perform a task and converts it 
into an effective procedure. [Hayes-Roth 811 explores this 
paradigm in some depth. showing how advice provided by an 
expert tutor could be refined by experience. 

Several hard problems must be solved to achieve the ambitrous 
long-term goal of a general advice-taker. One problem is to 
translate advice expressed imprecisely in natural language into a 
precise machine representation of its meaning. Another problem 

‘This research was supported by DARPA Contract MDA.903.81-C-0335. The 
views and conclusions contained in this document are those of the author and 
should not be interpreted as representing the official policies. either expressed or 
implied, of the Defense Advanced Research Projects Agency or the US 
Government. I am grateful to my dissertation committee (Rick Hayes-Roth. Allen 
Newell, Jaime Carbonell. and Bob Balzer) for manifold contributions to this 
research. to my ISI colleagues for their intellectual influence, and to Don Cohen 
and Bill Swartout for improvmg this paper. 

is to combine different, possibly conflicting pieces of advice. This 
paper focusses on a third problem: taking advice that is 
non-operational, i.e.. expressed In terms of data or actlons 
unavailable to the machine, and transforming it into a procedure 
executable using only the available operations This process is 
called operational/zat/on [Mostow 811 [Diettench et al 821. 

Operationalization cannot be studied in a vacuum: one must 
look at how advice IS operationalrzed in the context of a particular 
task. ideally one that is easy to model but retains the essential 
properties of advice-based tasks. i.e., that no simple. economlcal 
algorithm is known (this rules out tasks like sorting). but good 
performance can be attained by following known advice (this rules 
out tasks like earthquake prediction). A task like air traffic control 
has both properties but is inconvenient to model. This paper uses 
the card game Hearts as its example domain, and is based on two 
programs, called FOO and BAR. that accept Hearts advice, encoded 
in a suitable internal representation. and operatlonalize it by 
applying a series of program transformations. 

FOO [Mostow 811 was used to operationalize 13 pieces of advice 
for Hearts and a music composition task, including*: 

- “Avoid taking a trick with points” - non-operational 
because a Hearts player cannot simply refuse to take 
points 

- “Flush out the Queen of spades” - one player 
cannot choose the card played by another 

- “Don’t lead a high card in a suit where some 
opponent is void [has no cards left]” - a player may 
not peek at opponents’ cards 

By applying different sequences of transformations. the same 
piece of advice was operatronalized in different ways. Thus 
“avoid taking points” was operationalized both as “play a low 
card” and as a heuristic search procedure that enumerates 
possible sequences of play for a trick to determine whether 
playing a given card mrght lead to taking points [Mostow 821. 
“Flush the Queen” was operationallzed as a plan to keep leading 
spades until whoever has the Queen IS forced to play it. The 
problem of deciding whether some oppgnent is void in a given suit 
was operationalized In two ways. One way is to check if someone 
failed to follow suit earlier when that suit was led Another is to 

2 
These preces of advice were operatlonallzed independently of each other, but 

in fact they interact For example, the reason for flushing out the Queen of spades 
IS to make someone else take It. Leadmg the Kmg or Ace of spades might help 
flush out the Queen at the cost of takmg it. which would vlolate the advice to avoid 
taking points. 

279 

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved. 



estimate the probability that someone is void based on the number 
of cards played in the suit. 

l-he examples handled by FOO averaged 60 steps in length. At 
each step. the decision of which transformation rule to apply and 
which part of the advice to apply it to were made by hand. Since 
FOO had 230 general transformation rules. the branching factor 
was on the order of lo3 to 104. FOO’S successor. BAR, helps 
automate the selection of rule sequences, reducing the branching 
factor to between 1 and 10 at each step. This lo3 improvement is 
achieved by a combination of means-ends analysis and abstract 
planning. BAR currently has 60 rules and handles about half of the 
13 examples done using FOO. 

2. A means-ends analysis approach 
Both FOO and BAR incorporate a problem space [Newell 791 

model of operationalization, whose states are expressions in a 
LISP-like language. For example, the expression (Void p, so) 
represents the condition “player p, is void in suit so.” The 
operators in this space are general transformation rules. 

BAR formalizes the goal structure left implicit in the 
transformation sequences generated using FOO. Goals in the 
operationalization space (as opposed to goals in the task domain 
itself) are expressed in a pattern language containing pattern 
variables. embedded tests, segments, Kleene star, and some other 
constructs. 

A problem in this space consists of finding a sequence of 
transformation rules that rewrites a given expression to match a 
given pattern. This is accomplished by means-ends analysis, 
succinctly described in [Kant & Newell 821 as 

the continual comparison of the current state with 
the desired state (or its description); the result of the 
comparison (a difference or an opportunity) is used to 
select the next operator (to reduce the difference or 
exploit the opportunity). 

Differences between an expression and a pattern include 
mismatches between corresponding symbols. argument 
transposition. and so forth: for a detailed description of BAR’S 
pattern language and the kinds of differences. see [Mostow 831. 

Two kinds of top-level operationalization problems are 
represented in the pattern language by the tests @lsEvaluabie 
and @lsAchievable. The first represents the goal of figuring out 
how to evaluate a given expression in terms of observable data. 
The second represents the goal of finding executable actions to 
achieve a given condition. Subgoals arise when a selected 
transformation rule does not apply to the current expression; such 
a subgoal is represented by a pattern language description of the 
rule s left-hand side.3 

Many means-ends problem-solvers have been built since 
GPS [Newell 601: the next two sections describe the novel aspects 
Of BAR. 

3 
BAR’S rules are encoded as procedures, but BAR reasons about them using a 

more convenient pattern language representation. The pattern language is 
powerful enough to capture most if not all of each rule. 

3. Separation of knowledge 
In BAR, different kinds of knowledge are factored apart and 

represented separately. 

Task domain knowledge is encoded as concept definitions and 
features. For example, the predicate Void(player.suit) is defined 
as (Not (Exists card (Cards-in-hand player) (In-suit card suit))). 
and In-suit is marked IsPredicate and IsComputable to represent 
the fact that a Hearts player can test a given card to tell if it 
belongs to a given suit. BAR currently has 38 of FOO’S 112 concept 
definitions. 

Program transformations are encoded as rules that do not 
mention the task domain and may in fact be useful in more than 
one domain. BAR’S 60 rules include unfolding and folding 
definitions [Darlington 761, approximating a predicate P 
probabilistically as (High (Pr P)) (“P is likely”), and using a 
combinatorial formula to compute the probability that two subsets 
randomly chosen from a given universe will be disjoint. 

Knowledge about what is operational is encoded as general 
facts. such as “A computable function of evaluabie arguments is 
evaluable.” represented in BAR as (@lsComputable 
@ IsEvaluable’) -matches+ @IsEvaluabie. 

Finally. knowledge about means-ends problem-solving is 
encoded procedurally. Thanks to this factoring of knowledge. 
domain knowledge and program transformations can be added to 
BAR without modifying the problem-solving procedure itself. 

Unlike GPS, BAR uses no built-in difference table that indexes 
directly from differences to operators. Instead. BAR analyzes its 
transformations to determine what kinds of differences they might 
help reduce. Some of BAR’S knowledge about analyzing 
transformations is illustrated below. 

“If the left side of a transformation rule contains an 
argument absent from the right side. the rule deletes the 
sub-expression corresponding to that argument.” For 
example. one such rule approximates a binary ordering as the 
corresponding unary predicate: this rule is described in the 
pattern language as (@isOrdering ?x ?y) -+ (@IsPredicate ?x). 
BAR deduces that applying this rule to an expression has the effect 
of deleting the sub-expression bound to the pattern variable ?y. 
This knowledge is used in operationaiizing the advice “avold 
taking points” as “play a low card”: to evaluate the expression 
(Lower (My-card) (Card-played-by ?q)) (“my card is lower than the 
card to be played by player ?q”), BAR decides to eliminate the 
unevaluabie second argument by approximating the expression as 
(Low (My-card)). 

“If the right side of a rule occurs as a sub-pattern of the 
left side, the rule extracts the sub-expression 
corresponding to the sub-pattern.” Such a rule is useful when 
the current expression does not match the current goal but one of 
its sub-expressions does. One such rule is described in the 
pattern language as (@lsQuantifier ?x ?S [?P FreeOf ?x]) --, ?P. 
This rule eliminates a quantifier when the quantified predicate is 
independent of (FreeOf) the quantified variable. 

“If both sides of a rule have the same top-most symbol, 
the rule restructures the expression to which it’s applied.” 



Such rules are useful when the arguments of the current 
expression cannot be rewritten to match the corresponding 
arguments of the current goal. One such rule transposes the 
arguments of a symmetric relation: 
(@ IsSymmetric ?x ?y) ---, (@lsSymmetric ?y ?x). 

“If the right side of a rule is a constant, the rule 
evaluates the expression to which it’s applied.” One such 
rule recognizes that a conjunction contaming a false term is false: 
(And -. False --) -+ False. BAR knows that evaluation IS one kind of 
simplification. and applies simplification rules whenever it can. 

4. Abstract plans 
BAR faces a combinatorially explosive problem space. involving 

transformation sequences dozens of steps long, with several rules 
applicable at each step. To cut down the combtnatorics. BAR 

searches in a simpler abstracted space for plans to reduce 
differences. This restricts the set of transformations considered to 
those that lead to a solution in the abstracted version of the 
problem space. A transformation rule (L . ..) + (R . ..) or a fact (L 
. . . -matches+ (R . ..) in the original space IS abstracted as L ---, R ) 
in the sampler space. To rewrite an expression (f . ..) to match a 
pattern (g ...)s BAR searches in the abstracted space for paths of 
the form f-rule+ . . . -rule+ g. Such paths are only a few steps 
long. and are found by depth-first search. Each such path 
constitutes an abstract plan for rewriting (f . ..) to match (g . ..). 

In the course of applying such a plan. BAR must solve 
subproblems that arise when a proposed rule does not apply to 
the current expression. It does so by recursively invoking itself 
with the left side of the rule as the pattern to match If the CAR 
(top-level function) of the expression matches the CAR of the 
pattern. BAR recursively transforms the arguments of the 
expression to match the arguments of the pattern: if this fails, it 
tries to restructure the expression, e.g., by transposing 
arguments, or looks for alternative plans to get to the goal. BAR’S 
path-finder avoids returning more than one plan with a given first 
step. so a successful route to the goal may follow a plan part-way 
and then switch to a new plan in mid-stream. 

When BAR finds only one plan, it applies it automatically, but 
when it finds more than one, it scores them based on such factors 
as the number of steps in the plan and how many of them require 
subgoaling. It then asks the user to select among them. 
Alternatively BAR can try them in order of decreasing score, but at 
present this tends to cause a runaway search. 

Of course, an abstract plan may fail; this occurs when the 
current expression cannot be transformed to match the next step 
in the plan. To reduce the incidence of plan failure. BAR uses a 
simple form of learning by experience: it records how often it tries 
to match the left side of each rule, and how often it succeeds. 
One result discovered by this simple tuning mechanism is that it is 
easier to make an expression runtime-evaluable, i.e., to match the 
pattern @IsEvaluable, than to actually evaluate it, i.e., to match 
@IsConstant. This knowledge influences the order in which the 
abstracted space is searched. in the hope that of all the plans that 
start the same way. BAR will find tne one most likely to succeed. 

The combmation of abstract planning and recursive descent 
means that BAR plans tn a hierarchy of abstraction 
spaces [Sacerdoti 741 corresponding to successive nesting 
depths of sub.expressi0n.s. 

5. A short example 
This section shows how BAR operationalizes the condition 

“player p, is void in suit so.” [Mostow 831 presents a longer 
example exhibiting complexities omitted here. 

The initial problem is 

> Goal: 
Rewrite (Void po so) to match @IsEvaluable 

BAR finds 6 abstract plans to get from Void to @IsEvaluable. and 
rates them: 

Plan Pl (rated 226): Void -unfold-, Not -fold+ 
Disjoint -matches+ @IsEvaluable 

Plan P2 (rated -91): Void 
-Fact44 @IsEvaluable 

-Rule227+ Implied- by 

Plan P3 (rated -167): Void --Rule234-, WasDuring 
-Rule227+ Implied-by -Fact4+ @IsEvaluable 

Plan P4 (rated -108): Void -Rule1 93+ 
-Rule 173+ True -matches+ @I sEvalua ble 

Plan P5 (rated -127): 
-Fact44 @IsEvalua ble 

Void 

In 

-Rule405+ High 

Plan P6 (rated -240): Void --Rule3294 @IsQuantifier 
-Rule1 55+ @IsPredicate -Rule227+ Implied- by 
-Fact4+ @IsEvaluable 

In this example, the user selects plan P5. In more detail, plan P5 
is 

1 ! Approximate predicate pro 
Rule405: ?P -+ (High (Pr ?P)). 

babilistically using 

2? Make the result evaluable. 

Plan P5 is rated low because Rule405 is marked as an 
approximating method. (Plan Pl leads to the same result by a 
different route; plans P2 and P3 lead to alternative solutions 
described later; P4 and P6 are dead ends.) 

The ““’ denotes the fact that 
producing the transformation 

step 1 can be applied Immediately. 

(Void P, so) + (High (Pr (Void p, so))) 

The “?” denotes the fact that step 2 requires some subgoaling. 
The problem is that although the predicate High IS marked 
IsComputable, there is no general definition for Pr. This problem 
leads to the subgoal 

> Goal: 
Rewrite (Pr (Void p, so)) to match @IsEvaluable 

BAR finds one plan to get from Pr to @IsEvaluable and tries it 
without asking: 

2.1? Use formula for probability that two 
randomly chosen subsets of ?U will be disjoint: 
(Pr (Disjoint (SetOf x ?U ?P) (SetOf y ?U ?a))) 
- (Pr-disjoint-formula 

(# (SetOf x ?U ?P)) 
(# (SetOf y ?U ?a)) 
(# ?U)) 

281 



2.2? Make arguments of formula evaluable. 2.2? Make arguments of formula evaluable. 

To apply step 2.1, BAR must first reformulate Void in terms of 
Disjoint: 

> Goal: 
Rewrite (Void po so) to match 
(Disjoint (SetOf ?x ?U ?P) (SetOf ?y ?U ?a)) 

BAR finds 5 plans 
the top-ranked one: 

to get from Void to Disjoint: the user accepts 

2.1 .I! Unfold definition of Void: 
(Void po so) - 
(Not (Exists c (Cards-in-hand po) (In-suit c so))) 

2.1.2? Fold into instance of 
Disjoint(Sl,S2) = (Not (Exists x Sl (In x S2))) 

To do step 
membership: 

2.1.2, BAR must reformulate In-suit in terms of set 

> Goal: 
Rewrite (In-suit c so) to match (In x S2) 

BAR finds 4 plans 
top-ranKed one: 

to get from In-suit to In. and the user accepts the 

2.1.2.1! P c - (In c (SetOf y S Py)), where c has type S 

This “jittering” rule [Fickas SO] rewrites an arbitrary predicate P 
on an object c in terms of set membership: c satisfies P if c 
belongs to the set of things that satisfy P. Here this rule produces 
the transformation 

(In-suit c soI - (In c (SetOf y (Cards) (In-suit y so))) 

This enables the previous plan to be completed: 

2.1.2! Fold into instance of Disjoint: 
(Not (Exists c (Cards-in-hand po) 

(In c (SetOf y (Cards) (In-suit y so))))) 
- (Disjoint 

(Cards-in-hand po) 

(SetOf y (Cards) (In-suit y so))) 

To match the left side of 
argument must be rewritten: 

the disjoint subsets rule. the frrst 

> Goal: 
Rewrite (Cards-in-hand po) to match (SetOf x ?U ?P) 

Cards-in-hand to BAR finds 
applies it: 

one plan to get from SetOf 

2.1.3! Unfold definition: 
(Cards-in-hand po) - (SetOf x (Cards) (Has p. x)) 

The disjoint-subsets rule can now be applied: 

2.1! Use probability formula for disjoint subsets: 
(High (Pr (Disjoint 

(SetOf x (Cards) (Has p, x)) 
(SetOf y (Cards) (In-suit y so))))) 

- (High (Pr-disjoint-formula 
(# (SetOf x (Cards) (Has p, x1)) 
(# (SetOf y (Cards) (In-suit y so)j) 
(# (Ca rds)))) 

and 

The resulting expression is evaluable except for the predicate Has. 
which is not computable. BAR finds 3 plans for evaluating the first 
argument of the formula, the user accepts the top-ranked one, and 
BAR carries it out: 

2.2.1! Fold into instance of computable function: 
(# (SetOf x (Cards) (Has p 
(Number-cards-in-hand p3 

x1)) - 

This completes the original plan: 

2! Expression is now evaluable: 
(High (Pr-disjoint-formula 

(Number-cards-in-hand po) 
(# (SetOf y (Cards) (In-suit y so))) 
(# (Cards)))) 

BAR halts, having achieved its ortginal goal of operatlonalizing the 
condition “player p, is void in suit so” by reformulating it as there 
being a high probability that player pp’s hand is disjoint from suit 
so, based on the size of the hand. A more accurate estimate was 
derived in FOO by restricting the universe to the set of unplayed 
cards, but this refinement is omitted here for brevity 

BAR’S generality is illustrated by the fact that it can 
operationalize (Void p, so) in very different ways by following 
different plans. Plan P2 exploits the assumption that player p, 
plays legally, and leads to the Inference that a player who fails to 
follow suit must be void. The main subproblem consists of 
inferring that the condition (Void p, so) is rmplred by the axrom 
(Legal p (Card-played-by p)) when (Suit-led) = so and (Not (In-suit 
(Card-played-by pa) so)). Plan P3 is based on remembering past 
events, and leads to the inference that a player who was void 
earlier in the round must still be void now. The key subproblem is 
to prove that a player who is void remains void. This is done by 
showing that becoming unvoid would require obtaining a card, 
which cannot occur during the course of play. 

These solutions can be combined to produce the solution “a 
player who failed to follow suit earlier is definitely void: otherwise, 
if few cards are left, the player is likely to be void.” The order of 
composition is based on the fact that plan P2 leads to a correct 
semi-decision procedure whose usefulness is extended by P3, 
while Pl produces a total but approximate decision procedure. 
BAR lacks an explicit understanding of these factors. and does not 
combine solutions. 

6. Improvements to the problem-solver 
The construction of a general advice-taker remains a long-term 

goal posing some difficult problems not addressed here. notably 
integrating multiple pieces of advice. In addition. BAR inherits 
many limitations of ~00, such as a far-from-complete set of 
transformations. However, experience with BAR has exposed 
several more specific problems worth mentioning here. 

First, BAR uses a very simple all-or-none model of operationality: 
either an expression can be evaluated or it cannot. This model 
ignores such factors as the cost of evaluation, the fact that some 
expressions can be evaluated sometrmes but not always. and the 
semantrc relationshrp between the ongrnal advice and tts (perhaps 
heuristically) operationalized form. 

282 



Since BAR does not model the relative quality of alternative 
solutions. it cannot explicitly model the notion of refining a crude 
solution into an improved one. The refinement paradigm was 
evident in more than one example generated using ~00. especially 
in the synthesis of a heuristic search procedure by applying 
optimizing transformations to an initial generate-and-test 
search [Mostow 821. A simple way to incorporate this into the 
means-ends analysis paradigm is to treat refinement somewhat 
like simplification: designate certain rules as refinement rules and 
automatically include them in the set of options whenever they 
appear applicable to the current expression (at the cost of 
increasing the branching factor). Of course the decision whether 
to actually apply such a rule 
benefits rn the case at hand. 

depends on its relative costs and 

To make operationalization totally automatic. BAR’S problem. 
solver must be substantially Improved. One problem is that BAR’S 

depth-first search strategy is too sensitive to selecting the wrong 
plan, which causes exhaustive exploration of that branch of the 
search tree. A more cautious breadth-first strategy might avoid 
this pitfall. but implementing it would be complicated by the 
recursive nature of the problem-solver. 

The current plan-rating scheme suffers from the horizon effect 
in that problems pushed down to a lower level are ignored. For 
example, plan Pl receives an unrealistically high rating because it 
ignores the problem of evaluating the arguments of Disjoint. The 
ratings could be improved by identifying obstacles to the 
evaluation of an expression and estimating the difficulty of 
eliminating each one. Identifying the obstacles seems 
straightforward, but it is not clear how to estimate their difficulty 
without actually solving them. 

A fundamental problem with the planner is caused by using 
CAR as the abstraction function. This works fine on instances of 
highly specific functions, like Void, but loses too much information 
when applied to quantifiers like Exists, logical connectives like Not 
and And, and general functions like In. This results in the 
generation of silly plans. This problem might be ameliorated by 
designing a more discriminating abstraction function. Some such 
improvement is essential to constrain the generation of abstract 
plans; although the current branching factor of under 10 is a vast 
improvement over FOO, the length of the transformation 
sequences (sometimes over 100) implies that total automation will 
require an average branching factor very close to 1. 

7. Conclusion 
BAR was implemented to make explicit the goal structure left 

implicit in FOO, and in this it has largely succeeded. Although it 
does not totally automate the selection of what operators to apply. 
it has reduced the branching factor by a factor of 103. without 
even counting the effect of plan scoring. It has been used to solve 
about half the examples done with FOO. and has clarified the 
improvements needed to handle some of the others: a more 
sophisticated control structure and model of operatronality 
make explicit the heuristic nature of operationalization. 

that 

In short, BAR should be viewed as a problem-solving model 
rather than as a practical automatic tool, and the broad scope of 
the operationalization problem makes this likely to remain the case 
for Improved versions of BAR in the forseeable future. However. 
technrques developed in BAR may soon find practical use in the 
area of program transformation. An especially promising 
applicatron is the problem of reformulating system components 
described in the Gist specification language [Feather 831 in terms 
of the data and operations available to their 
implementations [Mostow 831. Even partial automation of this 

process could significantly enhance human productivity in 
developing software [Fickas 821. 

References 
[Darlington 761 J. Darlmgton and R. M. Burstall. “A system which 

automatically improves programs,” Acta lnformatxa 6. 1976, 
41-60. 

[Dietterich et al 821 T. G. Diettench. Bob London. K. Clarkson. and 
G. Dromey, “Mostow’s Operatronalizer.” in P. R. Cohen and 
E. A. Feigenbaum, Volume 3 (eds.), Handbook of Artificial 
Intelligence, Stanford Computer Science Department, 
Stanford, CA, 1982. In section on Learning and Inductive 
Inference, available as STAN-CS-82.913/HPP-82.10. 

[Feather 831 M. S. Feather, Closed System Specifications, 1983. 
In preparation. 

[Fickas 801 S. Fickas, “Automatic goal-directed program 
transformation,” in AAA180, pp. 68-70. American Association 
for Artificial Intelligence, Stanford University, 1980. 

[Fickas 821 S. Fickas, Automating fhe Transformational 

Developmen? of Software, Ph.D. thesis, University of 
California at Irvine, 1982. 

[Hayes-Roth 811 F. Hayes-Roth. P. Klahr. and D. J. Mostow. 
“Advice taking and knowledge refinement. an iterative view 
of skill acquisition ” in J. A. Anderson (ed.). Cogn/trve Skills 
and their Acquisif/on, pp. 231-253. Erlbaum. 1981 

[Kant & Newell 821 E. Kant and A Newell. Problem solving 
technques for the design of algorithms, Carnegie-Mellon 
University Computer Science Department Technical 
Report CMU-CS-82-145. November 1982. To appear in 
Information Processing and Management. 

[McCarthy 681 J. McCarthy, “The advice taker,” in M. Minsky 
(ed.). Semantic lnformafion Processing, pp, 403-410, MIT 
Press. Cambridge. MA, 1968. 

[Mostow 791 D. J. Mostow and F. Hayes-Roth. “Operationaliztng 
heuristics: some Al methods for assisting Al programming.” 
in IJCAI-5, pp. 601-609, Tokyo. Japan. 1979. 

[Mostow 811 D. J. Mostow, Mechanical Transformaf/on of Task 
Heurlsfxs into Operational Procedures. Ph.D. thesis. 
Carnegie-Mellon University. 1981. Technical Report CMU- 
CS-81 - 113. 

[Mostow 821 D. J. Mostow, “Learning by being told: Machine 
transformation of advice into a heuristic search procedure,” 
in J. G. Carbonell. R. S. Michalski, and T. M. Mitchell (eds.), 
Machine Learning. Palo Alto, CA: Tioga Publishing Company, 
1982. 

[Mostow 831 J. Mostow. “Operationalizing advice: a problem- 
solving model.” in Proceedings of the Infernational Machine 
Learning Workshop, University of Illinois. June 1983. 

[Newell 601 A. Newell, J. Shaw, H. Simon, “Report on a general 
problem-solving program for a computer,” in Proceedings of 
the International Conference on Information Processing, 
pp. 256-264, UNESCO, Paris, 1960. 

[Newell 791 A. Newell, Reasoning, problem solving and decision 
processes: the problem space as a fundamental category, 
Carnegie-Mellon University Computer Science Department, 
Pittsburgh, PA, Technical Report, June 1979. 

[Sacerdoti 741 E. D. Sacerdoti, “Planning in a hierarchy of 
abstraction spaces,” Artificial Intelligence 5, 1974, 115- 135. 

283 


